SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:


 Brett Matthews
 1 years ago
 Views:
Transcription
1 SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the structure is expected to behave during the event of an earthquake which in turn requires different levels of detailing requirements. 2. Seismic Design Category (SDC), varies from A to F, depending on how the design and detailing is carried out.
2 3. Seismic Soil Type, varies from A to F, depending on how the waves travel through the soil. 4. Seismic Zones, 0, 1, 2A, 2B, 3, and 4, depending on the maximum design ground acceleration of a particular area. 5. Seismic Risk Categories, low, moderate, high.
3 Low seismic risk corresponds to Seismic Zones 1 and 2A of UBC97, Seismic design category (SDC) A and B of IBC, and Seismic performance category (SPC) A and B of NBC. Moderate / intermediate seismic risk corresponds to Seismic Zones 2B of UBC97, Seismic design category (SDC) C of IBC, and Seismic performance category (SPC) C of NBC. High seismic risk corresponds to Seismic Zones 3 and 4 of UBC97, Seismic design category (SDC) D, E and F of IBC, and Seismic performance category (SPC) D and E of NBC.
4 6. Lateral Load Resisting System, a) Intermediate moment frame A castinplace frame complying with the requirements of ACI and in addition to the requirements for ordinary moment frames. b) Ordinary moment frame A castinplace or precast concrete frame complying with the requirements of ACI Chapters 1 through 18. c) Special moment frame A castinplace frame complying with the requirements of ACI 21.2 through In addition, the requirements for ordinary moment frames should be satisfied.
5 d) Structural walls Walls proportioned to resist combinations of shears, moments, and axial forces induced by earthquake motions. A shear wall is a structural wall. Structural walls shall be categorized as follows: i) Intermediate precast structural wall A wall complying with all applicable requirements of ACI Chapters 1 through 18 in addition to ii) Ordinary reinforced concrete structural wall A wall complying with the requirements of ACI Chapters 1 through 18.
6 iii) Ordinary structural plain concrete wall A wall complying with the requirements of ACI Chapter 22. iv) Special precast structural wall v) Special reinforced concrete structural wall A castinplace wall complying with the requirements of ACI 21.2 and 21.7 in addition to the requirements for ordinary reinforced concrete structural walls.
7 Interrelationship Of Design Categories A. Low Seismic Risk corresponds to Seismic Zones 0 and 1 of UBC 97, seismic design category (SDC) of A and B (IBC), and seismic performance category of A and B (NBC). B. Moderate / Intermediate Seismic Risk corresponds to Seismic Zones 2A and 2B of UBC 97, seismic design category (SDC) of C (IBC), and seismic performance category of C (NBC). C. High Seismic Risk corresponds to Seismic Zones 3 and 4 of UBC 97, seismic design category (SDC) of D, E, and F (IBC), and seismic performance category of D and E (NBC).
8 According to ACI , regions of moderate seismic risk or for structures assigned to intermediate seismic performance or intermediate design categories (Zones 2A, 2B), use one of the following systems or their combination to resist the seismic forces:
9 1. Intermediate moment frame 2. special moment frame 3. ordinary structural walls 4. intermediate structural walls 5. special structural walls
10 According to ACI , regions of high seismic risk or for structures assigned to high seismic performance or high design category (Zones 3, 4), use one of the following systems or their combination to resist the earthquake loads: 1. Special moment frames 2. Special structural walls 3. Diaphragms and trusses
11 GENERAL CONSIDERATIONS FOR SEISMIC DESIGN As already explained, buildings are designed to withstand moderate earthquakes without damage and severe earthquakes without collapse. Earthquake movements impose deformations on the structures. We find inertial forces due to these earthquake movements depending upon the structure. Dynamic effects like resonance are also important to be considered.
12 Due to availability of limited data, the design is generally based on statistical studies of the previous earthquakes. As more and more earthquake data become available and understanding of the structural behavior is improved, Building Codes undergo modifications to cover the weaknesses in design criteria of the previous codes. Further, the safety of a structure subjected to earthquake loading also depends on the designer s understanding of the response of the structure to ground motion.
13 It is prohibitively expensive to design the structure in the elastic range. Overall structural ductility is very important in such designs. Following are the general considerations for the seismic design of structures: 1. Design for earthquakes differ from the design for gravity and wind loads particular with respect to greater sensitivity of earthquakeinduced forces to the geometry of the structure.
14 Most structures, which are not extremely tall, are designed by the equivalent static loading (up to about 20 stories). This is applicable for regular buildings with center of mass and center of resistance very near to each other. Center of Resistance Against Earthquake and Center of Mass of a Regular Structure. Center of Resistance And Center of Mass
15 The configuration of a structure has a major effect on its response to an earthquake. Structures with a discontinuity in stiffness or geometry can be subjected to very high displacements and forces. For example, the absence of shear walls, infill walls or even cladding at a particular story level, as compared to other stories, causes concentration of displacements at this story.
16 The ground floor of a shopping center generally has this weakness. This weak story compared with rest of the structure is termed as open or soft story. The larger displacements require a considerably larger ductility at the level of soft story. If this amount of ductility is not available, the structure fails locally at this level. Such a design is not recommended and the stiffening members must be continued to the foundations.
17 Flexible Story
18 2. Steps to strengthen a member for one type of loading may actually increase the forces in the member and change the mode of failure from ductile to brittle. 3. As the frequency of the ground motion becomes closer to one of the natural frequencies of a structure, the chances of the structure to experience resonance increases. 4. The first mode of vibration usually provides the greatest contribution to lateral displacement.
