# Basics of Reinforced Concrete Design

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. Define several terms related to reinforced concrete design Learn the basic theory behind structural analysis and reinforced concrete design What is Area-of-Steel? Design codes Non-destructive testing of concrete NPCA 1

2 Member Wall, Slab, Beam, or Column Boundary Conditions Simply supported Fixed Ends Cantilever Propped Cantilever Continuous Support NPCA 2

4 Load Factor A multiplier that magnifies the load for design purposes. Load Combinations ACI 318, Article 9.2 U = 1.4D U = 1.2D + 1.6L + 0.5(Lr or S or R) U = 1.2D + 1.0E + 1.0L + 0.2S Basic Requirement for Strength. Design Strength > Required Strength FN (Nominal Strength) > U (Ultimate Strength) Ultimate = Factored Capacity > Demand NPCA 4

5 Strength Reduction Factor, F A multiplier that reduces the capacity of the member for design purposes. ACI 318, Article 9.3 Moment = 0.90 Shear = 0.75 Axial = 0.70 Strength Reduction Factor, F A multiplier that reduces the capacity of the member for design purposes. AASHTO Standard Moment = 0.90 Shear = 0.85 Axial = 0.70 NPCA 5

6 Force Shear Is greatest near the support Flexure Bending Moment Axial Typically related to columns Shear Moment Diagram (Uniform Load) Shear Diagram (+) Positive Moment Diagram Simple Support NPCA 6

7 Shear Moment Diagram (Uniform Load) Shear Diagram (+) Positive (-) Negative Moment Diagram Fixed Support NPCA 7

8 Basic Stress Formula P = Applied Load A = Area resisting the load M =Applied Moment c = Distance from Centroid to Extreme Fiber I = Moment-of-Inertia Concrete Properties fc = Compressive Strength, psi v c = Allowable Shear Stress, psi f r =Modulus-of-Rupture, psi c = Distance from Centroid to Extreme Fiber I = Moment-of-Inertia: A member s tendency to resist bending or rotation, in 4 NPCA 8

9 IF fr < Mc/I Brittle Failure Reinforcing Steel Properties Yield Strength, Fy = 60,000psi Modulus-of-Elasticity, Ec = 29,000,000psi Ductility Ability to stretch without breaking NPCA 9

10 c d Bar Size Diameter (in) A b (in 2 ) Source: Concrete Reinforcing Steel Institute - CRSI NPCA 10

11 Beam (3) # 6 Bars Slab 9 oc NPCA 11

12 Welded Wire Reinforcing 4 x 8 W6/W3 Longitudinal Wire Spacing (4 ) x Transverse Wire Spacing (8 ) W = Smooth Wire (D = Deformed Wire) Longitudinal Wire Size (A w =.06in 2 ) Transverse Wire Size (A w =.03in 2 ) Source: Wire Reinforcing Institute - WRI Welded Wire Reinforcing Longitudinal Transverse NPCA 12

13 A s Required 0.40in 2 /ft 6 oc = 0.40in 2 /ft 9 oc = 0.41in 2 /ft 13 oc = 0.41in 2 /ft 3 oc = 0.40in 2 /ft (Grade 70 Wire) Serviceability Satisfactory Performance under normal service conditions Code Related Ensures durability and service life Use unfactored loads NPCA 13

14 Serviceability Crack Control Limitation of Service Load Stress Deflection Fatigue Minimum Reinforcing Limits Bar Development Splices Serviceability Code Related ACI 318 Structural Concrete Building Code ACI 350 Environmental Engineering Structures AASHTO Standard Specification AASHTO LRFD Specification AREMA American Railway Engineering Manual CSA Canadian Standards Association NPCA 14

15 Serviceability Crack Control Steel Stress Bar Cover Bar Spacing dc 2dc Spacing Spacing A s Required 0.40in 2 /ft; Z max = 130kips/in 6 oc = 0.40in 2 /ft Z = 120kips/in OK 9 oc = 0.41in 2 /ft Z = 140kips/in NG 13 oc = 0.41in 2 /ft Z = 162kips.in NG 3 oc = 0.40in 2 /ft (Grade 70 Wire) Z = 92kips/in OK NPCA 15

16 A s Required 0.40in 2 /ft; Z max = 130kips/in Yield Adjustment Try D17 6 oc, A s = 0.34in 2 /ft Z = 138kips/in NG Try D8.5 3 oc, A s = 0.34in 2 /ft Z = 107kips/in OK Minimum Flexural Reinforcing Established by Code ACI 318 But not less than AASHTO Standard Same as LRFD Minimum waived if Ex: 0.40in 2 /ft x = 0.53in 2 /ft NPCA 16

