Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage

Size: px
Start display at page:

Download "Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage"

Transcription

1 Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage CAS Loss Reserve Seminar 23 Session 3 Private Passenger Automobile Insurance Frank Cacchione Carlos Ariza September 8, 23

2 Today s Agenda Defining the opportunity Approach to Auto Physical Damage claims leakage reduction Modeling methodology Technical Design Typical Process Appendix: Application to Bodily Injury Claims PA Knowledge Limited 23-2

3 Powerful new predictive modeling tools are available to capture operational improvement across most elements of the claims process Technology enabling value drivers for Total Incident Management Fraud Management Litigation Management Predictive modeling can provide fraud "flags Technology can enable insurers to better determine litigation strategy Notification and Assignment Early notification Predictive triage Direct to network Verification of coverage Customer service UM pursuit Investigation and evaluation Predictive modeling Image engineering Adjuster variance Negotiation and settlement Colossus/ICE Lawyer profile Source law firms Motor repair network Salvage/Subrogation Total loss assessment Significant operational improvement requires rapid determination of how a claim should be handled and intensive effort to reduce the variance in adjustors evaluation of loss Predictive models can aid the claim representative in determining the likelihood of overpayment and suggest strategy options Assignment Triage Adjuster Calibration Case Management Assignment of Claim to Appropriate Track SIU Fast Track Regular BI Staff Examiners Typical Situation Target End- State Investigation and Evaluation Invest. Eval. Negot. Assignment of Claim to Appropriate Rep Sue Pete Independent Examiners & Preferred Body Shops # of Claims $ Estimate # of Claims $ Estimate Key Overpayment Drivers What to investigate Settlement offer range Manager Review Mary PA Knowledge Limited 23-3

4 Recent studies estimate that Auto Physical Damage represents over 2% of all claims leakage. Losses from Claim Leakage Property and Casualty Insurance $ Million 1% = $3 Billion Estimates Other Coverages (Mainly: workers compensation, health insurance, auto BI, homeowners insurance) Public Public Perceptions Perceptions (All (All Americans, Americans, 2 2 Survey): Survey): 24% 24% think think it it is is okay okay to to overstate overstate insurance insurance claims claims to to make make up up for for past past premiums premiums 35% 35% think think it it is is acceptable acceptable to to pad pad claims claims to to make make up up for for deductible deductible Physical Damage $6 7 Billion In In California*: California*: 43% 43% of of all all vehicles vehicles inspected inspected showed showed evidence evidence of of overwrite overwrite by by an an auto auto body body shop shop Fraudulent Fraudulent repairs repairs equaled equaled $586 $586 per per vehicle vehicle Depending on on the the location, about about a third third to toa half half of of all all physical damage claims claims have have substantial leakage Losses from from Hard Hard fraud fraud represents a small small part part of of this this leakage Efforts Efforts to to date date to to eliminate this this leakage have have had had only only limited success Source: National Insurance Crime Bureau; California Department of Consumer Affairs; California Bureau of Automotive Repair * California Bureau of Automotive Repair, ongoing auto-repair re-inspection program. Numbers are as of December 31, 21 PA Knowledge Limited 23-4

5 PA s experience indicates that, despite efforts to improve performance, insurers generally continue significantly overpaying Auto Physical Damage claims by up to 9%. Motor Physical Damage: Distribution of Estimate Amounts Illustrative Performance Challenges Inadequate Controls (I.e., field reinspections and desk reviews) Inconsistent estimates across appraisers and appraiser types, due to broad range of skills Wide range of accident types and physical damage profiles Staff Examiners Preferred Body Shops # of Claims Typical Situation Independent Examiners Emphasis on customer service issues, sometimes at the expense of proper control and safeguards $ Estimate Desired Situation Significant overpayment (up (up to to 9%*) continues in in Auto Physical Damage for for most insurers # of Claims $ Estimate * Based on reinspections by client teams of estimates by top front-line claims personnel PA Knowledge Limited 23-5

6 Today s Agenda Defining the opportunity Approach to Auto Physical Damage claims leakage reduction Modeling methodology Technical Design Typical Process Appendix: Application to Bodily Injury Claims PA Knowledge Limited 23-6

7 Despite global use of training and corrective tools such as reinspections, significant differences still exist between adjusters estimating the claim from the same auto damage event. Estimate Breakdown: Examples of Differences Disguised Estimator 1 Estimator 2 Estimator 3 Bumper Overhaul (1.1 hours), LKQ assembly for $187.5,2.5 paint hours Replace (.7 hours) LKQ assembly for $13, 3.5 paint hours Replace (.7 hours) LKQ assembly for $16, inspect LKQ (.3 hours) 2.5 paint hours Lamps Replace (.3 hours), LKQ tail lamp for $62.5 Replace (.5 hours), LKQ tail lamp for $1 Rear Body Panel Not written Repair body panel (4 hours), 1.7 paint hours Replace (.5 hours), LKQ tail lamp for $6. Replace 5.2 hours), OEM body panel ($133.27), 1.4 paint hours Real Floor Pan Not written Not written Repair (2.5 hours) floor pan assembly, 2 paint hours Quarter Panel Repair body panel (7 hours) 2.2 paint hours Other Pinstripe ($1), Flex Material ($12), Car Cover ($5), Hazmat ($4) Estimate Total (Indexed) Repair body panel (6 hours), 2.2 paint hours Set up & Pull (2 hours), stripe tape ($1), blend (.5 hours), seam sealer ($8), undercoating ($15) Replace (9.4 hours), LKQ quarter panel($16), 2.6 paint hours Paint fuel door (.3 hours), flex coat ($12), Hazmat ($4), stripe tape ($15), corrosion protection ($15), seam sealer ($8) Note: LKQ refers to salvaged parts Source: Test of sample claims with representative claims organization PA Knowledge Limited 23-7

8 When several adjusters were compared in a blind, quantitative process, startling variations were found in the appraisal performances. Measuring Estimator Performance Disguised Example Damaged Damaged vehicles vehicles representing representing different different ages, ages, type type and and damage damage locations locations were were collected collected in in a a central central location location Repair Estimates Proportional Scale Adjuster A Adjuster B Adjuster C Estimators Estimators were were asked asked to to provide provide repair repair estimates estimates for for every every vehicle. vehicle. Different Different types types of of estimators estimators (i.e., (i.e., insurer, insurer, DRP, DRP, non-drp non-drp and and independent) independent) were were chosen chosen Estimators Estimators were were not not allowed allowed to to share share data data or or observations observations Estimate Amount Significant Significant differences differences between between groups groups (internal (internal and and external external adjusters), adjusters), as as well well as as within within each each group group were were observed observed Source: Test of sample claims with representative claims organization Car # PA Knowledge Limited 23-8

9 This problem of high variance and overpayment in Auto Physical Damage losses can be addressed only through desired Behavior Modification on the part of appraisers and shops. Importance of Behavior Modification Key Issues in Auto Physical Damage Losses Claims losses are primarily determined by a large number of decentralized adjusters, with different performance levels The process depends significantly on the expertise of adjusters Heterogeneity of claims implies difficulty in designing predictive modeling tools for several risk segments Field reinspections and desk reviews tend to be marginally effective because the resources are limited and it is difficult to allocate them effectively The key key objective of of any any corrective strategy has has to to be be Behavior Modification through proper controls and and associated training, communications, incentives, etc. etc. PA Knowledge Limited 23-9

10 One tool used for control is the reinspections of estimates. Unfortunately, reinspections do not identify most overpayments, nor do they always achieve the desired behavior modification. Key Issues with Reinspections Unsophisticated claim selection procedure: reinspection resources tend to focus on the largest $ amount claims, or those that are conveniently accessible on a given day, rather than on those with the maximum potential likelihood of overwriting. Limited reinspection resources: Reinspection effectiveness is generally limited because of limited resources, and appraisers /shops knowledge of these limitations No single reinspection process: reinspection process may vary between appraisal types (different for staff/internal appraisers from others), making it difficult to evaluate appraisers consistently Inefficient results capture: Reinspection results are not captured in a single place, generally, and may be saved in different systems for different markets. This makes it difficult to analyze the data for identifying trends or developing corrective strategies Estimates are typically selected either randomly or through a pre-set and generally known dollar limit, which means that: Several of the most problematic claims do not get reinspected, and so savings are not maximized Reinspections tend to create limited desired modification in partner/vendor behavior PA Knowledge Limited 23-1

11 PA tackles reinspections differently, by using a sophisticated model to estimate the overwriting probability of each estimate, and then allocating limited reinspection resources accordingly. PA s Approach to Targeting Auto Physical Damage Leakage through a Probabilistic Model Expert decision process information is gathered from experienced adjusters Historical claims data is collected for model Model is designed, based on a probabilistic Bayesian framework, using historical claims data Model is trained on historical reinspection results Links are created to allow model to function dynamically with fresh daily claims data, and to learn with data Model results are fed into reinspection resource allocation process, resulting in increased hit rates and savings identified Over time, process leads to behavior modification and a significantly improved estimation process PA Knowledge Limited 23-11

12 Our predictive modeling solution directly integrates with the client claims management system, creating a tool and a process for ongoing claims evaluation and selection for reinspections. Staff Appraisals Independent Appraisals DRP Appraisals Appraisals Uploaded into Claims System Reinspections Process With PA s Predictive Model: Illustrative Data Flow PA s Predictive Model Model Recommendations (incl. Random*) Reinspections Dispatch Recommended desk reviews Recommended field reviews Desk Reviews Desk reviews requiring field reinspections Savings Identified/ Realized Field Reinspections * Typically, a fixed % of random recommendations is added to the mix in order to ensure reinspections of all shops and appraisers over a period of time PA Knowledge Limited 23-12

13 Today s Agenda Defining the opportunity Approach to Auto Physical Damage claims leakage reduction Modeling methodology Technical Design Typical Process Appendix: Application to Bodily Injury Claims PA Knowledge Limited 23-13

14 Our methodology is based on Bayesian Networks, which provide consistent statistical treatment to both hard data and experts assumptions about the likelihood of overwriting. What are Bayesian Networks? BNs are models that represent uncertainty in our knowledge: Uncertainty from experts knowledge Uncertainty about the domain being modeled Uncertainty from the knowledge engineer (aka model builder) Uncertainty about accuracy and availability of the knowledge (Source: Russel Greiner, U. of Alberta, Canada) BNs are conditional probability models Bayesian inference consists of updating prior beliefs as new information becomes available BNs are able to learn from new data Rev. Thomas Bayes ( ) is responsible for the Bayes Theorem, which is the basis for conditional probability theory BNs are graphical causal models Bayesian methods have been available for a long time, but tend to be computationally difficult Only in the last 1 years has software become good enough to develop useful applications that can be solved in a reasonable time PA Knowledge Limited 23-14

15 Bayesian networks use conditional probabilities to represent what we usually call common sense they have found a warm reception in Artificial Intelligence circles Why Bayesian? Rev. Thomas Bayes stated in 1761 that P (A B) = P (B A) * P(A) / P(B) The Bayes Theorem allows easy manipulation of conditional probabilities, which are critical to develop reasonable systems. An example from the Physical Damage claims world: The fact that there is a lower than expected amount of used parts in a vehicle repair estimate increases the probability of overwriting. However, if this vehicle is a rare model, then the probability decreases, because we don t expect to easily find LKQ parts for it. Conditional on rarity, however, the LKQ content seems appropriate Rare vehicle Without knowing rarity, the LKQ content is deemed too low, and worthy of reinspection Partial view of the predictive model LKQ content lower than expected PA Knowledge Limited 23-15

16 Bayesian Networks have been applied in diverse areas of engineering, medicine and business Some examples of applications: Medical diagnostics Language understanding SPAM filtering Machine vision Fraud detection Operational risk management Pharmaceutical drug discovery The classic Chest Clinic Bayesian Network for medical diagnosis* Online customer service Predictive maintenance Fault analysis for complex machinery * (From Norsys s Netica tutorial, based on S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B (Methodological), 5(2): , 1988). PA Knowledge Limited 23-16

17 The power of today s computers allows an old theory to be applied to a modern problem. Benefits of Bayesian Networks: BNs replicate cause-and-effect relationships seen in real life, and identified by experts familiar with the industry BNs rely on a rigorous probabilistic structure, so conflicting evidence can be weighed appropriately instead of biasing the results BNs can generate results with incomplete data, and account for uncertainty in the inputs appropriately BNs stay current because of their ability to learn from new data as it is generated, reducing maintenance requirements BNs keep all assumptions visible and make them easy to share with users, even those without technical training PA Knowledge Limited 23-17

18 BNs are ideally suited for Auto Physical Damage Claims analysis Claims data is usually incomplete, and traditional statistical tools do not handle incomplete information well Experts can quickly identify overwriting in auto insurance claims, but have a difficult time making their process explicit modeling with BNs allows companies to capture experts mental models and replicate them across the company, standardizing best practices Historical reinspections results are usually patchy and unstructured a system based on BNs can start with a model created from experts opinions, and validate them as new results are collected Early in the development of the system we explored the possibility of using a more traditional method, such as logistic regression, to estimate the probability of overwriting However, we found logistic regression too rigid for this application, since it has more stringent data requirements Additionally, incorporating the experts knowledge requires a hierarchical approach to model development, which is difficult to represent using traditional regression tools PA Knowledge Limited 23-18

19 Bayesian networks are superior to alternative modeling methodologies. Features Gut feel and intuition Regression models Rules-based expert systems Neural networks Bayesian networks Can incorporate expert knowledge Can handle quantitative data inputs Cause and effect explicitly represented Non-linear relationships can be easily represented Continuous (fuzzy) logic allowed Can handle incomplete data sets Can learn from data PA Knowledge Limited 23-19

20 PA Knowledge Limited The predictive model is built by combining expert knowledge with quantitative data. Model Design and Construction Claims and Policy data Appraiser information Policy, claim and other data is gathered to incorporate in the predictive model. Data sources for possible inclusion in model Examiners and Repair Facilities Appraisal information Examiner Group Characteristics Labor Parts Estimate Independents details.. Date of joining Labor Rates Amount Prior incidences Types of Labor Type and frequency Experience level PRS Shops Labor Hours Repair/replace rules Expertise focus Training level Staff Examiners Historical ratios Repair Shop Characteristics Repair Facilities Relationship with company Relationship with other carriers Part of a dealership or network Geographical information Total Loss Threshold Amount Vehicle Valuation Prior Damage Miscellaneous Repair guidellines Betterment Mileage Illustrative Accident Profile Characteristics Vehicle Make Model Year ACV Driver Age Sex Prior claims Violations Accident Type Comprehensive Low vs. high impact Single-car vs. multiple $ size of damage claim relative to medical claim Policy and Receivable Information Limits Deductible Vehicle new to policy Premium current? Payment basis? Expert Interviews PA s experience Qualitative model Quantitative model The qualitative model represents how different inputs potentially relate to each other These relationships are represented graphically and validated through interviews The quantitative model turns the relationships between inputs into probabilities, which are calibrated using claims data and other sources PA Knowledge Limited 23-2

21 The key starting point is to tap into the accumulated knowledge of your Material Damage claims experts. Breaking down the expert decision process I know a good repair shop when I walk in the door These new staff appraisers always seem to miss the little things that can add up I know a Total Loss when I see it I always jump on those positive supplements that come in late If they all just did what I tell them to do, we wouldn t need you consultants PA Knowledge Limited 23-21

22 Bayesian networks provide an explicit way of balancing expert knowledge with hard data Illustrative Prior distribution from expert knowledge is uniform Confidence on prior expert knowledge is equivalent to 1 data point Model reacts quickly to new data when there is little confidence on prior knowledge 1 data point 1 data points 1 data points 1 data points Confidence on prior expert knowledge is equivalent to 1 data points If there is more confidence on prior knowledge, the model reacts more slowly to new data Note: Data points in this example come from a random Normal(4,5) sample PA Knowledge Limited 23-22