19 5. The taller structures are more affected by the higher modes of vibration and their effect actually adds to the effects of lower modes. The upper stories attract more forces due to the higher modes of vibration. 6. The longer duration of earthquake always has a greater potential for damage to the structure. 7. Vertical geometric and plan irregularities may result in torsion induced by ground motion.
20 Opening a) Vertical Geometric Irregularities b) Plan Irregularities Geometrical Irregularities in Structures.
21 8. The addition of stiff members, such as shear wall, can on one side reduce the displacements of the structure and hence the damage. On the other side, stiff members pick up a greater portion of the load. When this effect is ignored in design, unexpected and often undesirable results can occur. 9. An adequate separation must be left between structures.
22 Large lateral displacements can cause the structures to come in contact with each other during an earthquake. This results in major damage due to hammering effect. 10. Members designed for seismic loading must behave in a ductile manner and should dissipate energy without compromising the strength. Confinement of concrete is to be provided to ensure ductility in members subjected to shear and bending.
23 Due to this confinement, the beams and columns can undergo nonlinear cyclic bending. 11. It must be tried that the plastic hinges are developed in the beams rather than columns. The weak beam strong column approach is always preferred for the design of reinforced concrete frames subjected to seismic loading. The advantage of this approach is that the overall vertical load carrying capacity is maintained near collapse and smaller portion of the structure is affected by the nonlinear behavior.
24 12. Transverse reinforcement for the columns is to be carefully designed for the shear force due to lateral loads in addition to shear force resulting from the dead and live loads. A smaller length column closer to high stiffness members or shear walls may attract large shear forces and may fail in shear. This type of column, called captive column, is more critical for design in shear than in flexure.
25 General Requirements For Moderate Risk / Intermediate Moment Frames ACI deals with this type of frame. Reinforcement details in a frame member should satisfy ACI if the factored axial compressive load, P u, for the member is less than equal to A g f c /10. If P u is larger, frame reinforcement details should satisfy ACI unless the member has spiral reinforcement.
26 ACI deals with beams of such frames. The positive moment strength at the face of the joint should be not less than onethird the negative moment strength provided at that face of the joint. Neither the negative nor the positive moment strength at any section along the length of the member should be less than onefifth the maximum moment strength provided at the face of either joint.
27 At both ends of the member, hoops should be provided over lengths equal 2h measured from the face of the supporting member toward midspan. The first hoop should be located at not more than 50 mm from the face of the supporting member. Spacing of hoops should not exceed the smallest of the following: (a) d/4; (b) 8 times the diameter of the smallest longitudinal bar enclosed; (c) 24 times the diameter of the hoop bar; (d) 300 mm.
28 Stirrups should be placed at not more than d/2 throughout the length of the member. Columns ACI deals with columns of such frames. Columns should be spirally reinforced in accordance with ACI or should conform with ACI through Section should apply to all columns. At both ends of the member, hoops should be provided at spacing s o over a length l o measured from the joint face. Spacing s o shall not exceed the smallest of (a), (b), (c), and (d):
29 (a) (b) (c) (d) Eight times the diameter of the smallest longitudinal bar enclosed; 24 times the diameter of the hoop bar; Onehalf of the smallest crosssectional dimension of the frame member; 300 mm. Length l o shall not be less than the largest of (e), (f), and (g):
30 (e) (f) (g) Prof. Dr. Zahid A. Siddiqi, UET, Lahore Onesixth of the clear span of the member; Maximum crosssectional dimension of the member; 450 mm. The first hoop shall be located at not more than s o /2 from the joint face. Outside the length l o, spacing of transverse reinforcement should satisfy the normal spacing requirements. Joint transverse reinforcement should be provided as per ACI
31 GENERAL REQUIREMENTS FOR HIGH RISK In regions of high seismic risk or for structures assigned to high seismic performance or design categories, special moment frames, special structural walls, and diaphragms and trusses complying with ACI through and 21.3 through should be used to resist forces induced by earthquake motions. Members not proportioned to resist earthquake forces should comply with ACI
32 Analysis And Proportioning Of Structural Members Rigid members assumed not to be a part of the lateralforce resisting system are permitted provided their effect on the response of the system is considered and accommodated in the structural design. Consequences of failure of structural and nonstructural members, which are not a part of the lateral force resisting system, should also be considered.
33 All structural members assumed not to be part of the lateralforce resisting system should satisfy ACI Specified compressive strength of concrete, f c, should be not less than 21 MPa. Reinforcement In Members Resisting EarthquakeInduced Forces Reinforcement resisting earthquakeinduced flexural and axial forces in frame members should comply with ASTM A 706M. ASTM A 615M Grades 280 and 420 reinforcement should be permitted in these members if:
34 (a) The actual yield strength based on mill tests does not exceed f y by more than 125 MPa (retests should not exceed this value by more than an additional 21 MPa); and (b) The ratio of the actual tensile strength to the actual yield strength is not less than The value of f yt for transverse reinforcement including spiral reinforcement should not exceed 420 MPa.
35 Flexural Members Of Special Moment Frames Prof. Dr. Zahid A. Siddiqi, UET, Lahore Factored axial compressive force on the member, P u, should not exceed A g f c /10. Clear span for member, l n, shall not be less than four times its effective depth. Width of member, b w, should not be less than the smaller of 0.3h and 250 mm. Width of member, b w, should not exceed width of supporting member plus distances on each side of supporting member not exceeding threefourths of the depth of flexural member.
36 At any section of a flexural member, except as provided in ACI , for top as well as for bottom reinforcement, the amount of reinforcement should not be less than that given by ACI Eq. (103) but not less than 1.4b w d /f y, and the reinforcement ratio, ρ, should not exceed At least two bars should be provided continuously both top and bottom. Positive moment strength at joint face should be not less than onehalf of the negative moment strength provided at that face of the joint.
37 Neither the negative nor the positive moment strength at any section along member length should be less than onefourth the maximum moment strength provided at face of either joint. Spacing of the transverse reinforcement enclosing the lapped bars should not exceed the smaller of d/4 and 100 mm. Lap splices shall not be used in the following situations:
38 (a) within the joints; Prof. Dr. Zahid A. Siddiqi, UET, Lahore (b) within a distance of twice the member depth from the face of the joint; and (c) where analysis indicates flexural yielding is caused by inelastic lateral displacements of the frame. Hoops should be provided in the following regions of frame members: (a) Over a length equal to twice the member depth measured from the face of the supporting member toward midspan, at both ends of the flexural member;
39 (b) Over lengths equal to twice the member depth on both sides of a section where flexural yielding is likely to occur in connection with inelastic lateral displacements of the frame. The first hoop shall be located not more than 50 mm from the face of a supporting member. Spacing of the hoops shall not exceed the smallest of (a), (b), (c) and (d): (a) (b) (c) (d) d/4; eight times the diameter of the smallest longitudinal bars; 24 times the diameter of the hoop bars; and 300 mm.
40 Where hoops are not required, stirrups with seismic hooks at both ends should be spaced at a distance not more than d/2 throughout the length of the member. Prof. Dr. Zahid A. Siddiqi, UET, Lahore
41 Special Moment Frame Members Subjected To Bending And Axial Load Discussed in ACI Prof. Dr. Zahid A. Siddiqi, UET, Lahore The requirements of this section apply to special moment frame members (a) resisting earthquake induced forces and (b) having a factored axial compressive force P u exceeding A g f c /10. These frame members should also satisfy the following conditions:
42 The shortest crosssectional dimension, measured on a straight line passing through the geometric centroid, should not be less than 300 mm. The ratio of the shortest crosssectional dimension to the perpendicular dimension should not be less than 0.4. Flexural strength of any column proportioned to resist P u exceeding A g f c /10 should satisfy ACI or
43 Lateral strength and stiffness of columns not satisfying ACI should be ignored when determining the calculated strength and stiffness of the structure, but such columns should conform to ACI The flexural strengths of the columns should satisfy the following: Σ M nc (1.2) Σ M nb ΣM nc = sum of nominal flexural strengths of columns framing into the joint, evaluated at the faces of the joint.
44 Column flexural strength is to be calculated for the factored axial force, consistent with the direction of the lateral forces considered, resulting in the lowest flexural strength. ΣM nb = sum of nominal flexural strengths of the beams framing into the joint, evaluated at the faces of the joint. Flexural strengths should be summed such that the column moments oppose the beam moments. The above equation is to be satisfied for beam moments acting in both directions in the vertical plane of the frame considered.
45 Longitudinal Reinforcement Area of longitudinal reinforcement, A st, should not be less than 0.01A g or more than 0.06A g. Lap splices should be permitted only within the center half of the member length, should be designed as tension lap splices, and shall be enclosed within transverse reinforcement. Transverse reinforcement required in (a) through (e) should be provided unless a larger amount is required by ACI or
46 (a) The volumetric ratio of spiral or circular hoop reinforcement, ρ s, should not be less than required by the following: ρ s = 0.12 f c /f yt and should not be less than required normally. (b) The total crosssectional area of rectangular hoop reinforcement, A sh, should not be less than required by the following: A sh = 0.3(s bc f c /f yt )[(A g /A ch ) 1] A sh = 0.09s bc f c /f yt
47 (c) Transverse reinforcement should be provided by either single or overlapping hoops. Crossties of the same bar size and spacing as the hoops shall be permitted. Each end of the crosstie should engage a peripheral longitudinal reinforcing bar. Consecutive crossties shall be alternated end for end along the longitudinal reinforcement. (d) If the design strength of member core satisfies the requirement of the design loading combinations including E, the above need not be satisfied.
48 (e) If the thickness of the concrete outside the confining transverse reinforcement exceeds 100 mm, additional transverse reinforcement shall be provided at a spacing not exceeding 300 mm. Concrete cover on the additional reinforcement shall not exceed 100 mm. Spacing of transverse reinforcement shall not exceed the smallest of (a), (b), and (c): (a) onequarter of the minimum member dimension; (b) six times the diameter of the longitudinal reinforcement; and (c) s o,
49 The value of s o shall not exceed 150 mm and need not be taken less than 100 mm. Horizontal spacing of crossties or legs of overlapping hoops, h x, shall not exceed 350 mm on center.
50 Transverse reinforcement should be provided over a length l o from each joint face and on both sides of any section where flexural yielding is likely to occur as a result of inelastic lateral displacements of the frame. Length l o should not be less than the largest of (a), (b), and (c): (a) the depth of the member at the joint face or at the section where flexural yielding is likely to occur; (b) onesixth of the clear span of the member; and (c) 450 mm.