23 PA Knowledge Limited Expert interviews provide the base for creating the Bayesian Network, which captures a rich set of cause-effect relationships between different data inputs C L _ V e hi cl e_ h a s_ P ri or _ Dm g C L _O l d_ V e hi cl e C L _ V al u a bl e_ V e hi cl e 1 I E _c l os e _t o _T L 1 C L _ A C V _t o _M e di an _I n c om e t o. 5 > =. 5 1 I E _c l os e _t o _P o li cy Li m 1 L o w _ P ol ic y Lim 1 C L _ is _ n ot _ Ri s k_ A v er se C L _ n um _ cl aim s_ t o_ d at e t o 1 > = 4 1 C L _ n um _ yr s_ a s_ c u st < 1 > = 7 1 B i li n g _M e t h od m on th ly d d ir e ct b 1 2 N u m be r _I ns u re d t o 1 > = 4 1 C L _ h a s_m u c h_ e x pe ri e nc e C L _ A t a c hme n t_ is _W e ak O nl y_ o n e_ i ns u re d 1 C L _ is _ n ot _ L on g tim e _c u st 1 B i l _Me t h od _i s _ Ri sk ie r 1 C L _w il i ng _ to _ pr o v _f al se _i n f o C L _ P r ofi le _ Ri s k_ is _ Hi g h A c c id e nt _ d es c _u n re li a bl e A c c _ D es c _c a n_ b e _i na c c P o li c e_ R e p or t_ A v ail a bl e 1 N u m _V e h _I nv o lv e d 1 W it n es s es _l ik el y 1 M or e _t h a n_ Tw o _I nv o lv e d 1 M or e _t h a n_o n e_ I nv ol v e d 1 W it n es s es L a c k_ o f_ Wi tn e s e s C L _ I nd iv _ Ri s k_ is _ Hi g h C L _ A g e t o 2 2 t o t o 3 3 t o t o t o 75 > = 75 1 C L _ is _ at _ Ri s ky _ A ge C L _ is _ Si n gl e 1 C L _ L a ck s _ Dri vi n g _ Ex p 1 C L _ is _ Fi n a nc _ U ns t ab le C L _ R e nt s _ Re si d e nc e 1 C L _ F I CO _ S c or e t o to to to 7 7 to to 8 5 > = 85 1 C L _ L ow _ FI CO _S c or e C L _ h a s_ L ow _I nc om e C L _ V e hi cl e_ R is k _i s_ H i gh C L _ P ol ic y _ Ri sk _i s _ Hi g h A v g _ L ab o r_ R a te _ B o dy t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 A v g _ L ab o r_ R a te _ Fr am e t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 D i f _ La b o r_ R at e _ B od y < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 D i f _ La b o r_ R at e _ Fr am e < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 D i f _ La b o r_ R at e _ Pa in t < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 C L _ cl ai ms _ pe r _y r t o. 5. 5t o 1 1 t o t o 2 1 F r am e_ a s_ F ra c ti o n_ o f_ T ot al t o t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o 1 1 R o a d _ C o nd _ R e po rt e d D I W S 1 D i f ic ul t _ Dri vi n g 1 D i f ic ul t _W ea t he r 1 D i f ic ul t _ Ro a d 1 C o s tl y _ Re p ai rs _ Li ke ly T h e ft 1 B I _ C om p on e nt W e at h er _ Re p o rt e d C F I R S 1 R o a d _ C ha r ac te ri st ic s R C L G S H 1 S p e e d_ L im i t t o t o t o 3 3 t o t o 4 4 t o t o 5 > = 5 1 D i f ic ul t _ Ro a d _ Ch a r 1 D i f ic ul t _ Ro a d _ Co n d 1 H i g h _S p e ed F r am e_ L a b or _I n co n si st _w _ E D L a b o r_ H o ur s _ Fr am e < t o 5 5 t o t o 1 1 t o t o 2 > = 2 1 L a b o r_ H o ur s _ B od y < 5 5 t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 > = 7 1 L a b o r_ C o st _ Fr am e < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 L a b o r_ C o st _ B o dy < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 L a b o r_ R at e _ B od y t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ C o st _ Pa i nt < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 A v g _ Fr a c_ B P L _ of _ LP _ to t al t o t o t o t o t o 1 1 L a b o r_ C o st _ B an d P < 2 2 to 5 5 to 1 1 t o 2 > = 2 1 F r a c_ B P L _o f _L P _t o ta l < t o. 5. 5t o t o 1 1 L a b o r_ R at i os _ ar e_ t o o_ H ig h T o o _M u c h_ L a bo r D i f er e n ce _wi t h_ H is t_ B P L _ Pa rt s < t o t o t o t o t o t o t o t o t o t o t o t o. 46 > = L a b o r_ R at e s_ H i gh e r_ t ha n _ Av g C l aim _ o ve rw r it te n A P _w il i ng _ to _ c ol u d e A P _ E x pe ri e nc e t o 1 5 t o 7 7 t o 1 1 A P _ P r ofi le _ Ri s k_ is _ Hi g h A P _ E x pe ri e nc e _i s_ L ow 1 A P _ r el _w _ In s _ C o_ is _W e ak N u m _o f _ AP _i n _ A P_ C om p a ny t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1 1 A P _ C om p a ny _i s _ La r ge _O I A 1 A P _ C o _i s _V e ry _ Sm al _O I A 1 A P _ C om p a ny _i s _ Ve ry _ Sm al 1 A P _ C om p a ny _i s _ La r ge 1 A P _ Y rs _W o rk i ng _w _I n s_ C o t o 1 > = 7 1 A P _ is _ ca r el es s A P _ N um _ A p pr _ d on e _ pe r_ mo n t h t o 1 2 t o 5 5 t o 1 1 t o 2 2 t o 4 4 t o 8 > = 8 1 A P _ V ol um e _i s_ L ow O d om_ U n re a d ab le S i g ni f_ El e ct r_ D am a ge O d om_ is _ Di g it al V e h ic le _M i le a g e t o 1 1 t o 1 1 t o 2 2 t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1e 5 e 5 1 L a b o r_ H o ur s _ Pa in t < 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 > = 5 1 L a b o r_ H o ur s _ El ec tr < 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 > = 5 1 L a b o r_ R at e _ El ec tr t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ C o st _ El ec tr < 1 1 t o 2 2 t o 5 5 t o 1 1 to 5 5 to 1 1 t o 2 > = 2 1 Mi le a g e_ is _Mi s si n g 1 M i le a g e_m is s _ du e _t o _c a re le s s 1 N u m _ Ap p r_ d o n e_ t ha t_ d a y t o 1 7 t o 8 8 t o 9 9 t o 1 1 t o t o 2 > = 2 1 N u m _ Ap p r_ p er _ D ay _ A v g t o 3 3 t o t o t o t o t o 4 4 t o t o t o t o t o 5 5 t o t o t o t o t o 6 6 t o t o 7 7 t o 1 1 t o 2 > = 2 1 D i f _ N um _ Ap p r_ fr om _ A v g < -3-3 to to to to t o. 5. 5t o 1 1 L o g i n_ N am e_ is _ S ha r ed 1 A P _ T o o _M a n y _ Ap p ra is al s 1 T o o _m a ny _ fo r _On e _ A P_ p er _ D ay 1 L K Q _ P ar t s_ C o st < 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 A M _ Pa rt s _ Co s t < 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 T o t al _ Pa rt s _ Co s t < 5 5 to 1 1 t o 2 2 t o 4 > = 4 1 D i f _ Fr _ L KQ _ v s_ E x pe c te d < t o to t o t o t o. 1. 1t o. 1 5 > = F r a cti o n _ AM < t o to.1. 1t o to t o to.2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 7. 7t o. 8. 8t o. 9. 9t o 1 1 E x p e ct e d_ L KQ _ Fr _ by _ Yr t o to to to to to to to.2. 2t o to to to to.3. 3t o to to.3 4 > = E x p e ct e d_ AM _ Fr _ b y_ Y r t o to to to to to t o to to to to to to > = D i f _ Fr _ AM _v s _ Ex p ec t ed < t o to t o t o t o. 1. 1t o. 1 5 > = F r a cti o n _ L KQ <. 1. 1t o. 2. 2t o t o. 3. 3t o t o. 4. 4t o t o. 5. 5t o. 6. 6t o. 7. 7t o. 8. 8t o. 9. 9t o 1 1 V e h ic le _i s _ Ra re L e s s_ L KQ _t h a n_ E x p L e s s_ A M _ t ha n _ Ex p 1 S i g ni f_ P ar ts _ Di f S i g ni f_ P ar ts _ Di f _ ra re C a s e _i s_ IE 1 E x t en t _o f _ Dam a g e_ is _ Hi g h D A P _ U n d er bi d _I E 1 A P _ S _I E _ Pc t_ D if f_ H is t < -1-1 to to to t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 8. 8t o 1 > = 2 1 A P _ H is t _ Un d er b id _I E 1 A P _ R F _ Pa ir e d_ F re q u e ntl y A P _ R F _ Pa ir in g s _l as t_ Y e ar t o 1 1 t o 5 5 t o 1 1 R F _ Me di a n _I nc om e t o 2 2 t o t o 3 3 t o t o t o 4 4 t o t o 5 5 t o 6 6 t o 7 7 t o 8 > = 8 1 R F _ N h o o d_ R is k _i s_ H i gh R F _ N h o o d_ R is k y_ I nc om e 1 R F _ N h o o d_ H i gh _ C rim e 1 R F _ A v g _M on t h_ V ol _w _ C o_ P 6M t o 1 1 t o 5 5 t o 1 1 t o 2 > = 2 1 R F _ M o n t hl y_ V ol _ Al l_ C ar ri er s < t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1 1 to 2 > = 2 1 R F _ a n d_ C o _ R el ati o n _W ea k R F _ C o _ Fr _i s _L ow R F _ Mo n t hl y_ V ol _i s _L ow R F _ F r_ V ol _w _ C o < t o t o. 1. 1t o. 2 > =. 2 1 R F _ I nd iv _ Ri s k_ is _ Hi g h R F _ P r ofi le _ Ri s k_ is _ Hi g h R F _w il i ng _ to _ c ol u d e R F _w il i ng _ to _ n ot _f o l ow _ a p p A P _ R F _ R el ati o n _i s_ S tr o n g 1 A P _ g iv e s_ t o _m a ny _ c on c A P _ g ui d e d_ b y _ RF R e p ai r _i s_ C om pl e x M ak em o d el _F r eq u e nc y t o to to to t o t o t o. 4 > =. 4 1 P c t _ Dif f _S _ to _I E _ Vs _ Hi s t < to to t o t o. 1. 1t o. 2. 2t o. 5. 5t o 1 1 A P _ T o d ay _ U n de r bi d_ I E 1 S _ I E_ D if f_ Si g ni f _g iv e n _ Co mp le x 1 A P _ A v oi d s_ 2 n d_ V is it 1 V a l ue _I n c on si s te n t_w _ D ama g e R e p ai r _V al u e _i s_ H ig h 1 I E _t o _ A C V_ R at i o <. 5. 5t o. 8 > =. 8 1 A P _ S u p _t o _I E_ P ct _ Di f < -1-1 to to to t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 8. 8t o 1 > = 2 1 A P _ T e n ds _t o _W ri te _ Hi g h _I E 1 A P _ f ail e d_ t o_ s av e A v g _ Di f _ L ab o r_ R a te < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 C L _w il i ng _ to _ c ol u d e A P _ u nl ik el y _t o _ ha v e_ E x p_w _ Ve h R F _ C rim e _ Ra t e t o 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 C L _ N h o o d_ R is k y_ I nc om e 1 C L _ N h o o d_ H i gh _ C rim e 1 C L _ N h o o d_ Mo s tl y_ U r ba n 1 C L _ N h o o d_ R is k _i s_ H i gh C L _ Me di a n _I nc om e t o 2 2 t o t o 3 3 t o t o t o 4 4 t o t o 5 5 t o 6 6 t o 7 7 t o 8 > = 8 1 C L _ C rim e _ Ra t e t o 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 C L _ F r_ B el ow _ P ov er t y t o t o. 1. 1t o t o. 2. 2t o. 4 > =. 4 1 C L _ P ct _ U rb a n t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 7 t o 8 8 t o 9 > = 9 1 R F _ F r_ B el ow _ P ov er t y t o t o. 1. 1t o t o. 2. 2t o. 4 > =. 4 1 R F _ N h o o d_ Mo s tl y_ U r ba n 1 R F _ P ct _ U rb a n t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 7 t o 8 8 t o 9 > = 9 1 C L _ R is k y_ P L ev el R F _ R is k y_ P L ev el R F _ h a s_ L ow _V o lu me R F _ is _ Sm al R F _ is _ D A P 1 R F _ N o t_ P ar t _o f _ De al er s hi p 1 R F _ N o t_ P ar t _o f _ Ne tw or k 1 R F _ N um _ Em pl o ye e s t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o R F _ L a b or _ Ra t es _ L ow e r R F _ h a s_ F ew _ Em p lo y e s I E _t o _ Po li cy L im _ R a ti o t o. 8 > =. 8 1 C L _ V e hi cl e_ Y rs _Ol d < 1 7 t o 8 8 t o 9 9 t o 1 1 t o t o t o t o t o t o D e d u ct i bl e t o 1 1 to to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 C o l is i on _ P oli c y Lim t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1e 5 e 5 1 C L _ V e hi cl e_ A C V t o 1 1 t o 2 2 t o 4 4 t o 5 5 t o 8 8 t o 1 1 t o t o t o t o 2 2 t o t o 3 3 t o 4 4 t o 6 > = 6 1 L o s s _Y e ar < 2 2 1t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o 2 2 > = V e h ic le _ Ye a r < t o t o t o t o t o t o t o t o t o t o t o t o 2 2 t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o 2 2 > = C a p t ur e d_ i n_ P h ys R C a p t ur e d_ i n_ P h ys R _ T S C a p t ur e d_ i n_ D e sk R P h y s R _mi s e s_ S a vi n gs P h y s R _T S _mi s se s _ Sa vi n g s M at c he d _i n _ Ph y s R M at c he d _i n _ De s k R M at c h_ S c or e _P h y s R_ T S t o M at c h_ S c or e _ De s k R t o M at c h_ S c or e _P h y s R t o C L _ n o t_ at _ F au lt 1 C L _ is _ n ot _i n s ur e d 1 M aj or _ D am ag e _ Li ke ly 1 J o b _m u ch _ hi g h er _t h a n_ A C V 1 J o b _t o _ A C V_ R a ti o < 1 1 t o t o t o t o M at c he d _i n _ Ph y s R_ T S T o t al _ La b or _ H o ur s < 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 O ut p ut _ Pr o b a bil it y T L _O v er ri de 1 A P _ mi s e d_ s av i ng s A P _ m i s e d_ L a b or _ Sa vi n g s A P _ mi s e d_ p ar t s_ s av A P _ T y pe I A S A D A P 1 P r o ce s s_ S u p _I D t o 1 > = 2 1 V e h _i s _T o ta l_ L o s 1 J o b _ Hi g h er _t h a n_ A C V _ no t _T L 1 I E _J o b _ To t al _ Amt < t o 5 5 to to 1 1 t o 2 2 t o 3 3 t o 5 5 t o 7 5 > = 75 1 J o b _ T ot al _ Am t < t o 5 5 to to 1 1 t o 2 2 t o 3 3 t o 5 5 t o 7 5 > = 75 1 I n s ur e d_w a s_ R e ck le s s 1 C i ta ti o n _i s_ f or _I n su r ed 1 C i ta ti o n _i n di c_ re c kl es s 1 W h o _P o li ce _ R ep o rt _ Vi ol I V P B O U E N 1 A v g _ L ab o r_ R a te _ Pa i nt t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ R at e _ Fr am e t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 R F _ d id n t_ f ol ow _ ap p ra is al C L _ A P _ co l u de d A P _ R F _ co l u de d C L _ mi sr e po rt e d _a c ci de n t L a b o r_ R at e _ Pa in t 2 t o t o 3 4 t o t o 5 6 t o t o 7 1 P a rt s _ Th r es h ol d < 1 4 to 5 > = 5 1 T o t al _ Pa rt s _ Hi g he r_ t ha n _ T hr es 1 T o t al _ Pa rt s _T h re s _ Di f C L _ V e hi cl e_ h a s_ P ri or _ Dm g C L _ V e hi cl e_ h a s_ P ri or _ Dm g C L _O l d_ V e hi cl e C L _ V al u a bl e_ V e hi cl e 1 I E _c l os e _t o _T L 1 C L _ A C V _t o _M e di an _I n c om e t o. 5 > =. 5 1 I E _c l os e _t o _P o li cy Li m 1 L o w _ P ol ic y Lim 1 C L _ is _ n ot _ Ri s k_ A v er se C L _ n um _ cl aim s_ t o_ d at e t o 1 > = 4 1 C L _ n um _ yr s_ a s_ c u st < 1 > = 7 1 B i li n g _M e t h od m on th ly d d ir e ct b 1 2 N u m be r _I ns u re d t o 1 > = 4 1 C L _ h a s_m u c h_ e x pe ri e nc e C L _O l d_ V e hi cl e C L _ V al u a bl e_ V e hi cl e 1 I E _c l os e _t o _T L 1 C L _ A C V _t o _M e di an _I n c om e t o. 5 > =. 5 1 I E _c l os e _t o _P o li cy Li m 1 L o w _ P ol ic y Lim 1 C L _ is _ n ot _ Ri s k_ A v er se C L _ n um _ cl aim s_ t o_ d at e t o 1 > = 4 1 C L _ n um _ yr s_ a s_ c u st < 1 > = 7 1 B i li n g _M e t h od m on th ly d d ir e ct b 1 2 N u m be r _I ns u re d t o 1 > = 4 1 C L _ h a s_m u c h_ e x pe ri e nc e C L _ A t a c hme n t_ is _W e ak O nl y_ o n e_ i ns u re d 1 C L _ is _ n ot _ L on g tim e _c u st 1 B i l _Me t h od _i s _ Ri sk ie r 1 C L _w il i ng _ to _ pr o v _f al se _i n f o C L _ P r ofi le _ Ri s k_ is _ Hi g h A c c id e nt _ d es c _u n re li a bl e A c c _ D es c _c a n_ b e _i na c c P o li c e_ R e p or t_ A v ail a bl e 1 N u m _V e h _I nv o lv e d 1 W it n es s es _l ik el y 1 M or e _t h a n_ Tw o _I nv o lv e d 1 M or e _t h a n_o n e_ I nv ol v e d 1 C L _ A t a c hme n t_ is _W e ak O nl y_ o n e_ i ns u re d 1 C L _ is _ n ot _ L on g tim e _c u st 1 B i l _Me t h od _i s _ Ri sk ie r 1 C L _w il i ng _ to _ pr o v _f al se _i n f o C L _ P r ofi le _ Ri s k_ is _ Hi g h A c c id e nt _ d es c _u n re li a bl e A c c _ D es c _c a n_ b e _i na c c P o li c e_ R e p or t_ A v ail a bl e 1 N u m _V e h _I nv o lv e d 1 W it n es s es _l ik el y 1 M or e _t h a n_ Tw o _I nv o lv e d 1 M or e _t h a n_o n e_ I nv ol v e d 1 W it n es s es L a c k_ o f_ Wi tn e s e s C L _ I nd iv _ Ri s k_ is _ Hi g h C L _ A g e t o 2 2 t o t o 3 3 t o t o t o 75 > = 75 1 C L _ is _ at _ Ri s ky _ A ge C L _ is _ Si n gl e 1 C L _ L a ck s _ Dri vi n g _ Ex p 1 C L _ is _ Fi n a nc _ U ns t ab le C L _ R e nt s _ Re si d e nc e 1 C L _ F I CO _ S c or e t o to to to 7 7 to to 8 5 > = 85 1 C L _ L ow _ FI CO _S c or e C L _ h a s_ L ow _I nc om e W it n es s es L a c k_ o f_ Wi tn e s e s C L _ I nd iv _ Ri s k_ is _ Hi g h C L _ A g e t o 2 2 t o t o 3 3 t o t o t o 75 > = 75 1 C L _ is _ at _ Ri s ky _ A ge C L _ is _ Si n gl e 1 C L _ L a ck s _ Dri vi n g _ Ex p 1 C L _ is _ Fi n a nc _ U ns t ab le C L _ R e nt s _ Re si d e nc e 1 C L _ F I CO _ S c or e t o to to to 7 7 to to 8 5 > = 85 1 C L _ L ow _ FI CO _S c or e C L _ h a s_ L ow _I nc om e C L _ V e hi cl e_ R is k _i s_ H i gh C L _ P ol ic y _ Ri sk _i s _ Hi g h A v g _ L ab o r_ R a te _ B o dy t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 A v g _ L ab o r_ R a te _ Fr am e t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 D i f _ La b o r_ R at e _ B od y < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 D i f _ La b o r_ R at e _ Fr am e < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 D i f _ La b o r_ R at e _ Pa in t < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 C L _ cl ai ms _ pe r _y r t o. 5. 5t o 1 1 t o t o 2 1 F r am e_ a s_ F ra c ti o n_ o f_ T ot al t o t o. 1 C L _ V e hi cl e_ R is k _i s_ H i gh C L _ P ol ic y _ Ri sk _i s _ Hi g h A v g _ L ab o r_ R a te _ B o dy t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 A v g _ L ab o r_ R a te _ Fr am e t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 D i f _ La b o r_ R at e _ B od y < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 D i f _ La b o r_ R at e _ Fr am e < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 D i f _ La b o r_ R at e _ Pa in t < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 C L _ cl ai ms _ pe r _y r t o. 5. 5t o 1 1 t o t o 2 1 F r am e_ a s_ F ra c ti o n_ o f_ T ot al t o t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o 1 1 R o a d _ C o nd _ R e po rt e d D I W S 1 D i f ic ul t _ Dri vi n g 1 D i f ic ul t _W ea t he r 1 D i f ic ul t _ Ro a d 1 C o s tl y _ Re p ai rs _ Li ke ly T h e ft 1 B I _ C om p on e nt W e at h er _ Re p o rt e d C F I R S 1 R o a d _ C ha r ac te ri st ic s R C L G S H 1 S p e e d_ L im i t t o t o t o 3 3 t o t o 4 4 t o t o 5 > = 5 1 D i f ic ul t _ Ro a d _ Ch a r. 1t o. 2. 2t o. 3. 3t o. 4. 4t o 1 1 R o a d _ C o nd _ R e po rt e d D I W S 1 D i f ic ul t _ Dri vi n g 1 D i f ic ul t _W ea t he r 1 D i f ic ul t _ Ro a d 1 C o s tl y _ Re p ai rs _ Li ke ly T h e ft 1 B I _ C om p on e nt W e at h er _ Re p o rt e d C F I R S 1 R o a d _ C ha r ac te ri st ic s R C L G S H 1 S p e e d_ L im i t t o t o t o 3 3 t o t o 4 4 t o t o 5 > = 5 1 D i f ic ul t _ Ro a d _ Ch a r 1 D i f ic ul t _ Ro a d _ Co n d 1 H i g h _S p e ed F r am e_ L a b or _I n co n si st _w _ E D L a b o r_ H o ur s _ Fr am e < t o 5 5 t o t o 1 1 t o t o 2 > = 2 1 L a b o r_ H o ur s _ B od y < 5 5 t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 > = 7 1 L a b o r_ C o st _ Fr am e < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 L a b o r_ C o st _ B o dy < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 L a b o r_ R at e _ B od y t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ C o st _ Pa i nt < 1 1 to 2 1 D i f ic ul t _ Ro a d _ Co n d 1 H i g h _S p e ed F r am e_ L a b or _I n co n si st _w _ E D L a b o r_ H o ur s _ Fr am e < t o 5 5 t o t o 1 1 t o t o 2 > = 2 1 L a b o r_ H o ur s _ B od y < 5 5 t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 > = 7 1 L a b o r_ C o st _ Fr am e < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 L a b o r_ C o st _ B o dy < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 L a b o r_ R at e _ B od y t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ C o st _ Pa i nt < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 A v g _ Fr a c_ B P L _ of _ LP _ to t al t o t o t o t o t o 1 1 L a b o r_ C o st _ B an d P < 2 2 to 5 5 to 1 1 t o 2 > = 2 1 F r a c_ B P L _o f _L P _t o ta l < t o. 5. 