51 Transverse reinforcement should extend at least the development length in tension, l d, into discontinued member. If the lower end of the column terminates on a wall, transverse reinforcement should extend into wall at least l d of the largest longitudinal column bar at the point of termination.
52 Where transverse reinforcement is not provided throughout the full length of the column, the remainder of the column length should contain spiral or hoop reinforcement with centertocenter spacing, s, not exceeding the smaller of six times the diameter of the longitudinal column bars and 150 mm. The design shear force, V e, is to be determined from consideration of the maximum forces that can be generated at the faces of the joints at each end of the member.
53 These joint forces shall be determined using the maximum probable moment strengths, M pr, at each end of the member associated with the range of factored axial loads, P u, acting on the member. The member shears need not exceed those determined from joint strengths based on M pr of the transverse members framing into the joint. In no case shall V e be less than the factored shear determined by analysis of the structure.
54 Transverse reinforcement over the lengths l o should be proportioned to resist shear assuming V c = 0 when both (a) and (b) occur: (a) The earthquakeinduced shear force represents onehalf or more of the maximum required shear strength within l o ; (b) The factored axial compressive force, P u, including earthquake effects is less than A g f c / 20.
55
56
57 If columns are not stronger than beams framing into a joint, there is likelihood of inelastic action. In the worst case of weak columns, flexural yielding can occur at both ends of all columns in a given story, resulting in a column failure mechanism that can lead to collapse. When determining the nominal flexural strength of a girder section in negative bending (top in tension), longitudinal reinforcement contained within an effective flange width of a top slab that acts monolithically with the girder increases the girder strength.
58
59 Joints Of Special Moment Frames Discussed in ACI Prof. Dr. Zahid A. Siddiqi, UET, Lahore Forces in longitudinal beam reinforcement at the joint face should be determined by assuming that the stress in the flexural tensile reinforcement is 1.25f y. Strength of joint should be governed by the appropriate φ factors. Beam longitudinal reinforcement terminated in a column should be extended to the far face of the confined column core and anchored in tension and in compression according to ACI Chapter 12.
60 Where longitudinal beam reinforcement extends through a beamcolumn joint, the column dimension parallel to the beam reinforcement should not be less than 20 times the diameter of the largest longitudinal beam bar for normal weight concrete. Within h of the shallowest framing member, transverse reinforcement equal to at least onehalf the amount required by ACI should be provided where members frame into all four sides of the joint and where each member width is at least threefourths the column width.
61 At these locations, the spacing required in ACI is to be increased to 150 mm. Transverse reinforcement as required by ACI should be provided through the joint to provide confinement for longitudinal beam reinforcement outside the column core if such confinement is not provided by a beam framing into the joint.
62 GENERAL PROVISIONS FOR MEMBERS NOT RESISTING EARTHQUAKES IN HIGH RISK Frame members assumed not to contribute to lateral resistance, except twoway slabs without beams, should be detailed according to ACI or depending on the magnitude of moments induced in those members when subjected to the design displacement δ u.
63 If effects of δ u are not explicitly checked, it shall be permitted to apply the requirements of ACI Where the induced moments and shears under design displacements, δ u, combined with the factored gravity moments and shears do not exceed the design moment and shear strength of the frame member, the conditions of ACI , , and should be satisfied. The gravity load combinations of (1.2D + 1.0L + 0.2S) or 0.9D, whichever is critical, should be used.
64 The load factor on the live load, L, is permitted to be reduced to 0.5 except for garages, areas occupied as places of public assembly, and all areas where L is greater than 490 kg/m 2. Members with factored gravity axial forces not exceeding A g f c /10 should satisfy ACI Stirrups should be spaced not more than d/2 throughout the length of the member. Members with factored gravity axial forces exceeding A g f c /10 should satisfy ACI , (c), , and
65 The maximum longitudinal spacing of ties should be s o for the full column height. Spacing s o should not exceed smaller of six diameters of the smallest longitudinal bar enclosed and 150 mm. Members with factored gravity axial forces exceeding 0.35P o should satisfy ACI and the amount of transverse reinforcement provided should be onehalf of that required by ACI but should not be spaced greater than s o for the full height of the column.
66 If the induced moment or shear under design displacements, δ u, exceeds φm n or φv n of the frame member, or if induced moments are not calculated, the conditions of ACI , , and should be satisfied. Members with factored gravity axial forces not exceeding A g f c /10 should satisfy ACI and Stirrups should be spaced at not more than d/2 throughout the length of the member. Members with factored gravity axial forces exceeding A g f c /10 should satisfy ACI , , , and
67
Chapter 9 CONCRETE STRUCTURE DESIGN REQUIREMENTS
Chapter 9 CONCRETE STRUCTURE DESIGN REQUIREMENTS 9.1 GENERAL 9.1.1 Scope. The quality and testing of concrete and steel (reinforcing and anchoring) materials and the design and construction of concrete
More informationDesigner s NOTEBOOK BLAST CONSIDERATIONS
Designer s NOTEBOOK BLAST CONSIDERATIONS For a surface blast, the most directly affected building elements are the façade and structural members on the lower four stories. Although the walls can be designed
More informationDetailing of Reinforcment in Concrete Structures
Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For
More informationSEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES IN ACI 318. S.K. Ghosh, Ph. D. Neil M. Hawkins, Ph. D. BACKGROUND
SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES IN ACI 318 by S.K. Ghosh, Ph. D. Neil M. Hawkins, Ph. D. President Professor Emeritus S.K. Ghosh Associates Inc. Department of Civil Engineering
More informationINTERNATIONAL BUILDING CODE STRUCTURAL
INTERNATIONAL BUILDING CODE STRUCTURAL S506/07 1604.11 (New), 1605 (New) Proposed Change as Submitted: Proponent: William M. Connolly, State of New Jersey, Department of Community Affairs, Division of
More informationDraft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 31814
Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 31814 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318
More informationASCE 41 Seismic Rehabilitation of Existing Buildings
ASCE 41 Seismic Rehabilitation of Existing Buildings Presentation Topics: 1. How to define a Rehabilitation Objective per ASCE 41. 2. Data Collection and Testing. 3. Analysis Requirements. 4. Modeling.
More informationSLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:
Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI31802 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems
More informationSEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES. S.K. Ghosh, Ph. D. President S.K. Ghosh Associates Inc. Northbrook, IL BACKGROUND
SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES S.K. Ghosh, Ph. D. President S.K. Ghosh Associates Inc. Northbrook, IL BACKGROUND Until recently, precast concrete structures could be built in
More informationRetrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables
Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables Yogesh Ghodke, G. R. Gandhe Department of Civil Engineering, Deogiri Institute of Engineering and Management
More informationThe Design of Reinforced Concrete Slabs
EGN5439 The Design of Tall Buildings Lecture #14 The Design of Reinforced Concrete Slabs Via the Direct Method as per ACI 31805 L. A. PrietoPortar  2008 Reinforced concrete floor systems provide an
More informationTechnical Notes 3B  Brick Masonry Section Properties May 1993
Technical Notes 3B  Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 40292) and Specifications
More informationReinforced Concrete Design SHEAR IN BEAMS
CHAPTER Reinforced Concrete Design Fifth Edition SHEAR IN BEAMS A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part I Concrete Design and Analysis 4a FALL 2002 By Dr.
More informationSeismic Risk Prioritization of RC Public Buildings
Seismic Risk Prioritization of RC Public Buildings In Turkey H. Sucuoğlu & A. Yakut Middle East Technical University, Ankara, Turkey J. Kubin & A. Özmen Prota Inc, Ankara, Turkey SUMMARY Over the past
More informationOptimum proportions for the design of suspension bridge
Journal of Civil Engineering (IEB), 34 (1) (26) 114 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering
More informationbi directional loading). Prototype ten story
NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation
More informationShear Reinforcements in the Reinforced Concrete Beams
American Journal of Engineering Research (AJER) eissn : 23200847 pissn : 23200936 Volume02, Issue10, pp191199 www.ajer.org Research Paper Open Access Shear Reinforcements in the Reinforced Concrete
More information4B2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.
Shear Walls Buildings that use shear walls as the lateral forceresisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls
More informationSEISMIC CODE EVALUATION. MEXICO Evaluation conducted by Jorge Gutiérrez
SEISMIC CODE EVALUATION MEXICO Evaluation conducted by Jorge Gutiérrez NAME OF DOCUMENT: Normas Técnicas Complementarias para Diseño por Sismo ( Complementary Technical Norms for Earthquake Resistant Design
More informationDesign of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges
7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience
More informationMECHANICAL BEHAVIOR OF REINFORCED CONCRETE BEAMCOLUMN ASSEMBLAGES WITH ECCENTRICITY
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 16, 2004 Paper No. 4 MECHANICAL BEHAVIOR OF REINFORCED CONCRETE BEAMCOLUMN ASSEMBLAGES WITH ECCENTRICITY Tomohiko KAMIMURA
More information1.054/1.541 Mechanics and Design of Concrete Structures (309) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures
Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (309) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures
More informationCover. When to Specify Intermediate Precast Concrete Shear Walls. 10.10 Rev 4. White Paper WP004
Cover Introduction In regard to precast concrete systems, the addition of two new categories of Seismic Force Resisting Systems (SFRS) in IBC 2006 has created some confusion about whether to specify intermediate
More informationINTRODUCTION TO BEAMS
CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis
More informationMiss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,
Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering
More informationSeismic design of beamcolumn joints in RC moment resisting frames Review of codes
Structural Engineering and Mechanics, Vol. 23, No. 5 (2006) 579597 579 Technical Report Seismic design of beamcolumn joints in RC moment resisting frames Review of codes S. R. Uma Department of Civil
More informationDESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,
DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared
More informationCost advantages of Buckling Restrained Braced Frame buildings in accordance with Eurocode
2010 Cost advantages of Buckling Restrained Braced Frame buildings in accordance with Eurocode This report compares Buckling Restrained Braced Frames to Concentrically Braced Frames as primary lateral
More informationDesign of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column
Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend
More informationSpecification for Structures to be Built in Disaster Areas
Ministry of Public Works and Settlement Government of Republic of Turkey Specification for Structures to be Built in Disaster Areas PART III  EARTHQUAKE DISASTER PREVENTION (Chapter 5 through Chapter
More informationReinforced Concrete Design
FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced
More informationDESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia
DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements
More informationThe following sketches show the plans of the two cases of oneway slabs. The spanning direction in each case is shown by the double headed arrow.