5t o t o 1 1 L a b o r_ R at i os _ ar e_ t o o_ H ig h T o o _M u c h_ L a bo r D i f er e n ce _wi t h_ H is t_ B P L _ Pa rt s < t o t o t o t o t o t o t o t o t o t o t o t o. 46 > = L a b o r_ R at e s_ H i gh e r_ t ha n _ Av g C l aim _ o ve rw r it te n A P _w il i ng _ to _ c ol u d e A P _ E x pe ri e nc e t o 1 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 A v g _ Fr a c_ B P L _ of _ LP _ to t al t o t o t o t o t o 1 1 L a b o r_ C o st _ B an d P < 2 2 to 5 5 to 1 1 t o 2 > = 2 1 F r a c_ B P L _o f _L P _t o ta l < t o. 5. 5t o t o 1 1 L a b o r_ R at i os _ ar e_ t o o_ H ig h T o o _M u c h_ L a bo r D i f er e n ce _wi t h_ H is t_ B P L _ Pa rt s < t o t o t o t o t o t o t o t o t o t o t o t o. 46 > = L a b o r_ R at e s_ H i gh e r_ t ha n _ Av g C l aim _ o ve rw r it te n A P _w il i ng _ to _ c ol u d e A P _ E x pe ri e nc e t o 1 5 t o 7 7 t o 1 1 A P _ P r ofi le _ Ri s k_ is _ Hi g h A P _ E x pe ri e nc e _i s_ L ow 1 A P _ r el _w _ In s _ C o_ is _W e ak N u m _o f _ AP _i n _ A P_ C om p a ny t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1 1 A P _ C om p a ny _i s _ La r ge _O I A 1 A P _ C o _i s _V e ry _ Sm al _O I A 1 A P _ C om p a ny _i s _ Ve ry _ Sm al 1 A P _ C om p a ny _i s _ La r ge 1 A P _ Y rs _W o rk i ng _w _I n s_ C o t o 1 > = 7 1 A P _ is _ ca r el es s A P _ N um _ A p pr _ d on e _ pe r_ mo n t h t o 1 2 t o 5 5 t o 1 1 t o 2 2 t o 4 4 t o 8 > = 8 5 t o 7 7 t o 1 1 A P _ P r ofi le _ Ri s k_ is _ Hi g h A P _ E x pe ri e nc e _i s_ L ow 1 A P _ r el _w _ In s _ C o_ is _W e ak N u m _o f _ AP _i n _ A P_ C om p a ny t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1 1 A P _ C om p a ny _i s _ La r ge _O I A 1 A P _ C o _i s _V e ry _ Sm al _O I A 1 A P _ C om p a ny _i s _ Ve ry _ Sm al 1 A P _ C om p a ny _i s _ La r ge 1 A P _ Y rs _W o rk i ng _w _I n s_ C o t o 1 > = 7 1 A P _ is _ ca r el es s A P _ N um _ A p pr _ d on e _ pe r_ mo n t h t o 1 2 t o 5 5 t o 1 1 t o 2 2 t o 4 4 t o 8 > = 8 1 A P _ V ol um e _i s_ L ow O d om_ U n re a d ab le S i g ni f_ El e ct r_ D am a ge O d om_ is _ Di g it al V e h ic le _M i le a g e t o 1 1 t o 1 1 t o 2 2 t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1e 5 e 5 1 L a b o r_ H o ur s _ Pa in t < 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 > = 5 1 L a b o r_ H o ur s _ El ec tr < 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 > = 5 1 L a b o r_ R at e _ El ec tr t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ C o st _ El ec tr < 1 1 t o 2 2 t o 5 5 t o 1 1 to 5 5 to 1 1 t o 2 > = A P _ V ol um e _i s_ L ow O d om_ U n re a d ab le S i g ni f_ El e ct r_ D am a ge O d om_ is _ Di g it al V e h ic le _M i le a g e t o 1 1 t o 1 1 t o 2 2 t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1e 5 e 5 1 L a b o r_ H o ur s _ Pa in t < 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 > = 5 1 L a b o r_ H o ur s _ El ec tr < 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 > = 5 1 L a b o r_ R at e _ El ec tr t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ C o st _ El ec tr < 1 1 t o 2 2 t o 5 5 t o 1 1 to 5 5 to 1 1 t o 2 > = 2 1 Mi le a g e_ is _Mi s si n g 1 M i le a g e_m is s _ du e _t o _c a re le s s 1 N u m _ Ap p r_ d o n e_ t ha t_ d a y t o 1 7 t o 8 8 t o 9 9 t o 1 1 t o t o 2 > = 2 1 N u m _ Ap p r_ p er _ D ay _ A v g t o 3 3 t o t o t o t o t o 4 4 t o t o t o t o t o 5 5 t o t o t o t o t o 6 6 t o t o 7 7 t o 1 1 t o 2 > = 2 1 D i f _ N um _ Ap p r_ fr om _ A v g < -3-3 to to to to t o. 5. 5t o 1 1 L o g i n_ N am e_ is _ S ha r ed 1 A P _ T o o _M a n y _ Ap p ra is al s 1 T o o _m a ny _ fo r _On e _ A P_ p er _ D ay 1 Mi le a g e_ is _Mi s si n g 1 M i le a g e_m is s _ du e _t o _c a re le s s 1 N u m _ Ap p r_ d o n e_ t ha t_ d a y t o 1 7 t o 8 8 t o 9 9 t o 1 1 t o t o 2 > = 2 1 N u m _ Ap p r_ p er _ D ay _ A v g t o 3 3 t o t o t o t o t o 4 4 t o t o t o t o t o 5 5 t o t o t o t o t o 6 6 t o t o 7 7 t o 1 1 t o 2 > = 2 1 D i f _ N um _ Ap p r_ fr om _ A v g < -3-3 to to to to t o. 5. 5t o 1 1 L o g i n_ N am e_ is _ S ha r ed 1 A P _ T o o _M a n y _ Ap p ra is al s 1 T o o _m a ny _ fo r _On e _ A P_ p er _ D ay 1 L K Q _ P ar t s_ C o st < 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 A M _ Pa rt s _ Co s t < 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 T o t al _ Pa rt s _ Co s t < 5 5 to 1 1 t o 2 2 t o 4 > = 4 1 D i f _ Fr _ L KQ _ v s_ E x pe c te d < t o to t o t o t o. 1. 1t o. 1 5 > = F r a cti o n _ AM < t o to.1. 1t o to t o to.2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 7. 7t o. 8. 8t o. 9. 9t o 1 1 E x p e ct e d_ L KQ _ Fr _ by _ Yr t o to to to to to to to.2. 2t o to to to to.3. 3t o to to.3 4 > = E x p e ct e d_ AM _ Fr _ b y_ Y r t o to to to to to t o to L K Q _ P ar t s_ C o st < 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 A M _ Pa rt s _ Co s t < 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 T o t al _ Pa rt s _ Co s t < 5 5 to 1 1 t o 2 2 t o 4 > = 4 1 D i f _ Fr _ L KQ _ v s_ E x pe c te d < t o to t o t o t o. 1. 1t o. 1 5 > = F r a cti o n _ AM < t o to.1. 1t o to t o to.2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 7. 7t o. 8. 8t o. 9. 9t o 1 1 E x p e ct e d_ L KQ _ Fr _ by _ Yr t o to to to to to to to.2. 2t o to to to to.3. 3t o to to.3 4 > = E x p e ct e d_ AM _ Fr _ b y_ Y r t o to to to to to t o to to to to to to > = D i f _ Fr _ AM _v s _ Ex p ec t ed < t o to t o t o t o. 1. 1t o. 1 5 > = F r a cti o n _ L KQ <. 1. 1t o. 2. 2t o t o. 3. 3t o t o. 4. 4t o t o. 5. 5t o. 6. 6t o. 7. 7t o. 8. 8t o. 9. 9t o 1 1 V e h ic le _i s _ Ra re L e s s_ L KQ _t h a n_ E x p L e s s_ A M _ t ha n _ Ex p 1 S i g ni f_ P ar ts _ Di f S i g ni f_ P ar ts _ Di f _ ra re C a s e _i s_ IE 1 E x t en t _o f _ Dam a g e_ is _ Hi g h D A P _ U n d er bi d _I E to to to to to > = D i f _ Fr _ AM _v s _ Ex p ec t ed < t o to t o t o t o. 1. 1t o. 1 5 > = F r a cti o n _ L KQ <. 1. 1t o. 2. 2t o t o. 3. 3t o t o. 4. 4t o t o. 5. 5t o. 6. 6t o. 7. 7t o. 8. 8t o. 9. 9t o 1 1 V e h ic le _i s _ Ra re L e s s_ L KQ _t h a n_ E x p L e s s_ A M _ t ha n _ Ex p 1 S i g ni f_ P ar ts _ Di f S i g ni f_ P ar ts _ Di f _ ra re C a s e _i s_ IE 1 E x t en t _o f _ Dam a g e_ is _ Hi g h D A P _ U n d er bi d _I E 1 A P _ S _I E _ Pc t_ D if f_ H is t < -1-1 to to to t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 8. 8t o 1 > = 2 1 A P _ H is t _ Un d er b id _I E 1 A P _ R F _ Pa ir e d_ F re q u e ntl y A P _ R F _ Pa ir in g s _l as t_ Y e ar t o 1 1 t o 5 5 t o 1 1 R F _ Me di a n _I nc om e t o 2 2 t o t o 3 3 t o t o t o 4 4 t o t o 5 5 t o 6 6 t o 7 7 t o 8 > = 8 1 R F _ N h o o d_ R is k _i s_ H i gh R F _ N h o o d_ R is k y_ I nc om e 1 R F _ N h o o d_ H i gh _ C rim e 1 R F _ A v g _M on t h_ V ol _w _ C o_ P 6M t o 1 1 t o 5 5 t o 1 1 t o 2 > = 2 1 R F _ M o n t hl y_ V ol _ Al l_ C ar ri er s < t o 5 1 A P _ S _I E _ Pc t_ D if f_ H is t < -1-1 to to to t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 8. 8t o 1 > = 2 1 A P _ H is t _ Un d er b id _I E 1 A P _ R F _ Pa ir e d_ F re q u e ntl y A P _ R F _ Pa ir in g s _l as t_ Y e ar t o 1 1 t o 5 5 t o 1 1 R F _ Me di a n _I nc om e t o 2 2 t o t o 3 3 t o t o t o 4 4 t o t o 5 5 t o 6 6 t o 7 7 t o 8 > = 8 1 R F _ N h o o d_ R is k _i s_ H i gh R F _ N h o o d_ R is k y_ I nc om e 1 R F _ N h o o d_ H i gh _ C rim e 1 R F _ A v g _M on t h_ V ol _w _ C o_ P 6M t o 1 1 t o 5 5 t o 1 1 t o 2 > = 2 1 R F _ M o n t hl y_ V ol _ Al l_ C ar ri er s < t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1 1 to 2 > = 2 1 R F _ a n d_ C o _ R el ati o n _W ea k R F _ C o _ Fr _i s _L ow R F _ Mo n t hl y_ V ol _i s _L ow R F _ F r_ V ol _w _ C o < t o t o. 1. 1t o. 2 > =. 2 1 R F _ I nd iv _ Ri s k_ is _ Hi g h R F _ P r ofi le _ Ri s k_ is _ Hi g h R F _w il i ng _ to _ c ol u d e R F _w il i ng _ to _ n ot _f o l ow _ a p p A P _ R F _ R el ati o n _i s_ S tr o n g 1 A P _ g iv e s_ t o _m a ny _ c on c A P _ g ui d e d_ b y _ RF R e p ai r _i s_ C om pl e x t o 1 1 t o 2 2 t o 5 5 t o 1 1 to 2 > = 2 1 R F _ a n d_ C o _ R el ati o n _W ea k R F _ C o _ Fr _i s _L ow R F _ Mo n t hl y_ V ol _i s _L ow R F _ F r_ V ol _w _ C o < t o t o. 1. 1t o. 2 > =. 2 1 R F _ I nd iv _ Ri s k_ is _ Hi g h R F _ P r ofi le _ Ri s k_ is _ Hi g h R F _w il i ng _ to _ c ol u d e R F _w il i ng _ to _ n ot _f o l ow _ a p p A P _ R F _ R el ati o n _i s_ S tr o n g 1 A P _ g iv e s_ t o _m a ny _ c on c A P _ g ui d e d_ b y _ RF R e p ai r _i s_ C om pl e x M ak em o d el _F r eq u e nc y t o to to to t o t o t o. 4 > =. 4 1 P c t _ Dif f _S _ to _I E _ Vs _ Hi s t < to to t o t o. 1. 1t o. 2. 2t o. 5. 5t o 1 1 A P _ T o d ay _ U n de r bi d_ I E 1 S _ I E_ D if f_ Si g ni f _g iv e n _ Co mp le x 1 A P _ A v oi d s_ 2 n d_ V is it 1 V a l ue _I n c on si s te n t_w _ D ama g e R e p ai r _V al u e _i s_ H ig h 1 I E _t o _ A C V_ R at i o <. 5. 5t o. 8 > =. 8 1 A P _ S u p _t o _I E_ P ct _ Di f < -1-1 to to to t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 8. 8t o 1 > = 2 1 A P _ T e n ds _t o _W ri te _ Hi g h _I E 1 M ak em o d el _F r eq u e nc y t o to to to t o t o t o. 4 > =. 4 1 P c t _ Dif f _S _ to _I E _ Vs _ Hi s t < to to t o t o. 1. 1t o. 2. 2t o. 5. 5t o 1 1 A P _ T o d ay _ U n de r bi d_ I E 1 S _ I E_ D if f_ Si g ni f _g iv e n _ Co mp le x 1 A P _ A v oi d s_ 2 n d_ V is it 1 V a l ue _I n c on si s te n t_w _ D ama g e R e p ai r _V al u e _i s_ H ig h 1 I E _t o _ A C V_ R at i o <. 5. 5t o. 8 > =. 8 1 A P _ S u p _t o _I E_ P ct _ Di f < -1-1 to to to t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 8. 8t o 1 > = 2 1 A P _ T e n ds _t o _W ri te _ Hi g h _I E 1 A P _ f ail e d_ t o_ s av e A v g _ Di f _ L ab o r_ R a te < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 C L _w il i ng _ to _ c ol u d e A P _ u nl ik el y _t o _ ha v e_ E x p_w _ Ve h R F _ C rim e _ Ra t e t o 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 C L _ N h o o d_ R is k y_ I nc om e 1 C L _ N h o o d_ H i gh _ C rim e 1 C L _ N h o o d_ Mo s tl y_ U r ba n 1 C L _ N h o o d_ R is k _i s_ H i gh C L _ Me di a n _I nc om e t o 2 2 t o t o 3 3 t o t o t o 4 4 t o t o 5 5 t o 6 6 t o 7 7 t o 8 > = 8 1 C L _ C rim e _ Ra t e t o 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 A P _ f ail e d_ t o_ s av e A v g _ Di f _ L ab o r_ R a te < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 C L _w il i ng _ to _ c ol u d e A P _ u nl ik el y _t o _ ha v e_ E x p_w _ Ve h R F _ C rim e _ Ra t e t o 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 C L _ N h o o d_ R is k y_ I nc om e 1 C L _ N h o o d_ H i gh _ C rim e 1 C L _ N h o o d_ Mo s tl y_ U r ba n 1 C L _ N h o o d_ R is k _i s_ H i gh C L _ Me di a n _I nc om e t o 2 2 t o t o 3 3 t o t o t o 4 4 t o t o 5 5 t o 6 6 t o 7 7 t o 8 > = 8 1 C L _ C rim e _ Ra t e t o 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 C L _ F r_ B el ow _ P ov er t y t o t o. 1. 1t o t o. 2. 2t o. 4 > =. 4 1 C L _ P ct _ U rb a n t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 7 t o 8 8 t o 9 > = 9 1 R F _ F r_ B el ow _ P ov er t y t o t o. 1. 1t o t o. 2. 2t o. 4 > =. 4 1 R F _ N h o o d_ Mo s tl y_ U r ba n 1 R F _ P ct _ U rb a n t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 7 t o 8 8 t o 9 > = 9 1 C L _ R is k y_ P L ev el R F _ R is k y_ P L ev el R F _ h a s_ L ow _V o lu me R F _ is _ Sm al R F _ is _ D A P 1 C L _ F r_ B el ow _ P ov er t y t o t o. 1. 1t o t o. 2. 2t o. 4 > =. 4 1 C L _ P ct _ U rb a n t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 7 t o 8 8 t o 9 > = 9 1 R F _ F r_ B el ow _ P ov er t y t o t o. 1. 1t o t o. 2. 2t o. 4 > =. 4 1 R F _ N h o o d_ Mo s tl y_ U r ba n 1 R F _ P ct _ U rb a n t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 7 t o 8 8 t o 9 > = 9 1 C L _ R is k y_ P L ev el R F _ R is k y_ P L ev el R F _ h a s_ L ow _V o lu me R F _ is _ Sm al R F _ is _ D A P 1 R F _ N o t_ P ar t _o f _ De al er s hi p 1 R F _ N o t_ P ar t _o f _ Ne tw or k 1 R F _ N um _ Em pl o ye e s t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o R F _ L a b or _ Ra t es _ L ow e r R F _ h a s_ F ew _ Em p lo y e s I E _t o _ Po li cy L im _ R a ti o t o. 8 > =. 8 1 C L _ V e hi cl e_ Y rs _Ol d < 1 7 t o 8 8 t o 9 9 t o 1 1 t o t o t o t o t o t o D e d u ct i bl e t o 1 1 to to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 C o l is i on _ P oli c y Lim t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1e 5 e 5 1 C L _ V e hi cl e_ A C V t o 1 1 t o 2 R F _ N o t_ P ar t _o f _ De al er s hi p 1 R F _ N o t_ P ar t _o f _ Ne tw or k 1 R F _ N um _ Em pl o ye e s t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o R F _ L a b or _ Ra t es _ L ow e r R F _ h a s_ F ew _ Em p lo y e s I E _t o _ Po li cy L im _ R a ti o t o. 8 > =. 8 1 C L _ V e hi cl e_ Y rs _Ol d < 1 7 t o 8 8 t o 9 9 t o 1 1 t o t o t o t o t o t o D e d u ct i bl e t o 1 1 to to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 C o l is i on _ P oli c y Lim t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1e 5 e 5 1 C L _ V e hi cl e_ A C V t o 1 1 t o 2 2 t o 4 4 t o 5 5 t o 8 8 t o 1 1 t o t o t o t o 2 2 t o t o 3 3 t o 4 4 t o 6 > = 6 1 L o s s _Y e ar < 2 2 1t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o 2 2 > = V e h ic le _ Ye a r < t o t o t o t o t o t o t o t o t o t o t o t o 2 2 t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o 2 2 > = C a p t ur e d_ i n_ P h ys R C a p t ur e d_ i n_ P h ys R _ T S C a p t ur e d_ i n_ D e sk R 2 t o 4 4 t o 5 5 t o 8 8 t o 1 1 t o t o t o t o 2 2 t o t o 3 3 t o 4 4 t o 6 > = 6 1 L o s s _Y e ar < 2 2 1t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o 2 2 > = V e h ic le _ Ye a r < t o t o t o t o t o t o t o t o t o t o t o t o 2 2 t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o 2 2 > = C a p t ur e d_ i n_ P h ys R C a p t ur e d_ i n_ P h ys R _ T S C a p t ur e d_ i n_ D e sk R P h y s R _mi s e s_ S a vi n gs P h y s R _T S _mi s se s _ Sa vi n g s M at c he d _i n _ Ph y s R M at c he d _i n _ De s k R M at c h_ S c or e _P h y s R_ T S t o M at c h_ S c or e _ De s k R t o M at c h_ S c or e _P h y s R t o C L _ n o t_ at _ F au lt 1 C L _ is _ n ot _i n s ur e d 1 M aj or _ D am ag e _ Li ke ly 1 J o b _m u ch _ hi g h er _t h a n_ A C V 1 J o b _t o _ A C V_ R a ti o < 1 1 t o t o t o t o P h y s R _mi s e s_ S a vi n gs P h y s R _T S _mi s se s _ Sa vi n g s M at c he d _i n _ Ph y s R M at c he d _i n _ De s k R M at c h_ S c or e _P h y s R_ T S t o M at c h_ S c or e _ De s k R t o M at c h_ S c or e _P h y s R t o C L _ n o t_ at _ F au lt 1 C L _ is _ n ot _i n s ur e d 1 M aj or _ D am ag e _ Li ke ly 1 J o b _m u ch _ hi g h er _t h a n_ A C V 1 J o b _t o _ A C V_ R a ti o < 1 1 t o t o t o t o M at c he d _i n _ Ph y s R_ T S T o t al _ La b or _ H o ur s < 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 O ut p ut _ Pr o b a bil it y T L _O v er ri de 1 A P _ mi s e d_ s av i ng s A P _ m i s e d_ L a b or _ Sa vi n g s A P _ mi s e d_ p ar t s_ s av A P _ T y pe I A S A D A P 1 P r o ce s s_ S u p _I D t o 1 > = 2 1 V e h _i s _T o ta l_ L o s 1 J o b _ Hi g h er _t h a n_ A C V _ no t _T L 1 I E _J o b _ To t al _ Amt < t o 5 5 to to 1 1 t o 2 2 t o 3 3 t o 5 5 t o 7 5 > = 75 1 M at c he d _i n _ Ph y s R_ T S T o t al _ La b or _ H o ur s < 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 O ut p ut _ Pr o b a bil it y T L _O v er ri de 1 A P _ mi s e d_ s av i ng s A P _ m i s e d_ L a b or _ Sa vi n g s A P _ mi s e d_ p ar t s_ s av A P _ T y pe I A S A D A P 1 P r o ce s s_ S u p _I D t o 1 > = 2 1 V e h _i s _T o ta l_ L o s 1 J o b _ Hi g h er _t h a n_ A C V _ no t _T L 1 I E _J o b _ To t al _ Amt < t o 5 5 to to 1 1 t o 2 2 t o 3 3 t o 5 5 t o 7 5 > = 75 1 J o b _ T ot al _ Am t < t o 5 5 to to 1 1 t o 2 2 t o 3 3 t o 5 5 t o 7 5 > = 75 1 I n s ur e d_w a s_ R e ck le s s 1 C i ta ti o n _i s_ f or _I n su r ed 1 C i ta ti o n _i n di c_ re c kl es s 1 W h o _P o li ce _ R ep o rt _ Vi ol I V P B O U E N 1 A v g _ L ab o r_ R a te _ Pa i nt t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ R at e _ Fr am e t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 R F _ d id n t_ f ol ow _ ap p ra is al C L _ A P _ co l u de d J o b _ T ot al _ Am t < t o 5 5 to to 1 1 t o 2 2 t o 3 3 t o 5 5 t o 7 5 > = 75 1 I n s ur e d_w a s_ R e ck le s s 1 C i ta ti o n _i s_ f or _I n su r ed 1 C i ta ti o n _i n di c_ re c kl es s 1 W h o _P o li ce _ R ep o rt _ Vi ol I V P B O U E N 1 A v g _ L ab o r_ R a te _ Pa i nt t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ R at e _ Fr am e t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 R F _ d id n t_ f ol ow _ ap p ra is al C L _ A P _ co l u de d A P _ R F _ co l u de d C L _ mi sr e po rt e d _a c ci de n t L a b o r_ R at e _ Pa in t 2 t o t o 3 4 t o t o 5 6 t o t o 7 1 P a rt s _ Th r es h ol d < 1 4 to 5 > = 5 1 T o t al _ Pa rt s _ Hi g he r_ t ha n _ T hr es 1 T o t al _ Pa rt s _T h re s _ Di f High-Level auto repair model diagram Main output variable: Probability of overwriting 8+ data inputs, combining hard data in non-linear cause-effect relationships elicited by experts

24 PA Knowledge Limited C L _ V e hi cl e_ h a s_ P ri or _ Dm g C L _O l d_ V e hi cl e C L _ V al u a bl e_ V e hi cl e 1 I E _c l os e _t o _T L 1 C L _ A C V _t o _M e di an _I n c om e t o. 5 > =. 5 1 I E _c l os e _t o _P o li cy Li m 1 L o w _ P ol ic y Lim 1 C L _ is _ n ot _ Ri s k_ A v er se C L _ n um _ cl aim s_ t o_ d at e t o 1 > = 4 1 C L _ n um _ yr s_ a s_ c u st < 1 > = 7 1 B i li n g _M e t h od m on th ly d d ir e ct b 1 2 N u m be r _I ns u re d t o 1 > = 4 1 C L _ h a s_m u c h_ e x pe ri e nc e C L _ A t a c hme n t_ is _W e ak O nl y_ o n e_ i ns u re d 1 C L _ is _ n ot _ L on g tim e _c u st 1 B i l _Me t h od _i s _ Ri sk ie r 1 C L _w il i ng _ to _ pr o v _f al se _i n f o C L _ P r ofi le _ Ri s k_ is _ Hi g h A c c id e nt _ d es c _u n re li a bl e A c c _ D es c _c a n_ b e _i na c c P o li c e_ R e p or t_ A v ail a bl e 1 N u m _V e h _I nv o lv e d 1 W it n es s es _l ik el y 1 M or e _t h a n_ Tw o _I nv o lv e d 1 M or e _t h a n_o n e_ I nv ol v e d 1 W it n es s es L a c k_ o f_ Wi tn e s e s C L _ I nd iv _ Ri s k_ is _ Hi g h C L _ A g e t o 2 2 t o t o 3 3 t o t o t o 75 > = 75 1 C L _ is _ at _ Ri s ky _ A ge C L _ is _ Si n gl e 1 C L _ L a ck s _ Dri vi n g _ Ex p 1 C L _ is _ Fi n a nc _ U ns t ab le C L _ R e nt s _ Re si d e nc e 1 C L _ F I CO _ S c or e t o to to to 7 7 to to 8 5 > = 85 1 C L _ L ow _ FI CO _S c or e C L _ h a s_ L ow _I nc om e C L _ V e hi cl e_ R is k _i s_ H i gh C L _ P ol ic y _ Ri sk _i s _ Hi g h A v g _ L ab o r_ R a te _ B o dy t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 A v g _ L ab o r_ R a te _ Fr am e t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 D i f _ La b o r_ R at e _ B od y < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 D i f _ La b o r_ R at e _ Fr am e < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 D i f _ La b o r_ R at e _ Pa in t < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 C L _ cl ai ms _ pe r _y r t o. 5. 5t o 1 1 t o t o 2 1 F r am e_ a s_ F ra c ti o n_ o f_ T ot al t o t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o 1 1 R o a d _ C o nd _ R e po rt e d D I W S 1 D i f ic ul t _ Dri vi n g 1 D i f ic ul t _W ea t he r 1 D i f ic ul t _ Ro a d 1 C o s tl y _ Re p ai rs _ Li ke ly T h e ft 1 B I _ C om p on e nt W e at h er _ Re p o rt e d C F I R S 1 R o a d _ C ha r ac te ri st ic s R C L G S H 1 S p e e d_ L im i t t o t o t o 3 3 t o t o 4 4 t o t o 5 > = 5 1 D i f ic ul t _ Ro a d _ Ch a r 1 D i f ic ul t _ Ro a d _ Co n d 1 H i g h _S p e ed F r am e_ L a b or _I n co n si st _w _ E D L a b o r_ H o ur s _ Fr am e < t o 5 5 t o t o 1 1 t o t o 2 > = 2 1 L a b o r_ H o ur s _ B od y < 5 5 t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 > = 7 1 L a b o r_ C o st _ Fr am e < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 L a b o r_ C o st _ B o dy < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 L a b o r_ R at e _ B od y t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ C o st _ Pa i nt < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 A v g _ Fr a c_ B P L _ of _ LP _ to t al t o t o t o t o t o 1 1 L a b o r_ C o st _ B an d P < 2 2 to 5 5 to 1 1 t o 2 > = 2 1 F r a c_ B P L _o f _L P _t o ta l < t o. 5. 5t o t o 1 1 L a b o r_ R at i os _ ar e_ t o o_ H ig h T o o _M u c h_ L a bo r D i f er e n ce _wi t h_ H is t_ B P L _ Pa rt s < t o t o t o t o t o t o t o t o t o t o t o t o. 46 > = L a b o r_ R at e s_ H i gh e r_ t ha n _ Av g C l aim _ o ve rw r it te n A P _w il i ng _ to _ c ol u d e A P _ E x pe ri e nc e t o 1 5 t o 7 7 t o 1 1 A P _ P r ofi le _ Ri s k_ is _ Hi g h A P _ E x pe ri e nc e _i s_ L ow 1 A P _ r el _w _ In s _ C o_ is _W e ak N u m _o f _ AP _i n _ A P_ C om p a ny t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1 1 A P _ C om p a ny _i s _ La r ge _O I A 1 A P _ C o _i s _V e ry _ Sm al _O I A 1 A P _ C om p a ny _i s _ Ve ry _ Sm al 1 A P _ C om p a ny _i s _ La r ge 1 A P _ Y rs _W o rk i ng _w _I n s_ C o t o 1 > = 7 1 A P _ is _ ca r el es s A P _ N um _ A p pr _ d on e _ pe r_ mo n t h t o 1 2 t o 5 5 t o 1 1 t o 2 2 t o 4 4 t o 8 > = 8 1 A P _ V ol um e _i s_ L ow O d om_ U n re a d ab le S i g ni f_ El e ct r_ D am a ge O d om_ is _ Di g it al V e h ic le _M i le a g e t o 1 1 t o 1 1 t o 2 2 t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1e 5 e 5 1 L a b o r_ H o ur s _ Pa in t < 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 > = 5 1 L a b o r_ H o ur s _ El ec tr < 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 > = 5 1 L a b o r_ R at e _ El ec tr t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ C o st _ El ec tr < 1 1 t o 2 2 t o 5 5 t o 1 1 to 5 5 to 1 1 t o 2 > = 2 1 Mi le a g e_ is _Mi s si n g 1 M i le a g e_m is s _ du e _t o _c a re le s s 1 N u m _ Ap p r_ d o n e_ t ha t_ d a y t o 1 7 t o 8 8 t o 9 9 t o 1 1 t o t o 2 > = 2 1 N u m _ Ap p r_ p er _ D ay _ A v g t o 3 3 t o t o t o t o t o 4 4 t o t o t o t o t o 5 5 t o t o t o t o t o 6 6 t o t o 7 7 t o 1 1 t o 2 > = 2 1 D i f _ N um _ Ap p r_ fr om _ A v g < -3-3 to to to to t o. 5. 5t o 1 1 L o g i n_ N am e_ is _ S ha r ed 1 A P _ T o o _M a n y _ Ap p ra is al s 1 T o o _m a ny _ fo r _On e _ A P_ p er _ D ay 1 L K Q _ P ar t s_ C o st < 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 A M _ Pa rt s _ Co s t < 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 T o t al _ Pa rt s _ Co s t < 5 5 to 1 1 t o 2 2 t o 4 > = 4 1 D i f _ Fr _ L KQ _ v s_ E x pe c te d < t o to t o t o t o. 1. 1t o. 1 5 > = F r a cti o n _ AM < t o to.1. 1t o to t o to.2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 7. 7t o. 8. 8t o. 9. 9t o 1 1 E x p e ct e d_ L KQ _ Fr _ by _ Yr t o to to to to to to to.2. 2t o to to to to.3. 3t o to to.3 4 > = E x p e ct e d_ AM _ Fr _ b y_ Y r t o to to to to to t o to to to to to to > = D i f _ Fr _ AM _v s _ Ex p ec t ed < t o to t o t o t o. 1. 1t o. 1 5 > = F r a cti o n _ L KQ <. 1. 1t o. 2. 2t o t o. 3. 3t o t o. 4. 4t o t o. 5. 5t o. 6. 6t o. 7. 7t o. 8. 8t o. 9. 9t o 1 1 V e h ic le _i s _ Ra re L e s s_ L KQ _t h a n_ E x p L e s s_ A M _ t ha n _ Ex p 1 S i g ni f_ P ar ts _ Di f S i g ni f_ P ar ts _ Di f _ ra re C a s e _i s_ IE 1 E x t en t _o f _ Dam a g e_ is _ Hi g h D A P _ U n d er bi d _I E 1 A P _ S _I E _ Pc t_ D if f_ H is t < -1-1 to to to t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 8. 8t o 1 > = 2 1 A P _ H is t _ Un d er b id _I E 1 A P _ R F _ Pa ir e d_ F re q u e ntl y A P _ R F _ Pa ir in g s _l as t_ Y e ar t o 1 1 t o 5 5 t o 1 1 R F _ Me di a n _I nc om e t o 2 2 t o t o 3 3 t o t o t o 4 4 t o t o 5 5 t o 6 6 t o 7 7 t o 8 > = 8 1 R F _ N h o o d_ R is k _i s_ H i gh R F _ N h o o d_ R is k y_ I nc om e 1 R F _ N h o o d_ H i gh _ C rim e 1 R F _ A v g _M on t h_ V ol _w _ C o_ P 6M t o 1 1 t o 5 5 t o 1 1 t o 2 > = 2 1 R F _ M o n t hl y_ V ol _ Al l_ C ar ri er s < t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1 1 to 2 > = 2 1 R F _ a n d_ C o _ R el ati o n _W ea k R F _ C o _ Fr _i s _L ow R F _ Mo n t hl y_ V ol _i s _L ow R F _ F r_ V ol _w _ C o < t o t o. 1. 1t o. 2 > =. 2 1 R F _ I nd iv _ Ri s k_ is _ Hi g h R F _ P r ofi le _ Ri s k_ is _ Hi g h R F _w il i ng _ to _ c ol u d e R F _w il i ng _ to _ n ot _f o l ow _ a p p A P _ R F _ R el ati o n _i s_ S tr o n g 1 A P _ g iv e s_ t o _m a ny _ c on c A P _ g ui d e d_ b y _ RF R e p ai r _i s_ C om pl e x M ak em o d el _F r eq u e nc y t o to to to t o t o t o. 4 > =. 4 1 P c t _ Dif f _S _ to _I E _ Vs _ Hi s t < to to t o t o. 1. 1t o. 2. 2t o. 5. 5t o 1 1 A P _ T o d ay _ U n de r bi d_ I E 1 S _ I E_ D if f_ Si g ni f _g iv e n _ Co mp le x 1 A P _ A v oi d s_ 2 n d_ V is it 1 V a l ue _I n c on si s te n t_w _ D ama g e R e p ai r _V al u e _i s_ H ig h 1 I E _t o _ A C V_ R at i o <. 5. 5t o. 8 > =. 8 1 A P _ S u p _t o _I E_ P ct _ Di f < -1-1 to to to t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 8. 8t o 1 > = 2 1 A P _ T e n ds _t o _W ri te _ Hi g h _I E 1 A P _ f ail e d_ t o_ s av e A v g _ Di f _ L ab o r_ R a te < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 C L _w il i ng _ to _ c ol u d e A P _ u nl ik el y _t o _ ha v e_ E x p_w _ Ve h R F _ C rim e _ Ra t e t o 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 C L _ N h o o d_ R is k y_ I nc om e 1 C L _ N h o o d_ H i gh _ C rim e 1 C L _ N h o o d_ Mo s tl y_ U r ba n 1 C L _ N h o o d_ R is k _i s_ H i gh C L _ Me di a n _I nc om e t o 2 2 t o t o 3 3 t o t o t o 4 4 t o t o 5 5 t o 6 6 t o 7 7 t o 8 > = 8 1 C L _ C rim e _ Ra t e t o 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 C L _ F r_ B el ow _ P ov er t y t o t o. 1. 1t o t o. 2. 2t o. 4 > =. 4 1 C L _ P ct _ U rb a n t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 7 t o 8 8 t o 9 > = 9 1 R F _ F r_ B el ow _ P ov er t y t o t o. 1. 1t o t o. 2. 2t o. 4 > =. 4 1 R F _ N h o o d_ Mo s tl y_ U r ba n 1 R F _ P ct _ U rb a n t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 7 t o 8 8 t o 9 > = 9 1 C L _ R is k y_ P L ev el R F _ R is k y_ P L ev el R F _ h a s_ L ow _V o lu me R F _ is _ Sm al R F _ is _ D A P 1 R F _ N o t_ P ar t _o f _ De al er s hi p 1 R F _ N o t_ P ar t _o f _ Ne tw or k 1 R F _ N um _ Em pl o ye e s t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o R F _ L a b or _ Ra t es _ L ow e r R F _ h a s_ F ew _ Em p lo y e s I E _t o _ Po li cy L im _ R a ti o t o. 8 > =. 8 1 C L _ V e hi cl e_ Y rs _Ol d < 1 7 t o 8 8 t o 9 9 t o 1 1 t o t o t o t o t o t o D e d u ct i bl e t o 1 1 to to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 C o l is i on _ P oli c y Lim t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1e 5 e 5 1 C L _ V e hi cl e_ A C V t o 1 1 t o 2 2 t o 4 4 t o 5 5 t o 8 8 t o 1 1 t o t o t o t o 2 2 t o t o 3 3 t o 4 4 t o 6 > = 6 1 L o s s _Y e ar < 2 2 1t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o 2 2 > = V e h ic le _ Ye a r < t o t o t o t o t o t o t o t o t o t o t o t o 2 2 t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o 2 2 > = C a p t ur e d_ i n_ P h ys R C a p t ur e d_ i n_ P h ys R _ T S C a p t ur e d_ i n_ D e sk R P h y s R _mi s e s_ S a vi n gs P h y s R _T S _mi s se s _ Sa vi n g s M at c he d _i n _ Ph y s R M at c he d _i n _ De s k R M at c h_ S c or e _P h y s R_ T S t o M at c h_ S c or e _ De s k R t o M at c h_ S c or e _P h y s R t o C L _ n o t_ at _ F au lt 1 C L _ is _ n ot _i n s ur e d 1 M aj or _ D am ag e _ Li ke ly 1 J o b _m u ch _ hi g h er _t h a n_ A C V 1 J o b _t o _ A C V_ R a ti o < 1 1 t o t o t o t o M at c he d _i n _ Ph y s R_ T S T o t al _ La b or _ H o ur s < 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 O ut p ut _ Pr o b a bil it y T L _O v er ri de 1 A P _ mi s e d_ s av i ng s A P _ m i s e d_ L a b or _ Sa vi n g s A P _ mi s e d_ p ar t s_ s av A P _ T y pe I A S A D A P 1 P r o ce s s_ S u p _I D t o 1 > = 2 1 V e h _i s _T o ta l_ L o s 1 J o b _ Hi g h er _t h a n_ A C V _ no t _T L 1 I E _J o b _ To t al _ Amt < t o 5 5 to to 1 1 t o 2 2 t o 3 3 t o 5 5 t o 7 5 > = 75 1 J o b _ T ot al _ Am t < t o 5 5 to to 1 1 t o 2 2 t o 3 3 t o 5 5 t o 7 5 > = 75 1 I n s ur e d_w a s_ R e ck le s s 1 C i ta ti o n _i s_ f or _I n su r ed 1 C i ta ti o n _i n di c_ re c kl es s 1 W h o _P o li ce _ R ep o rt _ Vi ol I V P B O U E N 1 A v g _ L ab o r_ R a te _ Pa i nt t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ R at e _ Fr am e t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 R F _ d id n t_ f ol ow _ ap p ra is al C L _ A P _ co l u de d A P _ R F _ co l u de d C L _ mi sr e po rt e d _a c ci de n t L a b o r_ R at e _ Pa in t 2 t o t o 3 4 t o t o 5 6 t o t o 7 1 P a rt s _ Th r es h ol d < 1 4 to 5 > = 5 1 T o t al _ Pa rt s _ Hi g he r_ t ha n _ T hr es 1 T o t al _ Pa rt s _T h re s _ Di f C L _ V e hi cl e_ h a s_ P ri or _ Dm g C L _ V e hi cl e_ h a s_ P ri or _ Dm g C L _O l d_ V e hi cl e C L _ V al u a bl e_ V e hi cl e 1 I E _c l os e _t o _T L 1 C L _ A C V _t o _M e di an _I n c om e t o. 5 > =. 5 1 I E _c l os e _t o _P o li cy Li m 1 L o w _ P ol ic y Lim 1 C L _ is _ n ot _ Ri s k_ A v er se C L _ n um _ cl aim s_ t o_ d at e t o 1 > = 4 1 C L _ n um _ yr s_ a s_ c u st < 1 > = 7 1 B i li n g _M e t h od m on th ly d d ir e ct b 1 2 N u m be r _I ns u re d t o 1 > = 4 1 C L _ h a s_m u c h_ e x pe ri e nc e C L _O l d_ V e hi cl e C L _ V al u a bl e_ V e hi cl e 1 I E _c l os e _t o _T L 1 C L _ A C V _t o _M e di an _I n c om e t o. 5 > =. 5 1 I E _c l os e _t o _P o li cy Li m 1 L o w _ P ol ic y Lim 1 C L _ is _ n ot _ Ri s k_ A v er se C L _ n um _ cl aim s_ t o_ d at e t o 1 > = 4 1 C L _ n um _ yr s_ a s_ c u st < 1 > = 7 1 B i li n g _M e t h od m on th ly d d ir e ct b 1 2 N u m be r _I ns u re d t o 1 > = 4 1 C L _ h a s_m u c h_ e x pe ri e nc e C L _ A t a c hme n t_ is _W e ak O nl y_ o n e_ i ns u re d 1 C L _ is _ n ot _ L on g tim e _c u st 1 B i l _Me t h od _i s _ Ri sk ie r 1 C L _w il i ng _ to _ pr o v _f al se _i n f o C L _ P r ofi le _ Ri s k_ is _ Hi g h A c c id e nt _ d es c _u n re li a bl e A c c _ D es c _c a n_ b e _i na c c P o li c e_ R e p or t_ A v ail a bl e 1 N u m _V e h _I nv o lv e d 1 W it n es s es _l ik el y 1 M or e _t h a n_ Tw o _I nv o lv e d 1 M or e _t h a n_o n e_ I nv ol v e d 1 C L _ A t a c hme n t_ is _W e ak O nl y_ o n e_ i ns u re d 1 C L _ is _ n ot _ L on g tim e _c u st 1 B i l _Me t h od _i s _ Ri sk ie r 1 C L _w il i ng _ to _ pr o v _f al se _i n f o C L _ P r ofi le _ Ri s k_ is _ Hi g h A c c id e nt _ d es c _u n re li a bl e A c c _ D es c _c a n_ b e _i na c c P o li c e_ R e p or t_ A v ail a bl e 1 N u m _V e h _I nv o lv e d 1 W it n es s es _l ik el y 1 M or e _t h a n_ Tw o _I nv o lv e d 1 M or e _t h a n_o n e_ I nv ol v e d 1 W it n es s es L a c k_ o f_ Wi tn e s e s C L _ I nd iv _ Ri s k_ is _ Hi g h C L _ A g e t o 2 2 t o t o 3 3 t o t o t o 75 > = 75 1 C L _ is _ at _ Ri s ky _ A ge C L _ is _ Si n gl e 1 C L _ L a ck s _ Dri vi n g _ Ex p 1 C L _ is _ Fi n a nc _ U ns t ab le C L _ R e nt s _ Re si d e nc e 1 C L _ F I CO _ S c or e t o to to to 7 7 to to 8 5 > = 85 1 C L _ L ow _ FI CO _S c or e C L _ h a s_ L ow _I nc om e W it n es s es L a c k_ o f_ Wi tn e s e s C L _ I nd iv _ Ri s k_ is _ Hi g h C L _ A g e t o 2 2 t o t o 3 3 t o t o t o 75 > = 75 1 C L _ is _ at _ Ri s ky _ A ge C L _ is _ Si n gl e 1 C L _ L a ck s _ Dri vi n g _ Ex p 1 C L _ is _ Fi n a nc _ U ns t ab le C L _ R e nt s _ Re si d e nc e 1 C L _ F I CO _ S c or e t o to to to 7 7 to to 8 5 > = 85 1 C L _ L ow _ FI CO _S c or e C L _ h a s_ L ow _I nc om e C L _ V e hi cl e_ R is k _i s_ H i gh C L _ P ol ic y _ Ri sk _i s _ Hi g h A v g _ L ab o r_ R a te _ B o dy t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 A v g _ L ab o r_ R a te _ Fr am e t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 D i f _ La b o r_ R at e _ B od y < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 D i f _ La b o r_ R at e _ Fr am e < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 D i f _ La b o r_ R at e _ Pa in t < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 C L _ cl ai ms _ pe r _y r t o. 5. 5t o 1 1 t o t o 2 1 F r am e_ a s_ F ra c ti o n_ o f_ T ot al t o t o. 1 C L _ V e hi cl e_ R is k _i s_ H i gh C L _ P ol ic y _ Ri sk _i s _ Hi g h A v g _ L ab o r_ R a te _ B o dy t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 A v g _ L ab o r_ R a te _ Fr am e t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 D i f _ La b o r_ R at e _ B od y < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 D i f _ La b o r_ R at e _ Fr am e < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 D i f _ La b o r_ R at e _ Pa in t < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 C L _ cl ai ms _ pe r _y r t o. 5. 5t o 1 1 t o t o 2 1 F r am e_ a s_ F ra c ti o n_ o f_ T ot al t o t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o 1 1 R o a d _ C o nd _ R e po rt e d D I W S 1 D i f ic ul t _ Dri vi n g 1 D i f ic ul t _W ea t he r 1 D i f ic ul t _ Ro a d 1 C o s tl y _ Re p ai rs _ Li ke ly T h e ft 1 B I _ C om p on e nt W e at h er _ Re p o rt e d C F I R S 1 R o a d _ C ha r ac te ri st ic s R C L G S H 1 S p e e d_ L im i t t o t o t o 3 3 t o t o 4 4 t o t o 5 > = 5 1 D i f ic ul t _ Ro a d _ Ch a r. 1t o. 2. 2t o. 3. 3t o. 4. 4t o 1 1 R o a d _ C o nd _ R e po rt e d D I W S 1 D i f ic ul t _ Dri vi n g 1 D i f ic ul t _W ea t he r 1 D i f ic ul t _ Ro a d 1 C o s tl y _ Re p ai rs _ Li ke ly T h e ft 1 B I _ C om p on e nt W e at h er _ Re p o rt e d C F I R S 1 R o a d _ C ha r ac te ri st ic s R C L G S H 1 S p e e d_ L im i t t o t o t o 3 3 t o t o 4 4 t o t o 5 > = 5 1 D i f ic ul t _ Ro a d _ Ch a r 1 D i f ic ul t _ Ro a d _ Co n d 1 H i g h _S p e ed F r am e_ L a b or _I n co n si st _w _ E D L a b o r_ H o ur s _ Fr am e < t o 5 5 t o t o 1 1 t o t o 2 > = 2 1 L a b o r_ H o ur s _ B od y < 5 5 t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 > = 7 1 L a b o r_ C o st _ Fr am e < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 L a b o r_ C o st _ B o dy < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 L a b o r_ R at e _ B od y t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ C o st _ Pa i nt < 1 1 to 2 1 D i f ic ul t _ Ro a d _ Co n d 1 H i g h _S p e ed F r am e_ L a b or _I n co n si st _w _ E D L a b o r_ H o ur s _ Fr am e < t o 5 5 t o t o 1 1 t o t o 2 > = 2 1 L a b o r_ H o ur s _ B od y < 5 5 t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 > = 7 1 L a b o r_ C o st _ Fr am e < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 L a b o r_ C o st _ B o dy < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 L a b o r_ R at e _ B od y t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ C o st _ Pa i nt < 1 1 to 2 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 A v g _ Fr a c_ B P L _ of _ LP _ to t al t o t o t o t o t o 1 1 L a b o r_ C o st _ B an d P < 2 2 to 5 5 to 1 1 t o 2 > = 2 1 F r a c_ B P L _o f _L P _t o ta l < t o. 5. 