9.2 Oneway Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase
More informationChapter 4 FLOOR CONSTRUCTION
Chapter 4 FLOOR CONSTRUCTION Woodframe floor systems and concrete slabongrade floors are discussed in this chapter. Although coldformed steel framing for floor systems also is permitted by the IRC,
More informationModule 3. Limit State of Collapse  Flexure (Theories and Examples) Version 2 CE IIT, Kharagpur
Module 3 Limit State of Collapse  Flexure (Theories and Examples) Lesson 4 Computation of Parameters of Governing Equations Instructional Objectives: At the end of this lesson, the student should be able
More informationDesign Example 1 Reinforced Concrete Wall
Design Example 1 Reinforced Concrete Wall OVERVIEW The structure in this design example is an eightstory office with loadbearing reinforced concrete walls as its seismicforceresisting system. This
More informationFOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples
FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 141 Load Path and Transfer to
More informationUntopped Precast Concrete Diaphragms in HighSeismic Applications. Ned M. Cleland, Ph.D., P.E. President Blue Ridge Design, Inc. Winchester, Virginia
Untopped Precast Concrete Diaphragms in HighSeismic Applications Ned M. Cleland, Ph.D., P.E. President Blue Ridge Design, Inc. Winchester, Virginia S. K. Ghosh, Ph.D. President S. K. Ghosh Associates,
More informationTension Development and Lap Splice Lengths of Reinforcing Bars under ACI 31802
ENGINEERING DATA REPORT NUMBER 51 Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 31802 A SERVICE OF THE CONCRETE REINFORCING STEEL INSTITUTE Introduction Section 1.2.1 in the
More informationSEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 16, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver
More informationDIVISION: CONCRETE SECTION: CONCRETE ACCESSORIES SECTION: REINFORCING STEEL REPORT HOLDER: PEIKKO GROUP, INC.
0 ICCES Report ICCES (800) 4236587 (562) 6990543 www.icces.org 000 Most Widely Accepted and Trusted ESR3902 Issued 04/2016 This report is subject to renewal 04/2017. SECTION: 03 15 00 CONCRETE ACCESSORIES
More informationDesign of crossgirders and slabs in ladder deck bridges
130 Chris R Hendy Head of Bridge Design and Technology Highways & Transportation Atkins Jessica Sandberg Senior Engineer Highways & Transportation Atkins David Iles Steel Construction Institute Design
More information16. BeamandSlab Design
ENDP311 Structural Concrete Design 16. BeamandSlab Design BeamandSlab System How does the slab work? L beams and T beams Holding beam and slab together University of Western Australia School of Civil
More informationSeismic performance evaluation of an existing school building in Turkey
CHALLENGE JOURNAL OF STRUCTURAL MECHANICS 1 (4) (2015) 161 167 Seismic performance evaluation of an existing school building in Turkey Hüseyin Bilgin * Department of Civil Engineering, Epoka University,
More informationDistribution of Forces in Lateral Load Resisting Systems
Distribution of Forces in Lateral Load Resisting Systems Part 2. Horizontal Distribution and Torsion IITGN Short Course Gregory MacRae Many slides from 2009 Myanmar Slides of Profs Jain and Rai 1 Reinforced
More informationRequirements for the Use of PRESSS MomentResisting Frame Systems
Requirements for the Use of PRESSS MomentResisting Frame Systems Neil M. Hawkins, Ph.D. Professor Emeritus Department of Civil Engineering University of Illinois at UrbanaChampaign Urbana, Illinois S.
More informationEVALUATION OF SEISMIC RESPONSE  FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING BUCHAREST
EVALUATION OF SEISMIC RESPONSE  FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti
More informationExpected Performance Rating System
Expected Performance Rating System In researching seismic rating systems to determine how to best classify the facilities within the Portland Public School system, we searched out what was used by other
More informationETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA
ETABS Integrated Building Design Software Concrete Shear Wall Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all
More informationReinforced Concrete Design Project Five Story Office Building
Reinforced Concrete Design Project Five Story Office Building Andrew Bartolini December 7, 2012 Designer 1 Partner: Shannon Warchol CE 40270: Reinforced Concrete Design Bartolini 2 Table of Contents Abstract...3
More informationCHAPTER 1 INTRODUCTION
CHAPTER 1 INTRODUCTION 1.1 Background of the research Beam is a main element in structural system. It is horizontal member that carries load through bending (flexure) action. Therefore, beam will deflect
More informationPERFORMANCE BASED SEISMIC EVALUATION AND RETROFITTING OF UNSYMMETRICAL MEDIUM RISE BUILDINGS A CASE STUDY
Paper No. 682 PERFORMANCE BASED SEISMIC EVALUATION AND RETROFITTING OF UNSYMMETRICAL MEDIUM RISE BUILDINGS A CASE STUDY Jimmy Chandra, Pennung Warnitchai, Deepak Rayamajhi, Naveed Anwar and Shuaib Ahmad
More information1. Introduction. 2. Response of Pipelines
1. Introduction Blasting is common in the coal industry to remove rock overburden so that the exposed coal can be mechanically excavated. A portion of the blast energy released is converted to wave energy
More informationEFFECT OF POSITIONING OF RC SHEAR WALLS OF DIFFERENT SHAPES ON SEISMIC PERFORMANCE OF BUILDING RESTING ON SLOPING GROUND
International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 373 384, Article ID: IJCIET_07_03_038 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3
More informationFOOTING DESIGN EXAMPLE
County: Any Design: BRG Date: 10/007 Hwy: Any Ck Dsn: BRG Date: 10/007 FOOTING DESIGN EXAMPLE Design: Based on AASHTO LRFD 007 Specifications, TxDOT LRFD Bridge Design Manual, and TxDOT Project 04371
More informationMETHOD OF STATEMENT FOR STATIC LOADING TEST
Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents
More informationChapter 8. Flexural Analysis of TBeams
Chapter 8. Flexural Analysis of Ts 8.1. Reading Assignments Text Chapter 3.7; ACI 318, Section 8.10. 8.2. Occurrence and Configuration of Ts Common construction type. used in conjunction with either
More informationPage 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SBProduksjon STATICAL CALCULATIONS FOR BCC 250
Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..