5t o t o 1 1 L a b o r_ R at i os _ ar e_ t o o_ H ig h T o o _M u c h_ L a bo r D i f er e n ce _wi t h_ H is t_ B P L _ Pa rt s < t o t o t o t o t o t o t o t o t o t o t o t o. 46 > = L a b o r_ R at e s_ H i gh e r_ t ha n _ Av g C l aim _ o ve rw r it te n A P _w il i ng _ to _ c ol u d e A P _ E x pe ri e nc e t o 1 2 to 5 5 to to 1 1 t o 2 2 t o 4 > = 4 1 A v g _ Fr a c_ B P L _ of _ LP _ to t al t o t o t o t o t o 1 1 L a b o r_ C o st _ B an d P < 2 2 to 5 5 to 1 1 t o 2 > = 2 1 F r a c_ B P L _o f _L P _t o ta l < t o. 5. 5t o t o 1 1 L a b o r_ R at i os _ ar e_ t o o_ H ig h T o o _M u c h_ L a bo r D i f er e n ce _wi t h_ H is t_ B P L _ Pa rt s < t o t o t o t o t o t o t o t o t o t o t o t o. 46 > = L a b o r_ R at e s_ H i gh e r_ t ha n _ Av g C l aim _ o ve rw r it te n A P _w il i ng _ to _ c ol u d e A P _ E x pe ri e nc e t o 1 5 t o 7 7 t o 1 1 A P _ P r ofi le _ Ri s k_ is _ Hi g h A P _ E x pe ri e nc e _i s_ L ow 1 A P _ r el _w _ In s _ C o_ is _W e ak N u m _o f _ AP _i n _ A P_ C om p a ny t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1 1 A P _ C om p a ny _i s _ La r ge _O I A 1 A P _ C o _i s _V e ry _ Sm al _O I A 1 A P _ C om p a ny _i s _ Ve ry _ Sm al 1 A P _ C om p a ny _i s _ La r ge 1 A P _ Y rs _W o rk i ng _w _I n s_ C o t o 1 > = 7 1 A P _ is _ ca r el es s A P _ N um _ A p pr _ d on e _ pe r_ mo n t h t o 1 2 t o 5 5 t o 1 1 t o 2 2 t o 4 4 t o 8 > = 8 5 t o 7 7 t o 1 1 A P _ P r ofi le _ Ri s k_ is _ Hi g h A P _ E x pe ri e nc e _i s_ L ow 1 A P _ r el _w _ In s _ C o_ is _W e ak N u m _o f _ AP _i n _ A P_ C om p a ny t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1 1 A P _ C om p a ny _i s _ La r ge _O I A 1 A P _ C o _i s _V e ry _ Sm al _O I A 1 A P _ C om p a ny _i s _ Ve ry _ Sm al 1 A P _ C om p a ny _i s _ La r ge 1 A P _ Y rs _W o rk i ng _w _I n s_ C o t o 1 > = 7 1 A P _ is _ ca r el es s A P _ N um _ A p pr _ d on e _ pe r_ mo n t h t o 1 2 t o 5 5 t o 1 1 t o 2 2 t o 4 4 t o 8 > = 8 1 A P _ V ol um e _i s_ L ow O d om_ U n re a d ab le S i g ni f_ El e ct r_ D am a ge O d om_ is _ Di g it al V e h ic le _M i le a g e t o 1 1 t o 1 1 t o 2 2 t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1e 5 e 5 1 L a b o r_ H o ur s _ Pa in t < 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 > = 5 1 L a b o r_ H o ur s _ El ec tr < 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 > = 5 1 L a b o r_ R at e _ El ec tr t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ C o st _ El ec tr < 1 1 t o 2 2 t o 5 5 t o 1 1 to 5 5 to 1 1 t o 2 > = A P _ V ol um e _i s_ L ow O d om_ U n re a d ab le S i g ni f_ El e ct r_ D am a ge O d om_ is _ Di g it al V e h ic le _M i le a g e t o 1 1 t o 1 1 t o 2 2 t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1e 5 e 5 1 L a b o r_ H o ur s _ Pa in t < 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 > = 5 1 L a b o r_ H o ur s _ El ec tr < 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 > = 5 1 L a b o r_ R at e _ El ec tr t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ C o st _ El ec tr < 1 1 t o 2 2 t o 5 5 t o 1 1 to 5 5 to 1 1 t o 2 > = 2 1 Mi le a g e_ is _Mi s si n g 1 M i le a g e_m is s _ du e _t o _c a re le s s 1 N u m _ Ap p r_ d o n e_ t ha t_ d a y t o 1 7 t o 8 8 t o 9 9 t o 1 1 t o t o 2 > = 2 1 N u m _ Ap p r_ p er _ D ay _ A v g t o 3 3 t o t o t o t o t o 4 4 t o t o t o t o t o 5 5 t o t o t o t o t o 6 6 t o t o 7 7 t o 1 1 t o 2 > = 2 1 D i f _ N um _ Ap p r_ fr om _ A v g < -3-3 to to to to t o. 5. 5t o 1 1 L o g i n_ N am e_ is _ S ha r ed 1 A P _ T o o _M a n y _ Ap p ra is al s 1 T o o _m a ny _ fo r _On e _ A P_ p er _ D ay 1 Mi le a g e_ is _Mi s si n g 1 M i le a g e_m is s _ du e _t o _c a re le s s 1 N u m _ Ap p r_ d o n e_ t ha t_ d a y t o 1 7 t o 8 8 t o 9 9 t o 1 1 t o t o 2 > = 2 1 N u m _ Ap p r_ p er _ D ay _ A v g t o 3 3 t o t o t o t o t o 4 4 t o t o t o t o t o 5 5 t o t o t o t o t o 6 6 t o t o 7 7 t o 1 1 t o 2 > = 2 1 D i f _ N um _ Ap p r_ fr om _ A v g < -3-3 to to to to t o. 5. 5t o 1 1 L o g i n_ N am e_ is _ S ha r ed 1 A P _ T o o _M a n y _ Ap p ra is al s 1 T o o _m a ny _ fo r _On e _ A P_ p er _ D ay 1 L K Q _ P ar t s_ C o st < 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 A M _ Pa rt s _ Co s t < 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 T o t al _ Pa rt s _ Co s t < 5 5 to 1 1 t o 2 2 t o 4 > = 4 1 D i f _ Fr _ L KQ _ v s_ E x pe c te d < t o to t o t o t o. 1. 1t o. 1 5 > = F r a cti o n _ AM < t o to.1. 1t o to t o to.2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 7. 7t o. 8. 8t o. 9. 9t o 1 1 E x p e ct e d_ L KQ _ Fr _ by _ Yr t o to to to to to to to.2. 2t o to to to to.3. 3t o to to.3 4 > = E x p e ct e d_ AM _ Fr _ b y_ Y r t o to to to to to t o to L K Q _ P ar t s_ C o st < 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 A M _ Pa rt s _ Co s t < 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 T o t al _ Pa rt s _ Co s t < 5 5 to 1 1 t o 2 2 t o 4 > = 4 1 D i f _ Fr _ L KQ _ v s_ E x pe c te d < t o to t o t o t o. 1. 1t o. 1 5 > = F r a cti o n _ AM < t o to.1. 1t o to t o to.2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 7. 7t o. 8. 8t o. 9. 9t o 1 1 E x p e ct e d_ L KQ _ Fr _ by _ Yr t o to to to to to to to.2. 2t o to to to to.3. 3t o to to.3 4 > = E x p e ct e d_ AM _ Fr _ b y_ Y r t o to to to to to t o to to to to to to > = D i f _ Fr _ AM _v s _ Ex p ec t ed < t o to t o t o t o. 1. 1t o. 1 5 > = F r a cti o n _ L KQ <. 1. 1t o. 2. 2t o t o. 3. 3t o t o. 4. 4t o t o. 5. 5t o. 6. 6t o. 7. 7t o. 8. 8t o. 9. 9t o 1 1 V e h ic le _i s _ Ra re L e s s_ L KQ _t h a n_ E x p L e s s_ A M _ t ha n _ Ex p 1 S i g ni f_ P ar ts _ Di f S i g ni f_ P ar ts _ Di f _ ra re C a s e _i s_ IE 1 E x t en t _o f _ Dam a g e_ is _ Hi g h D A P _ U n d er bi d _I E to to to to to > = D i f _ Fr _ AM _v s _ Ex p ec t ed < t o to t o t o t o. 1. 1t o. 1 5 > = F r a cti o n _ L KQ <. 1. 1t o. 2. 2t o t o. 3. 3t o t o. 4. 4t o t o. 5. 5t o. 6. 6t o. 7. 7t o. 8. 8t o. 9. 9t o 1 1 V e h ic le _i s _ Ra re L e s s_ L KQ _t h a n_ E x p L e s s_ A M _ t ha n _ Ex p 1 S i g ni f_ P ar ts _ Di f S i g ni f_ P ar ts _ Di f _ ra re C a s e _i s_ IE 1 E x t en t _o f _ Dam a g e_ is _ Hi g h D A P _ U n d er bi d _I E 1 A P _ S _I E _ Pc t_ D if f_ H is t < -1-1 to to to t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 8. 8t o 1 > = 2 1 A P _ H is t _ Un d er b id _I E 1 A P _ R F _ Pa ir e d_ F re q u e ntl y A P _ R F _ Pa ir in g s _l as t_ Y e ar t o 1 1 t o 5 5 t o 1 1 R F _ Me di a n _I nc om e t o 2 2 t o t o 3 3 t o t o t o 4 4 t o t o 5 5 t o 6 6 t o 7 7 t o 8 > = 8 1 R F _ N h o o d_ R is k _i s_ H i gh R F _ N h o o d_ R is k y_ I nc om e 1 R F _ N h o o d_ H i gh _ C rim e 1 R F _ A v g _M on t h_ V ol _w _ C o_ P 6M t o 1 1 t o 5 5 t o 1 1 t o 2 > = 2 1 R F _ M o n t hl y_ V ol _ Al l_ C ar ri er s < t o 5 1 A P _ S _I E _ Pc t_ D if f_ H is t < -1-1 to to to t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 8. 8t o 1 > = 2 1 A P _ H is t _ Un d er b id _I E 1 A P _ R F _ Pa ir e d_ F re q u e ntl y A P _ R F _ Pa ir in g s _l as t_ Y e ar t o 1 1 t o 5 5 t o 1 1 R F _ Me di a n _I nc om e t o 2 2 t o t o 3 3 t o t o t o 4 4 t o t o 5 5 t o 6 6 t o 7 7 t o 8 > = 8 1 R F _ N h o o d_ R is k _i s_ H i gh R F _ N h o o d_ R is k y_ I nc om e 1 R F _ N h o o d_ H i gh _ C rim e 1 R F _ A v g _M on t h_ V ol _w _ C o_ P 6M t o 1 1 t o 5 5 t o 1 1 t o 2 > = 2 1 R F _ M o n t hl y_ V ol _ Al l_ C ar ri er s < t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1 1 to 2 > = 2 1 R F _ a n d_ C o _ R el ati o n _W ea k R F _ C o _ Fr _i s _L ow R F _ Mo n t hl y_ V ol _i s _L ow R F _ F r_ V ol _w _ C o < t o t o. 1. 1t o. 2 > =. 2 1 R F _ I nd iv _ Ri s k_ is _ Hi g h R F _ P r ofi le _ Ri s k_ is _ Hi g h R F _w il i ng _ to _ c ol u d e R F _w il i ng _ to _ n ot _f o l ow _ a p p A P _ R F _ R el ati o n _i s_ S tr o n g 1 A P _ g iv e s_ t o _m a ny _ c on c A P _ g ui d e d_ b y _ RF R e p ai r _i s_ C om pl e x t o 1 1 t o 2 2 t o 5 5 t o 1 1 to 2 > = 2 1 R F _ a n d_ C o _ R el ati o n _W ea k R F _ C o _ Fr _i s _L ow R F _ Mo n t hl y_ V ol _i s _L ow R F _ F r_ V ol _w _ C o < t o t o. 1. 1t o. 2 > =. 2 1 R F _ I nd iv _ Ri s k_ is _ Hi g h R F _ P r ofi le _ Ri s k_ is _ Hi g h R F _w il i ng _ to _ c ol u d e R F _w il i ng _ to _ n ot _f o l ow _ a p p A P _ R F _ R el ati o n _i s_ S tr o n g 1 A P _ g iv e s_ t o _m a ny _ c on c A P _ g ui d e d_ b y _ RF R e p ai r _i s_ C om pl e x M ak em o d el _F r eq u e nc y t o to to to t o t o t o. 4 > =. 4 1 P c t _ Dif f _S _ to _I E _ Vs _ Hi s t < to to t o t o. 1. 1t o. 2. 2t o. 5. 5t o 1 1 A P _ T o d ay _ U n de r bi d_ I E 1 S _ I E_ D if f_ Si g ni f _g iv e n _ Co mp le x 1 A P _ A v oi d s_ 2 n d_ V is it 1 V a l ue _I n c on si s te n t_w _ D ama g e R e p ai r _V al u e _i s_ H ig h 1 I E _t o _ A C V_ R at i o <. 5. 5t o. 8 > =. 8 1 A P _ S u p _t o _I E_ P ct _ Di f < -1-1 to to to t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 8. 8t o 1 > = 2 1 A P _ T e n ds _t o _W ri te _ Hi g h _I E 1 M ak em o d el _F r eq u e nc y t o to to to t o t o t o. 4 > =. 4 1 P c t _ Dif f _S _ to _I E _ Vs _ Hi s t < to to t o t o. 1. 1t o. 2. 2t o. 5. 5t o 1 1 A P _ T o d ay _ U n de r bi d_ I E 1 S _ I E_ D if f_ Si g ni f _g iv e n _ Co mp le x 1 A P _ A v oi d s_ 2 n d_ V is it 1 V a l ue _I n c on si s te n t_w _ D ama g e R e p ai r _V al u e _i s_ H ig h 1 I E _t o _ A C V_ R at i o <. 5. 5t o. 8 > =. 8 1 A P _ S u p _t o _I E_ P ct _ Di f < -1-1 to to to t o. 1. 1t o. 2. 2t o. 3. 3t o. 4. 4t o. 5. 5t o. 6. 6t o. 8. 8t o 1 > = 2 1 A P _ T e n ds _t o _W ri te _ Hi g h _I E 1 A P _ f ail e d_ t o_ s av e A v g _ Di f _ L ab o r_ R a te < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 C L _w il i ng _ to _ c ol u d e A P _ u nl ik el y _t o _ ha v e_ E x p_w _ Ve h R F _ C rim e _ Ra t e t o 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 C L _ N h o o d_ R is k y_ I nc om e 1 C L _ N h o o d_ H i gh _ C rim e 1 C L _ N h o o d_ Mo s tl y_ U r ba n 1 C L _ N h o o d_ R is k _i s_ H i gh C L _ Me di a n _I nc om e t o 2 2 t o t o 3 3 t o t o t o 4 4 t o t o 5 5 t o 6 6 t o 7 7 t o 8 > = 8 1 C L _ C rim e _ Ra t e t o 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 A P _ f ail e d_ t o_ s av e A v g _ Di f _ L ab o r_ R a te < -2-2 t o t o t o 1 1 t o 1 1 t o 2 > = 2 1 C L _w il i ng _ to _ c ol u d e A P _ u nl ik el y _t o _ ha v e_ E x p_w _ Ve h R F _ C rim e _ Ra t e t o 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 C L _ N h o o d_ R is k y_ I nc om e 1 C L _ N h o o d_ H i gh _ C rim e 1 C L _ N h o o d_ Mo s tl y_ U r ba n 1 C L _ N h o o d_ R is k _i s_ H i gh C L _ Me di a n _I nc om e t o 2 2 t o t o 3 3 t o t o t o 4 4 t o t o 5 5 t o 6 6 t o 7 7 t o 8 > = 8 1 C L _ C rim e _ Ra t e t o 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 C L _ F r_ B el ow _ P ov er t y t o t o. 1. 1t o t o. 2. 2t o. 4 > =. 4 1 C L _ P ct _ U rb a n t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 7 t o 8 8 t o 9 > = 9 1 R F _ F r_ B el ow _ P ov er t y t o t o. 1. 1t o t o. 2. 2t o. 4 > =. 4 1 R F _ N h o o d_ Mo s tl y_ U r ba n 1 R F _ P ct _ U rb a n t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 7 t o 8 8 t o 9 > = 9 1 C L _ R is k y_ P L ev el R F _ R is k y_ P L ev el R F _ h a s_ L ow _V o lu me R F _ is _ Sm al R F _ is _ D A P 1 C L _ F r_ B el ow _ P ov er t y t o t o. 1. 1t o t o. 2. 2t o. 4 > =. 4 1 C L _ P ct _ U rb a n t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 7 t o 8 8 t o 9 > = 9 1 R F _ F r_ B el ow _ P ov er t y t o t o. 1. 1t o t o. 2. 2t o. 4 > =. 4 1 R F _ N h o o d_ Mo s tl y_ U r ba n 1 R F _ P ct _ U rb a n t o 1 1 t o 2 2 t o 3 3 t o 4 4 t o 5 5 t o 6 6 t o 7 7 t o 8 8 t o 9 > = 9 1 C L _ R is k y_ P L ev el R F _ R is k y_ P L ev el R F _ h a s_ L ow _V o lu me R F _ is _ Sm al R F _ is _ D A P 1 R F _ N o t_ P ar t _o f _ De al er s hi p 1 R F _ N o t_ P ar t _o f _ Ne tw or k 1 R F _ N um _ Em pl o ye e s t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o R F _ L a b or _ Ra t es _ L ow e r R F _ h a s_ F ew _ Em p lo y e s I E _t o _ Po li cy L im _ R a ti o t o. 8 > =. 8 1 C L _ V e hi cl e_ Y rs _Ol d < 1 7 t o 8 8 t o 9 9 t o 1 1 t o t o t o t o t o t o D e d u ct i bl e t o 1 1 to to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 C o l is i on _ P oli c y Lim t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1e 5 e 5 1 C L _ V e hi cl e_ A C V t o 1 1 t o 2 R F _ N o t_ P ar t _o f _ De al er s hi p 1 R F _ N o t_ P ar t _o f _ Ne tw or k 1 R F _ N um _ Em pl o ye e s t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o R F _ L a b or _ Ra t es _ L ow e r R F _ h a s_ F ew _ Em p lo y e s I E _t o _ Po li cy L im _ R a ti o t o. 8 > =. 8 1 C L _ V e hi cl e_ Y rs _Ol d < 1 7 t o 8 8 t o 9 9 t o 1 1 t o t o t o t o t o t o D e d u ct i bl e t o 1 1 to to 4 4 to 5 5 to 1 1 t o 2 > = 2 1 C o l is i on _ P oli c y Lim t o 5 5 t o 1 1 t o 2 2 t o 5 5 t o 1e 5 e 5 1 C L _ V e hi cl e_ A C V t o 1 1 t o 2 2 t o 4 4 t o 5 5 t o 8 8 t o 1 1 t o t o t o t o 2 2 t o t o 3 3 t o 4 4 t o 6 > = 6 1 L o s s _Y e ar < 2 2 1t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o 2 2 > = V e h ic le _ Ye a r < t o t o t o t o t o t o t o t o t o t o t o t o 2 2 t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o 2 2 > = C a p t ur e d_ i n_ P h ys R C a p t ur e d_ i n_ P h ys R _ T S C a p t ur e d_ i n_ D e sk R 2 t o 4 4 t o 5 5 t o 8 8 t o 1 1 t o t o t o t o 2 2 t o t o 3 3 t o 4 4 t o 6 > = 6 1 L o s s _Y e ar < 2 2 1t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o 2 2 > = V e h ic le _ Ye a r < t o t o t o t o t o t o t o t o t o t o t o t o 2 2 t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o 2 2 > = C a p t ur e d_ i n_ P h ys R C a p t ur e d_ i n_ P h ys R _ T S C a p t ur e d_ i n_ D e sk R P h y s R _mi s e s_ S a vi n gs P h y s R _T S _mi s se s _ Sa vi n g s M at c he d _i n _ Ph y s R M at c he d _i n _ De s k R M at c h_ S c or e _P h y s R_ T S t o M at c h_ S c or e _ De s k R t o M at c h_ S c or e _P h y s R t o C L _ n o t_ at _ F au lt 1 C L _ is _ n ot _i n s ur e d 1 M aj or _ D am ag e _ Li ke ly 1 J o b _m u ch _ hi g h er _t h a n_ A C V 1 J o b _t o _ A C V_ R a ti o < 1 1 t o t o t o t o P h y s R _mi s e s_ S a vi n gs P h y s R _T S _mi s se s _ Sa vi n g s M at c he d _i n _ Ph y s R M at c he d _i n _ De s k R M at c h_ S c or e _P h y s R_ T S t o M at c h_ S c or e _ De s k R t o M at c h_ S c or e _P h y s R t o C L _ n o t_ at _ F au lt 1 C L _ is _ n ot _i n s ur e d 1 M aj or _ D am ag e _ Li ke ly 1 J o b _m u ch _ hi g h er _t h a n_ A C V 1 J o b _t o _ A C V_ R a ti o < 1 1 t o t o t o t o M at c he d _i n _ Ph y s R_ T S T o t al _ La b or _ H o ur s < 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 O ut p ut _ Pr o b a bil it y T L _O v er ri de 1 A P _ mi s e d_ s av i ng s A P _ m i s e d_ L a b or _ Sa vi n g s A P _ mi s e d_ p ar t s_ s av A P _ T y pe I A S A D A P 1 P r o ce s s_ S u p _I D t o 1 > = 2 1 V e h _i s _T o ta l_ L o s 1 J o b _ Hi g h er _t h a n_ A C V _ no t _T L 1 I E _J o b _ To t al _ Amt < t o 5 5 to to 1 1 t o 2 2 t o 3 3 t o 5 5 t o 7 5 > = 75 1 M at c he d _i n _ Ph y s R_ T S T o t al _ La b or _ H o ur s < 2 2 t o 4 4 t o 6 6 t o 8 8 t o 1 1 O ut p ut _ Pr o b a bil it y T L _O v er ri de 1 A P _ mi s e d_ s av i ng s A P _ m i s e d_ L a b or _ Sa vi n g s A P _ mi s e d_ p ar t s_ s av A P _ T y pe I A S A D A P 1 P r o ce s s_ S u p _I D t o 1 > = 2 1 V e h _i s _T o ta l_ L o s 1 J o b _ Hi g h er _t h a n_ A C V _ no t _T L 1 I E _J o b _ To t al _ Amt < t o 5 5 to to 1 1 t o 2 2 t o 3 3 t o 5 5 t o 7 5 > = 75 1 J o b _ T ot al _ Am t < t o 5 5 to to 1 1 t o 2 2 t o 3 3 t o 5 5 t o 7 5 > = 75 1 I n s ur e d_w a s_ R e ck le s s 1 C i ta ti o n _i s_ f or _I n su r ed 1 C i ta ti o n _i n di c_ re c kl es s 1 W h o _P o li ce _ R ep o rt _ Vi ol I V P B O U E N 1 A v g _ L ab o r_ R a te _ Pa i nt t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ R at e _ Fr am e t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 R F _ d id n t_ f ol ow _ ap p ra is al C L _ A P _ co l u de d J o b _ T ot al _ Am t < t o 5 5 to to 1 1 t o 2 2 t o 3 3 t o 5 5 t o 7 5 > = 75 1 I n s ur e d_w a s_ R e ck le s s 1 C i ta ti o n _i s_ f or _I n su r ed 1 C i ta ti o n _i n di c_ re c kl es s 1 W h o _P o li ce _ R ep o rt _ Vi ol I V P B O U E N 1 A v g _ L ab o r_ R a te _ Pa i nt t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 L a b o r_ R at e _ Fr am e t o 2 2 t o t o 3 3 t o t o 4 4 t o t o 5 5 t o t o t o 7 > = 7 1 R F _ d id n t_ f ol ow _ ap p ra is al C L _ A P _ co l u de d A P _ R F _ co l u de d C L _ mi sr e po rt e d _a c ci de n t L a b o r_ R at e _ Pa in t 2 t o t o 3 4 t o t o 5 6 t o t o 7 1 P a rt s _ Th r es h ol d < 1 4 to 5 > = 5 1 T o t al _ Pa rt s _ Hi g he r_ t ha n _ T hr es 1 T o t al _ Pa rt s _T h re s _ Di f For example, this claim s probability of being overwritten is 72.2%, but this value is the result of a complex combination of inputs 72.2% probability of overwriting Appraiser is 45% likely to have missed potential labor savings Excessive frame labor is likely a major source of overwriting

25 Policy, claim and other data is gathered to calibrate the predictive model. Data sources for possible inclusion in model Examiners and Repair Facilities Examiner Group Characteristics Independents Date of joining Prior incidences Experience level PRS Shops Expertise focus Training level Staff Examiners Historical ratios Repair Facilities Relationship with company Relationship with other carriers Part of a dealership or network Geographical information Appraisal information Labor Parts Labor Rates Amount Types of Labor Type and frequency Labor Hours Repair/replace rules Total Loss Miscellaneous Threshold Amount Repair guidellines Vehicle Valuation Betterment Prior Damage Mileage Accident Profile Characteristics Vehicle Make Model Year ACV Driver Age Sex Prior claims Violations Accident Type Comprehensive Low vs. high impact Single-car vs. multiple $ size of damage claim relative to medical claim Policy and Receivable Information Limits Deductible Vehicle new to policy Premium current? Payment basis? PA Knowledge Limited 23-25

26 Model calibration can be done with a small number of reinspection results, from which the model will continue to learn over time Model Calibration Process Step 1: Population Learning This calibrates model input nodes, using estimates without reinspection data Step 2: Performance Learning* This step uses re-inspection data to calibrate relationships between variables 1% 9% 94.3% 1% Correlation of estimates processed in intermediate models with those processed in the final model 8% 7% 6% 5% 4% 3% 2% estimates (none of them reinspected) were used to calibrate the input nodes 68.3% 1% % 82 In-house Physical Reinspections 391 Outsourced Physical Reinspections 1168 Desk Reviews * Performance Learning relies on an iterative optimization algorithm called Expectation Maximization, or EM. This algorithm maximizes the likelihood that the data used was generated by the model in question, each iteration modifies the conditional probability tables in the model to increase the likelihood that the model would generate the dataset. Source: PA s Experience with model calibration PA Knowledge Limited 23-26