More informationCONCRETE CHAPTER 19. Italics are used for text within Sections 1903 through 1908 of this code to indicate provisions that differ from ACI 318.
CHAPTER 19 CONCRETE Italics are used for text within Sections 1903 through 1908 of this code to indicate provisions that differ from ACI 318. SECTION 1901 GENERAL 1901.1 Scope. The provisions of this chapter
More information3. AXIALLY LOADED MEMBERS
3 AXIALLY LOADED MEMBERS 31 Reading Assignment: Section 19 and Sections 81 and 82 of text Most axially loaded structural members carry some moment in addition to axial load  for this discussion, restrict
More informationPrepared For San Francisco Community College District 33 Gough Street San Francisco, California 94103. Prepared By
Project Structural Conditions Survey and Seismic Vulnerability Assessment For SFCC Civic Center Campus 750 Eddy Street San Francisco, California 94109 Prepared For San Francisco Community College District
More informationDesign and Construction of Cantilevered Reinforced Concrete Structures
Buildings Department Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers APP68 Design and Construction of Cantilevered Reinforced Concrete Structures
More information1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona
for Earthen Material and Straw Bale Structures SECTION 70  GENERAL "APPENDIX CHAPTER 7  EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety
More informationSeismic Design of Shallow Foundations
Shallow Foundations Page 1 Seismic Design of Shallow Foundations Reading Assignment Lecture Notes Other Materials Ch. 9 FHWA manual Foundations_vibrations.pdf Homework Assignment 10 1. The factored forces
More informationPrecast Concrete Design
8 Precast Concrete Design Suzanne Dow Nakaki, S.E. Originally developed by Gene R. Stevens, P.E. and James Robert Harris, P.E., PhD Contents 8.1 HORIZONTAL DIAPHRAGMS... 4 8.1.1 Untopped Precast Concrete
More informationSince the Steel Joist Institute
SELECTING and SPECIFYING Wesley B. Myers, P.E. An insider s guide to selecting and specifying Kseries, LH, DLHseries joists and joist girders Since the Steel Joist Institute adopted the first standard
More informationDesign Parameters for Steel Special Moment Frame Connections
SEAOC 2011 CONVENTION PROCEEDINGS Design Parameters for Steel Special Moment Frame Connections Scott M. Adan, Ph.D., S.E., SECB, Chair SEAONC Structural Steel Subcommittee Principal Adan Engineering Oakland,
More informationBasis of Structural Design
Basis of Structural Design Course 5 Structural action:  Cable structures  Multistorey structures Course notes are available for download at http://www.ct.upt.ro/users/aurelstratan/ Cable structures
More informationDetailing of Reinforcement in Concrete Structures
THE CIVIL & STRUCTURAL ENGINEERING PANEL ENGINEERS AUSTRALIA SYDNEY DIVISION 28 August 2012 Detailing of Reinforcement in Concrete Structures R.I. Gilbert Introduction: Detailing is often considered to
More informationANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT
International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 10, Oct 2015, pp. 2535 Article ID: IJCIET_06_10_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=10
More informationEvaluation of the Seismic Performance of a Typical Reinforced Concrete School Building Built in Korea during the 1980s.