27 Once the model is calibrated, it is used to calculate a probability of overwriting for all the claims processed by the system. Distribution of probabilities for historical estimates generated by the predictive model Disguised Low Probability of Overwriting 28% Mean High Probability of Overwriting PA Knowledge Limited 23-27

28 Using the model probabilities, reinspection hit rates on assigned claims both field and desk is substantially greater. Allocation of Capacity to Model Recommendations Desk Reviews (average prob.: 42%) Disguised The shaded area includes the top % of all estimates that can be reinspected by projected capacity Both Desk and Field Field Reinspections (average prob.: 65%) Claims allocation is based on company s reinspection capacity PA Knowledge Limited 23-28

29 The actual field hit rate closely matches the model generated probabilities. CPMS results Disguised client example Field Reinspection Hits Hit Rate Average Probability PA Knowledge Limited 23-29

30 Today s Agenda Defining the opportunity Approach to Auto Physical Damage claims leakage reduction Modeling methodology Technical Design Typical Process Appendix: Application to Bodily Injury Claims PA Knowledge Limited 23-3

31 A single system architecture which is necessary to enable the multiple data inputs for the models. Data Inputs for Predictive Models Illustrative Field Reinspection Data Policy Data Reinspection Payments Supplement Policy Desk Reviews Data Initial Estimate Predictive Model vehicle Claims Data Appraiser External Data Claimants Repair Facility Loss Information Financial Data PA Knowledge Limited 23-31

32 This single system architecture allows for a robust system that, while fully integrated, has a focused purpose. Solution System Architecture Overview Active Server Pages User Tasks Model Management Administration Management Reporting CMS Daily Extracts Estimate Data External Data Data Interface and Mapping Tool Model/Claim Database Model Interface Model Engine The model is part of an integrated IT solution required for daily analysis of claims and dispatch of reinspectors. PA Knowledge Limited 23-32

33 Included with our solution is a user interface that allows management of both the model and the information needed to achieve the benefits expected from your reinspection process. PA Knowledge Limited 23-33

B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d:

B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d: E ff ec ts o f El ec tr ic al ly -S ti mu la te d Si lv er -C oa te d Im pl an ts a nd B ac te ri al C on ta mi na ti on i n a Ca ni ne R ad iu s Fr ac tu re G ap M od el B y R us se ll E ri c Wr ig ht,

More information

E M C P e r f o r m a n c e R e q u i r e m e n t s C o m p o n e n t s

E M C P e r f o r m a n c e R e q u i r e m e n t s C o m p o n e n t s D a i m l e r C h r y s l e r D C -1 0 6 1 4 J o i n t E n g i n e e r i n g S t a n d a r d D a t e P u b l i s h e d : 2 0 0 5-03 C h r y s l e r C a t e g o r y : L -2 T ot a l N o. of Pa g e s ( I

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

Put the human back in Human Resources.

Put the human back in Human Resources. Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect

More information

G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1

More information

T e s t e xp re s s i o n B o d y o f i f E xi t F i g u re 1 - F l o w c h art o f th e i f s tate m M u l ti S tate m s i n th e i f B o d y : L ik

T e s t e xp re s s i o n B o d y o f i f E xi t F i g u re 1 - F l o w c h art o f th e i f s tate m M u l ti S tate m s i n th e i f B o d y : L ik MQL4 COURSE By Coders guru w w w. f orex -t sd. c om -6- Loops & Decisions Part 2 ---------------------------- We l c o m e t o t h e s ix t h l e s s o n in m y c o u r s e a b o u t M Q L 4. I h o pe

More information

STEEL PIPE NIPPLE BLACK AND GALVANIZED

STEEL PIPE NIPPLE BLACK AND GALVANIZED Price Sheet CWN-616 Effective June 06, 2016 Supersedes CWN-414 A Member of The Phoenix Forge Group CapProducts LTD. Phone: 519-482-5000 Fax: 519-482-7728 Toll Free: 800-265-5586 www.capproducts.com www.capitolcamco.com

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1. 1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í

More information

SCHOOL PESTICIDE SAFETY AN D IN TEG R ATED PEST M AN AG EM EN T Statutes put into law by the Louisiana Department of Agriculture & Forestry to ensure the safety and well-being of children and school personnel

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

7' RICOCHET SHUFFLEBOARD TABLE

7' RICOCHET SHUFFLEBOARD TABLE 7' RICOCHET SHUFFLEBOARD TABLE ASSEM BLYL INSTRUCTIONS NG1201 THANK Y OU! Th a n k yo u f o r p u r ch a si n g t h i s p r o d u ct. We w o r k a r o u n d t h e cl o ck a n d a r o u n d t h e g l o

More information

Application Note: Cisco A S A - Ce r t if ica t e T o S S L V P N Con n e ct ion P r of il e Overview: T h i s a p p l i ca ti o n n o te e x p l a i n s h o w to co n f i g u r e th e A S A to a cco m

More information

«С e n tra l- A s ia n E le c tric - P o w e r C o rp o ra tio n», JS C

«С e n tra l- A s ia n E le c tric - P o w e r C o rp o ra tio n», JS C J o in t - s t o c k c o m p C E N T R A L - A S IA N E L E C T R IC P O W a n y E R C O R P O R A T IO N I n t e r n a l A u d i t P O L IC Y o f J o in t - S t o c k C o m p a n y C E N T R A L - A S

More information

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F. Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

More information

Progress Monitoring. Document units and lessons used for intervention, the date span of instruction, test results, and observations.

Progress Monitoring. Document units and lessons used for intervention, the date span of instruction, test results, and observations. Progress Monitoring Document units and lessons used for intervention, the date span of instruction, test results, and observations. Form Form Dates A B Observation Unit 1 Letter Names 1 2 3 4 5 6 7 8 9

More information

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y and KB rl iak s iol mi a, hme t a ro cp hm a5 a 2k p0r0o 9f i,e ls hv oa nr t ds eu rmv oedye l o nf dae cr

More information

R e t r o f i t o f t C i r u n i s g e C o n t r o l

R e t r o f i t o f t C i r u n i s g e C o n t r o l R e t r o f i t o f t C i r u n i s g e C o n t r o l VB Sprinter D e s c r i p t i o n T h i s r e t r o f i t c o n s i s t s o f i n s t a l l i n g a c r u i s e c o n t r o l s wi t c h k i t i n

More information

YRRTC Business Plan

YRRTC Business Plan 2015 2025 YRRTC Business Plan 2015 annual update updated 2015 edocs #5677831 mission Our mission is to design and deliver an exceptional rapid transit system attracting, moving and connecting people to

More information

FORT WAYNE COMMUNITY SCHOOLS 12 00 SOUTH CLINTON STREET FORT WAYNE, IN 468 02 6:02 p.m. Ma r c h 2 3, 2 015 OFFICIAL P ROCEED ING S Ro l l Ca l l e a r d o f h o o l u e e o f t h e r t y m m u t y h o

More information

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ$Æo

More information

Are We There Yet? IPv6 as Related to GDP per Capita Alain Durand, October 26 th 2016

Are We There Yet? IPv6 as Related to GDP per Capita Alain Durand, October 26 th 2016 Are We There Yet? as Related to Alain Durand, October 26 th 2016 Quesons for this Study: I. Where are we across the globe with adoption? a. Is deployed uniformly? b. Is there a rich country/poor country

More information

Electronic Stability & Periodic Table

Electronic Stability & Periodic Table Electronic Stability & Periodic Table Things at higher energy are less stable!! All living things are dependent on their ability to acquire energy from unstable things! The compounds in the food you eat

More information

Online Department Stores. What are we searching for?

Online Department Stores. What are we searching for? Online Department Stores What are we searching for? 2 3 CONTENTS Table of contents 02 Table of contents 03 Search 06 Fashion vs. footwear 04 A few key pieces 08 About SimilarWeb Stepping up the Competition

More information

Models of Natural Language In modeling English (or another natural language) we ignore meaning and even grammar. That is, we ignore semantics.

Models of Natural Language In modeling English (or another natural language) we ignore meaning and even grammar. That is, we ignore semantics. Models of Natural Language In modeling English (or another natural language) we ignore meaning and even grammar. That is, we ignore semantics. Instead, we treat English as being the result of some random

More information

RATE FILING METHODS FOR PROPERTY/CASUALTY INSURANCE, WORKERS COMPENSATION, TITLE 11/05

RATE FILING METHODS FOR PROPERTY/CASUALTY INSURANCE, WORKERS COMPENSATION, TITLE 11/05 11/05 Explanation: In a state with, a filing may be deemed to have been approved after a certain number of days. If such a provision exists, the number of days is noted in parentheses. File and use states

More information

Download at www.iii.org/presentations

Download at www.iii.org/presentations Residual Markets, Uninsured Motorists and Competition in Maryland Auto Insurance Maryland Auto Insurance Plan Senate Hearing on Uninsured Motorists Annapolis, MD December 16, 2015 Download at www.iii.org/presentations

More information

First A S E M R e c to rs C o n f e re n c e : A sia E u ro p e H ig h e r E d u c a tio n L e a d e rsh ip D ia l o g u e Fre ie U n iv e rsitä t, B e rl in O c to b e r 2 7-2 9 2 0 0 8 G p A G e e a

More information

JCUT-3030/6090/1212/1218/1325/1530

JCUT-3030/6090/1212/1218/1325/1530 JCUT CNC ROUTER/CNC WOODWORKING MACHINE JCUT-3030/6090/1212/1218/1325/1530 RZNC-0501 Users Guide Chapter I Characteristic 1. Totally independent from PC platform; 2. Directly read files from U Disk; 3.

More information

T h e m i n i m u m r eq u i r em en t s a r e essen t i a l t o st a r t a b a si c w o r k o n y o u r w eb ser v er. As technology is r a p id ly a

T h e m i n i m u m r eq u i r em en t s a r e essen t i a l t o st a r t a b a si c w o r k o n y o u r w eb ser v er. As technology is r a p id ly a Windows XP with Service Pack 2 Installation Guide T h i s set u p g u i d e w i l l g u i d e y o u t h r o u g h t h e st ep s r eq u i r ed t o i n st a l l W i n d o w s X P ser v i c e p a c k 2 o

More information

South Salem Stop MBTA Commuter Rail Station Salem, MA

South Salem Stop MBTA Commuter Rail Station Salem, MA South Salem Stop MBTA Commuter Rail Station Salem, MA Conceptual Design Presentation Public Meeting March 22, 2016 New MBTA Commuter Rail Stop in South Salem Study Area M OF F A TT RD MON R O E GR I S

More information

Second Grade Phonics Scope and Sequence With Concepts of Print and Phonemic Awareness

Second Grade Phonics Scope and Sequence With Concepts of Print and Phonemic Awareness Second Grade Phonics Scope and Sequence With Concepts of Print and Phonemic Awareness Revised 8/22/13 CCSS CCSS.ELA-Literacy.RF.2.3 Know and apply grade-level phonics and word analysis skills in decoding

More information

G S e r v i c i o C i s c o S m a r t C a r e u ي a d e l L a b o r a t o r i o d e D e m o s t r a c i n R ل p i d a V e r s i n d e l S e r v i c i o C i s c o S m a r t C a r e : 1 4 ع l t i m a A c

More information

Business Services INSURER CE PROGRAM DESCRIPTION

Business Services INSURER CE PROGRAM DESCRIPTION Business Services INSURER CE PROGRAM DESCRIPTION As competition between repairers has increased, more and more repairers are trying to find a low-cost way to build brand awareness and differentiate themselves

More information

RATE FILING METHODS FOR PROPERTY/CASUALTY INSURANCE, WORKER S COMPENSATION, TITLE 5/06

RATE FILING METHODS FOR PROPERTY/CASUALTY INSURANCE, WORKER S COMPENSATION, TITLE 5/06 Explanation: In a state with prior approval, a filing may be deemed to have been approved after a certain number of days. If such a provision exists, the number of days is noted in parentheses. File and

More information

PERIODIC TABLES: I. Directory, II. Traditional, III. Vertical, IV. Toxicity (LD 50 values), V. Native (elemental form)

PERIODIC TABLES: I. Directory, II. Traditional, III. Vertical, IV. Toxicity (LD 50 values), V. Native (elemental form) PERIODIC TABLES: I. Directory, II. Traditional, III. Vertical, IV. Toxicity (LD 50 values), V. Native (elemental form) Site developed by Steve Murov, Professor Emeritus of Chemistry, Modesto Junior College,

More information

Auto Insurance Underwriting/Rating

Auto Insurance Underwriting/Rating Auto Insurance Underwriting/Rating Insurance Underwriting/Rating Variables Driver Demographics Driver History Type of Vehicle Vehicle History Auto Po olicy 1 Name: John Smith Age: 32 Gender: Male Marital

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

More information

W Cisco Kompetanse eek end 2 0 0 8 SMB = Store Mu ll ii gg hh eter! Nina Gullerud ng ulleru@ c is c o. c o m 1 Vår E n t e r p r i s e e r f a r i n g... 2 S m å o g M e llo m s t o r e B e d r i f t e

More information

Electron Configuration Activity

Electron Configuration Activity Electron Configuration Activity Purpose To find the relationship between electron configuration and organization of the periodic table. Materials Paper copy of the periodic table colored pencils or markers

More information

G d y n i a U s ł u g a r e j e s t r a c j i i p o m i a r u c z a s u u c z e s t n i k ó w i m p r e z s p o r t o w y c h G d y s k i e g o O r o d k a S p o r t u i R e k r e a c j i w r o k u 2 0

More information

FedEx Ground Rates. Effective January 7, 2013

FedEx Ground Rates. Effective January 7, 2013 FedEx Ground Rates Effective January 7, 2013 Introduction FedEx Ground shipping services provide you with dependable, cost-effective, day-definite delivery for packages that don t require the speed of

More information

UNDERSTANDING FLOW PROCESSING WITHIN THE CISCO ACE M ODULE Application de liv e r y pr odu cts can distr ib u te tr af f ic to applications and w e b se r v ice s u sing v ar y ing le v e ls of application