Evaluation of the Seismic Performance of a Typical Reinforced Concrete School Building Built in Korea during the 1980s. SungHo Kim, HaeJun Yang, SuWon Kang Chungnam National University, South Korea
More informationStress: The stress in an axially loaded tension member is given by Equation (4.1) P (4.1) A
Chapter 4. TENSION MEMBER DESIGN 4.1 INTRODUCTORY CONCEPTS Stress: The stress in an axially loaded tension member is given by Equation (4.1) P f = (4.1) A where, P is the magnitude of load, and A is the
More informationStress Strain Relationships
Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the
More informationBasics of Reinforced Concrete Design
Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. Define several terms related to reinforced concrete design Learn the basic theory behind structural analysis and reinforced concrete
More informationDesign of Fully Restrained Moment Connections per AISC LRFD 3rd Edition (2001)
PDHonline Course S154 (4 PDH) Design of Fully Restrained Moment Connections per AISC LRFD 3rd Edition (2001) Instructor: JoseMiguel Albaine, M.S., P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive
More informationChapter. Earthquake Damage: Types, Process, Categories
3 Chapter Earthquake Damage: Types, Process, Categories Earthquakes leave behind a trail of damage and destruction. People s lives are affected by the loss of loved ones, destruction of property, economic
More informationARCH 331 Structural Glossary S2014abn. Structural Glossary
Structural Glossary Allowable strength: Nominal strength divided by the safety factor. Allowable stress: Allowable strength divided by the appropriate section property, such as section modulus or cross
More informationTECHNICAL NOTE. Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006 IBC. On ColdFormed Steel Construction INTRODUCTION
TECHNICAL NOTE On ColdFormed Steel Construction 1201 15th Street, NW, Suite 320 W ashington, DC 20005 (202) 7852022 $5.00 Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006
More informationChapter 5 DESIGN REQUIREMENTS. 5.1 Seismic Design Categories EARTHQUAKERESISTANT DESIGN CONCEPTS
Chapter 5 DESIGN REQUIREMENTS 5.1 Seismic Design Categories The NEHRP Recommended Seismic Provisions recognizes that, independent of the quality of their design and construction, not all buildings pose
More informationMethods for Seismic Retrofitting of Structures
Methods for Seismic Retrofitting of Structures Retrofitting of existing structures with insufficient seismic resistance accounts for a major portion of the total cost of hazard mitigation. Thus, it is
More informationChapter 6 ROOFCEILING SYSTEMS
Chapter 6 ROOFCEILING SYSTEMS Woodframe roofceiling systems are the focus of this chapter. Coldformed steel framing for a roofceiling system also is permitted by the IRC but will not be discussed;
More informationSTRUCTURAL DESIGN 2 RIBBED (JOIST), HOLLOW POT & WAFFLE SLAB DESIGN TO BS 8110
LECTURE 4: 1.0 RIBBED SLAB 1.0.1 INTRODUCTION 1.0.2 PRESENTATION OF RIBBED FLOOR PLAN 1.0.3 ADVANTAGES & DISADVANTAGES OF RIBBED SLAB 1.0.4 SIZING OF SLAB AND RIBS 1.0.5 DESIGN METHODOLOGY 1.0.6 SUMMARY
More informationAppendix : According to IBC 2003, table , the minimum uniformly distributed live loads and minimum concentrated live loads are as follow:
Appendix Dead and Live Loads International Building Code 2003 (IBC) 1607.1: According to IBC 2003, table 1607.1, the minimum uniformly distributed live loads and minimum concentrated live loads are as
More informationSMIP05 Seminar Proceedings VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE. Robert K.
VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE Robert K. Dowell Department of Civil and Environmental Engineering San Diego State University Abstract This paper
More informationETABS. Integrated Building Design Software. Concrete Frame Design Manual. Computers and Structures, Inc. Berkeley, California, USA
ETABS Integrated Building Design Software Concrete Frame Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all associated
More informationOPTIMAL DIAGRID ANGLE TO MINIMIZE DRIFT IN HIGHRISE STEEL BUILDINGS SUBJECTED TO WIND LOADS
International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 215, pp. 11, Article ID: IJCIET_6_11_1 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11
More informationCONCRETE SHEAR WALL CONSTRUCTION M. Ofelia Moroni, University of Chile, Santiago, Chile
BACKGROUND CONCRETE SHEAR WALL CONSTRUCTION M. Ofelia Moroni, University of Chile, Santiago, Chile Buildings with castinsitu reinforced concrete shear walls are widespread in many earthquakeprone countries
More informationConcrete Frame Design Manual
Concrete Frame Design Manual Turkish TS 5002000 with Turkish Seismic Code 2007 For SAP2000 ISO SAP093011M26 Rev. 0 Version 15 Berkeley, California, USA October 2011 COPYRIGHT Copyright Computers and Structures,
More informationSolid Mechanics. Stress. What you ll learn: Motivation
Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain
More informationREINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach  Fifth Edition. Walls are generally used to provide lateral support for:
HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach  Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering
More informationCE591 Fall 2013 Lecture 26: Moment Connections
CE591 Fall 2013 Lecture 26: Moment Connections Explain basic design procedure for moment (FR) connections Explain considerations for connections in momentresisting frames for seismic demands Describe problems
More informationObjectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
More informationEFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLESTAYED BRIDGES
EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLESTAYED BRIDGES YangCheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy FengShan 83000,Taiwan Republic
More informationP4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 4 Stresses on Inclined Sections
4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 4 Stresses on Inclined Sections Shear stress and shear strain. Equality of shear stresses on perpendicular planes. Hooke s law in shear. Normal and shear
More informationPOST AND FRAME STRUCTURES (Pole Barns)
POST AND FRAME STRUCTURES (Pole Barns) Post and frame structures. The following requirements serve as minimum standards for post and frame structures within all of the following structural limitations:
More informationDEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS
1 th Canadian Masonry Symposium Vancouver, British Columbia, June 5, 013 DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS Vladimir G. Haach 1, Graça Vasconcelos and Paulo
More informationA transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.
Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTOLRFD specifications require checking the deck for vehicular
More informationSEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS
Fracture Mechanics of Concrete Structures Proceedings FRAMCOS3 AEDIFICA TIO Publishers, D79104 Freiburg, Germany SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS H.
More informationEML 5526 FEA Project 1 Alexander, Dylan. Project 1 Finite Element Analysis and Design of a Plane Truss
Problem Statement: Project 1 Finite Element Analysis and Design of a Plane Truss The plane truss in Figure 1 is analyzed using finite element analysis (FEA) for three load cases: A) Axial load: 10,000
More informationBuilding damage patterns in Kathmandu Valley due to 25th April Earthquake. Kiran Acharya
Building damage patterns in Kathmandu Valley due to 25th April Earthquake Kiran Acharya (acharyakiranraj@gmail.com, kacharya@baseengr.com) This report presents the nature of the earthquake that struck
More information