More information

Collaboration in Public H e alth be tw e e n U niv e rs ity of H e id e lbe rg and U niv e rs ity of D ar e s S alaam How t h e c oop e r a t i on e m e r g e d Informal c ont ac t s from e arly 1 9

More information

AUS-e-TUTE. Periodic Table Lessons and Activities. ausetute.com.au. Definition of Terms used in this publication: Crossword: Drill: Exam:

AUS-e-TUTE. Periodic Table Lessons and Activities. ausetute.com.au. Definition of Terms used in this publication: Crossword: Drill: Exam: 2012 AUS-e-TUTE Periodic Table Lessons and Activities Definition of Terms used in this publication: requires students to find and enter information, Interactive Learning Activity: then guides them through

More information

Secondary Support Pack. be introduced to some of the different elements within the periodic table;

Secondary Support Pack. be introduced to some of the different elements within the periodic table; Secondary Support Pack INTRODUCTION The periodic table of the elements is central to chemistry as we know it today and the study of it is a key part of every student s chemical education. By playing the

More information

Topic 3 Periodic Trends

Topic 3 Periodic Trends Topic 3 Periodic Trends Chapter 06 Trends on the Periodic Table Chapter 07 Relationships between the elements CHEM 10 T03D01 How are elements arranged Prior to 1735, only 12 elements were known to man

More information

Payor Sheet for Medicare Part D/ PDP and MA-PD

Payor Sheet for Medicare Part D/ PDP and MA-PD Payor Specification Sheet for MEDICARE PART D/PDP AND MA-PD PRIME THERAPEUTICS LLC CLIENTS JANUARY 1, 2006 (Page 1 of 8) BIN: PCN: See BINs on page 2 (in bold red type) See PCNs on page 2 (in bold red

More information

Table 12: Availability Of Workers Compensation Insurance Through Homeowner s Insurance By Jurisdiction

Table 12: Availability Of Workers Compensation Insurance Through Homeowner s Insurance By Jurisdiction AL No 2 Yes No See footnote 2. AK No Yes No N/A AZ Yes Yes Yes No specific coverage or rate information available. AR No Yes No N/A CA Yes No No Section 11590 of the CA State Insurance Code mandates the

More information

Major content M a j o r c h a r a c t e r i s t i c s o f H i g h e r E d u c a t i o n ( H E ) s y s t e m s i n A s i a a n d E u r o p e M a j o r

Major content M a j o r c h a r a c t e r i s t i c s o f H i g h e r E d u c a t i o n ( H E ) s y s t e m s i n A s i a a n d E u r o p e M a j o r F i rst A S E M R ec t ors C on feren c e F rei e U n i v ersi t a t B erl i n, G erm a n y, 2 7 2 9 O c t ob er 2 0 0 8 The Development of Higher Education SS yy ss tems in Europe and AA ss ia: Similarities

More information

Unit 16 : Software Development Standards O b jec t ive T o p r o v id e a gu ide on ho w t o ac h iev e so f t wa r e p r o cess improvement through the use of software and systems engineering standards.

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

T h is do c u m e nt r e f e r s to F a st E th e r C h a nne l, G ig a b it E th e r C h a nne l, p o r t c h a nne l a nd p o r t g r o u p w ith a

T h is do c u m e nt r e f e r s to F a st E th e r C h a nne l, G ig a b it E th e r C h a nne l, p o r t c h a nne l a nd p o r t g r o u p w ith a Understanding L ay er 3 Eth erch annel S u p p o rt o n th e Cisc o I ntegrated S erv ic es R o u ter T h e p u r p o se o f th is do c u m e nt is to e x p l a in C isc o Inte g r a te d S e r v ic e

More information

Inform e-commerce Reference Guide

Inform e-commerce Reference Guide Inform e-commerce Reference Guide Logging...2 In Placing an...2 Order Searching for...2 Products Using the Order...3 Pad Reviewing your...4 Shopping Cart Using Saved Shopping...4 Carts Checking Out...5

More information

The Affordable Care Act and Workers Compensation

The Affordable Care Act and Workers Compensation NCCI s 2016 Annual Issues Symposium The Affordable Care Act and Workers Compensation Leonard F. Herk, PhD Senior Economist NCCI Outline of Topics The Affordable Care Act (ACA) and Medical Insurance Expansion

More information

Future Trends in Airline Pricing, Yield. March 13, 2013

Future Trends in Airline Pricing, Yield. March 13, 2013 Future Trends in Airline Pricing, Yield Management, &AncillaryFees March 13, 2013 THE OPPORTUNITY IS NOW FOR CORPORATE TRAVEL MANAGEMENT BUT FIRST: YOU HAVE TO KNOCK DOWN BARRIERS! but it won t hurt much!

More information

Outline Presentation Why S c i r u s S c i r u s V a l u e C ha i n A d d e d v a l u e f o r E S a n d s c i e n t i f i c c o m m u n i t y

Outline Presentation Why S c i r u s S c i r u s V a l u e C ha i n A d d e d v a l u e f o r E S a n d s c i e n t i f i c c o m m u n i t y Searching the Scientific Web: s & T d s m m u Sciru he ad ed benefits fo r the cientific co nity Femke Markus S r. P ro d uc t Man ag er S c i rus 1 8 O c t o b er 2 0 0 2, C E R N, G en ev a Outline Presentation

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

The Periodic Table of the Elements. The Periodic Table of the Elements QUIZ THURSDAY Oct 20

The Periodic Table of the Elements. The Periodic Table of the Elements QUIZ THURSDAY Oct 20 The Periodic Table of the Elements 1 18 1 2 H 2 13 14 15 16 17 He 1.0079 4.0026 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 6.941 9.01218 10.811 12.011 14.0067 15.9994 18.9984 20.1797 11 12 13 14 15 16 17 18 Na

More information

Summary of State Laws Related to Auto Insurance

Summary of State Laws Related to Auto Insurance Summary of State Laws Related to Auto Insurance Rate Filing Laws for (Prior Form Filing Approval, Use & Laws (Prior File, File & Use, Approval, Use No File, Flex & File, File & Rating) Use, No File) Fault

More information

U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending

U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending by State and Program Report as of 3/7/2011 5:40:51 PM HUD's Weekly Recovery Act Progress Report: AK Grants

More information

SEPTEMBER Unit 1 Page Learning Goals 1 Short a 2 b 3-5 blends 6-7 c as in cat 8-11 t 12-13 p

SEPTEMBER Unit 1 Page Learning Goals 1 Short a 2 b 3-5 blends 6-7 c as in cat 8-11 t 12-13 p The McRuffy Kindergarten Reading/Phonics year- long program is divided into 4 units and 180 pages of reading/phonics instruction. Pages and learning goals covered are noted below: SEPTEMBER Unit 1 1 Short

More information

ACE-1/onearm #show service-policy client-vips

ACE-1/onearm #show service-policy client-vips M A C E E x a m Basic Load Balancing Using O ne A r m M ode w it h S ou r ce N A T on t h e C isco A p p licat ion C ont r ol E ngine Goal Configure b a s ic l oa d b a l a nc ing (L a y er 3 ) w h ere

More information

BLADE 12th Generation. Rafał Olszewski. Łukasz Matras

BLADE 12th Generation. Rafał Olszewski. Łukasz Matras BLADE 12th Generation Rafał Olszewski Łukasz Matras Jugowice, 15-11-2012 Gl o b a l M a r k e t i n g Dell PowerEdge M-Series Blade Server Portfolio M-Series Blades couple powerful computing capabilities

More information

The Cost and Benefits of Individual & Family Health Insurance Plans. November 2011 2011 policies surveyed were active in February 2011

The Cost and Benefits of Individual & Family Health Insurance Plans. November 2011 2011 policies surveyed were active in February 2011 The Cost and Benefits of Individual & Family Health Insurance Plans November 2011 2011 policies surveyed were active in February 2011 Table of Contents Introduction and Background...3 Methodology Summary...3

More information

LYXOR ASSET MANAGEMENT THE POWER TO PERFORM IN ANY MARKET

LYXOR ASSET MANAGEMENT THE POWER TO PERFORM IN ANY MARKET LYXOR ASSET MANAGEMENT THE POWER TO PERFORM IN ANY MARKET ETFs & INDEXING Stan din g am o ng t he mo st e xp e rie nc e d ET F p ro v i d e rs, Ly xo r ETF r a n ks 3 rd in E u rope w i t h mo re t ha

More information

AmGUARD Insurance Company EastGUARD Insurance Company NorGUARD Insurance Company WestGUARD Insurance Company GUARD

AmGUARD Insurance Company EastGUARD Insurance Company NorGUARD Insurance Company WestGUARD Insurance Company GUARD About Us For over 30 years, we have protected the interests of the small- to mid-sized businesses that insure with us. At Berkshire Hathaway Insurance Companies, we dedicate our efforts in the areas that

More information

days. Reply to claimant Life: Affirm or deny coverage every 45 days If settlement period specified, If settlement period specified,

days. Reply to claimant Life: Affirm or deny coverage every 45 days If settlement period specified, If settlement period specified, The date following each state indicates the last time information for the state was reviewed/changed. AL 27-1-17 Health 45 days for paper claims; 30 days for electronic claims. 1 ½% per month. If claim

More information

The Periodic Table, Electron Configuration & Chemical Bonding. Lecture 7

The Periodic Table, Electron Configuration & Chemical Bonding. Lecture 7 The Periodic Table, Electron Configuration & Chemical Bonding Lecture 7 Electrons We will start to look at the periodic table by focusing on the information it gives about each element s electrons. How

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You may

More information

d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o

d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o P o s t a w y s p o і e c z e t s t w a w o b e c o s у b n i e p e і n o s p r a w n y c h z e s z c z e g у l n y m u w z g lb d n i e n i e m o s у b z z e s p o і e m D o w n a T h e a t t i t uodf

More information

stichting mathematisch centrum

stichting mathematisch centrum A stichting mathematisch centrum AFDELING INFORMATICA IV 2/73 FEBRUARY L,G.L,Tho MEERTENS and J X V A N VLiE T REPAIRING THE PARENTHESIS SKELETON 15F ALGOL 6 8 PROGRAMS A 2e boerhaavestraat 49 amsterdam

More information

CUSTOMER INFORMATION SECURITY AWARENESS TRAINING

CUSTOMER INFORMATION SECURITY AWARENESS TRAINING CUSTOMER INFORMATION SECURITY AWARENESS TRAINING IN T RO DUCT ION T h i s c o u r s e i s d e s i g n e d to p r o v i d e yo u w i t h t h e k n o w l e d g e to p r o t e c t y o u r p e r s o n a l

More information

EM EA. D is trib u te d D e n ia l O f S e rv ic e

EM EA. D is trib u te d D e n ia l O f S e rv ic e EM EA S e c u rity D e p lo y m e n t F o ru m D e n ia l o f S e rv ic e U p d a te P e te r P ro v a rt C o n s u ltin g S E p p ro v a rt@ c is c o.c o m 1 A g e n d a T h re a t U p d a te IO S Es

More information

COMPREHENSIVE COVERAGE

COMPREHENSIVE COVERAGE COMPREHENSIVE COVERAGE IN YOUR POCKET Comprehensive Coverage Explained: A Pocket Guide to Understanding the Difference Between Homeowners Insurance, Home Warranty Service Agreements and New Construction

More information

B R T S y s te m in S e o u l a n d In te g r a te d e -T ic k e tin g S y s te m

B R T S y s te m in S e o u l a n d In te g r a te d e -T ic k e tin g S y s te m Symposium on Public Transportation in Indian Cities with Special focus on Bus Rapid Transit (BRT) System New Delhi 20-21 Jan 2010 B R T S y s te m in S e o u l a n d In te g r a te d e -T ic k e tin g

More information

An Active Approach to the Teaching of Spelling

An Active Approach to the Teaching of Spelling An Active Approach to the Teaching of Spelling 2012 SPELLING GUIDELINES Spelling is an integral part of the teaching of literacy, and as such, is given priority through a whole school approach. Our aim

More information

Understanding, Modelling and Improving the Software Process. Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 31 Slide 1

Understanding, Modelling and Improving the Software Process. Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 31 Slide 1 Process Improvement Understanding, Modelling and Improving the Software Process Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 31 Slide 1 Process improvement Understanding existing processes

More information

CONTINGENT COVERAGES AVAILABLE FOR AUTO LESSORS

CONTINGENT COVERAGES AVAILABLE FOR AUTO LESSORS CONTINGENT COVERAGES AVAILABLE FOR AUTO LESSORS LESSORS CONTINGENT LIABILITY $100,000 per person, $300,000 per occurrence, Bodily Injury; and $50,000 per occurrence, Property Damage ($100/300/50). As the

More information

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u i s p r z» t a n i a o b i e k t ó w G d y s k i e C eo n t r u m S p o r t us I S t a d i o n p i ł k a r s k i

More information

Highway Loss Data Institute Bulletin

Highway Loss Data Institute Bulletin Highway Loss Data Institute Bulletin Helmet Use Laws and Medical Payment Injury Risk for Motorcyclists with Collision Claims VOL. 26, NO. 13 DECEMBER 29 INTRODUCTION According to the National Highway Traffic

More information

NHIS State Health insurance data

NHIS State Health insurance data State Estimates of Health Insurance Coverage Data from the National Health Interview Survey Eve Powell-Griner SHADAC State Survey Workshop Washington, DC, January 13, 2009 U.S. DEPARTMENT OF HEALTH AND

More information

Florida Workers Comp Market

Florida Workers Comp Market Florida Workers Comp Market 10/5/10 Lori Lovgren 561-893-3337 Lori_Lovgren@ncci.com Florida Workers Compensation Rates 10-1-03 1-1-11 to 1-1-11* Manufacturing + 9.9% 57.8% Contracting + 7.3% 64.4 % Office

More information

UNIK4250 Security in Distributed Systems University of Oslo Spring 2012. Part 7 Wireless Network Security

UNIK4250 Security in Distributed Systems University of Oslo Spring 2012. Part 7 Wireless Network Security UNIK4250 Security in Distributed Systems University of Oslo Spring 2012 Part 7 Wireless Network Security IEEE 802.11 IEEE 802 committee for LAN standards IEEE 802.11 formed in 1990 s charter to develop

More information

Aon Risk Solutions Experience Modification Rating An Accurate Measure of Safety?

Aon Risk Solutions Experience Modification Rating An Accurate Measure of Safety? Aon Risk Solutions Experience Modification Rating An Accurate Measure of Safety? Rick Church, CSP, ARM, Director, Risk Control Services Aon Risk Solutions Construction Services Group 1901 Main Street,

More information

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Licensure Endorsement

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Licensure Endorsement The table below lists the licensure requirements for already-licensed PTs and PTAs applying for licensure in another jurisdiction. Summary Number of jurisdictions requiring license from: license was ever

More information

Professional Employer Organizations (PEO) and Workers Compensation. Implications for Ratemaking

Professional Employer Organizations (PEO) and Workers Compensation. Implications for Ratemaking Professional Employer Organizations (PEO) and Workers Compensation Implications for Ratemaking Harry Shuford Practice Leader & Chief Economist, NCCI Use of Workers Compensation Data for Workplace Safety

More information

The 80/20 Rule: How Insurers Spend Your Health Insurance Premiums

The 80/20 Rule: How Insurers Spend Your Health Insurance Premiums SUMMARY The 80/20 Rule: How Insurers Spend Your Health Insurance Premiums The Affordable Care Act holds health insurers accountable to consumers and ensures that American families receive value for their

More information

Motor Carrier Forms Bodily Injury and Property Damage Liability

Motor Carrier Forms Bodily Injury and Property Damage Liability ALPHABETICAL INDEX Forms are listed alphabetically by form title. Important Note: The forms shown herein for each state may not be a complete listing of all the motor carrier bodily injury and property

More information

Rapid Damage Assessment Methodology for Catastrophic Souris River Flooding Minot, North Dakota

Rapid Damage Assessment Methodology for Catastrophic Souris River Flooding Minot, North Dakota Rapid Damage Assessment Methodology for Catastrophic Souris River Flooding Minot, North Dakota Analyzing the Extent of Flooding Impacts Using Site Specific Analysis and User Generated Depth Grids Jesse

More information

CARF Accreditation February 15, 2013

CARF Accreditation February 15, 2013 CARF Accreditation February 15, 2013 Leslie Ellis-Lang, LMFT CARF s Mission is To promote the quality, value and optimal outcomes of services, through a consultative accreditation process, that centers

More information

The Lincoln National Life Insurance Company Variable Life Portfolio

The Lincoln National Life Insurance Company Variable Life Portfolio The Lincoln National Life Insurance Company Variable Life Portfolio State Availability as of 12/14/2015 PRODUCTS AL AK AZ AR CA CO CT DE DC FL GA GU HI ID IL IN IA KS KY LA ME MP MD MA MI MN MS MO MT NE

More information

bow bandage candle buildings bulb coins barn cap corn

bow bandage candle buildings bulb coins barn cap corn b c bow bandage candle buildings bulb coins barn cap corn Copyright (C) 1999 Senari Programs Page 1 SoundBox Montessori d f darts dice door dove forest farm film foot fish Copyright (C) 1999 Senari Programs

More information

Enterprise Data Center A c h itec tu re Consorzio Operativo Gruppo MPS Case S t u d y : P r o g et t o D i sast er R ec o v er y Milano, 7 Febbraio 2006 1 Il G r u p p o M P S L a B a n c a M o n t e d

More information

Other State Policy. CA Policy. Increase Requested

Other State Policy. CA Policy. Increase Requested Rate History Contact: 1 (800) 331-1538 Form * ** Date Date Name 1 NH94 I D 9/14/1998 N/A N/A N/A 35.00% 20.00% 1/25/2006 3/27/2006 8/20/2006 2 LTC94P I F 9/14/1998 N/A N/A N/A 35.00% 20.00% 1/25/2006 3/27/2006

More information

Building Harmony and Success

Building Harmony and Success Belmont High School Quantum Building Harmony and Success June 2016 We acknowledge the traditional custodians of this land and pay our respects to elders past and present Phone: (02) 49450600 Fax: (02)

More information

Montana Workers Compensation

Montana Workers Compensation Montana Workers Compensation Part 1 - Ratemaking Overview Copyright 2013 National Council on Compensation Insurance, Inc. All Rights Reserved. Mike_Taylor@ncci.com 503-892-1858 WC Ratemaking Basics Where

More information