17 Minimum Temperature Reinforcing Established by Code ACI 318 Slabs As min =.0018Ag Where, Ag = b * h Walls Horiz =.0020Ag Walls Vertical =.0012Ag Chapter 16, Precast Walls =.0010Ag AASHTO Standard =.125in 2 /ft Non-Destructive Testing Two types of rebar locaters Cover Meter (R-Meter) Emits an electromagnetic pulse to detect the magnetic field induced by rebar. Ground Penetrating Radar (GPR) Transmits polarized pulses of electromagnetic energy into the surface then records the energy that is reflected back to the surface. NPCA 17

18 Non-Destructive Testing Cover Meter (R-Meter) Non-Destructive Testing Cover Meter (R-Meter) Can be used in wet or dry conditions Can detect the presence and approximate bar cover Not very accurate at determining bar diameter +/- 1 bar size at best Results can be affected by the presence of other metals. i.e. form ties NPCA 18

19 Non-Destructive Testing Ground Penetrating Radar (GPR) Non-Destructive Testing Ground Penetrating Radar (GPR) Sensitive to moisture conditions Cannot be used on wet surfaces Requires well trained users Reasonably accurate if properly calibrated Bar cover reportedly within 3mm (FHWA) NPCA 19

20 Non-Destructive Testing Primary purpose is to locate rebar prior to coring or drilling Not intended for QC purposes??questions?? NPCA 20

21 Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. NPCA 21

### Chapter - 3 Design of Rectangular Beams and One-way Slabs

Rectangular Beams and One-way Slabs Page 1 of 9 Chapter - 3 Design of Rectangular Beams and One-way Slabs 12 h A 12 strip in a simply supported one-way slab h b=12 L Rectangular Beams and One-way Slabs

### Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

### Reinforced Concrete Design

FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced

### Two Way Slab. Problem Statement:

Two Way Slab Problem Statement: Use the ACI 318 Direct Design Method to design an interior bay of a flat plate slab system of multi bay building. The Dimensions of an interior bay are shown in Figure 1.

### CH. 6 SOILS & FOUNDATIONS

CH. 6 SOILS & FOUNDATIONS SOIL PROPERTIES Classified into four groups - Sands & gravels - Clays - Silts - Organics Subsurface Exploration Core borings: undisturbed samples of soil - Recovered bore samples

### SPECIFICATIONS, LOADS, AND METHODS OF DESIGN

CHAPTER Structural Steel Design LRFD Method Third Edition SPECIFICATIONS, LOADS, AND METHODS OF DESIGN A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural

### A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.

Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTO-LRFD specifications require checking the deck for vehicular

### Ce 479 Fall 05. Steel Deck and Concrete Slab Composite Construction. J. Ramirez 1

Ce 479 Fall 05 Steel Deck and Concrete Slab Composite Construction J. Ramirez 1 Types of Floor Deck on Steel Joists/Girders Cast in Place Concrete on Steel Deck Composite Construction - Pages 42-49 SDI

### Section 5A: Guide to Designing with AAC

Section 5A: Guide to Designing with AAC 5A.1 Introduction... 3 5A.3 Hebel Reinforced AAC Panels... 4 5A.4 Hebel AAC Panel Design Properties... 6 5A.5 Hebel AAC Floor and Roof Panel Spans... 6 5A.6 Deflection...

### FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

### 11/1/2010 3:57 PM 1 of 11

Masonry Wall 6.0 - MASONRY WALL ANALYSIS AND DESIGN ================================================================================ Job ID : Job Description : Designed By : ================================================================================

### Reinforced Concrete Design Project Five Story Office Building

Reinforced Concrete Design Project Five Story Office Building Andrew Bartolini December 7, 2012 Designer 1 Partner: Shannon Warchol CE 40270: Reinforced Concrete Design Bartolini 2 Table of Contents Abstract...3

### Pavement Design. Guest Lecturer Dr. Sirous Alavi, P.E. SIERRA TRANSPORTATION. 1005 Terminal Way, Suite 125 Reno, Nevada 89502

Pavement Design Guest Lecturer Dr. Sirous Alavi, P.E. SIERRA TRANSPORTATION ENGINEERS,, INC. I 1005 Terminal Way, Suite 125 Reno, Nevada 89502 Topics Introduction Design Factors Pavement Types Fundamentals

### Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

### DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

### 16. Beam-and-Slab Design

ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

### Reinforced Concrete Design to BS8110 Structural Design 1 Lesson 5

Lesson 5: Deflection in reinforced concrete beams Content 4.1 Introduction 4. Definitions 4..1 Tension 4.. Compression 4.3 Initial sizing 4.3.1 Worked example 4.4 Reinforcement details 4.5 Anchorage at

Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

### Designer s NOTEBOOK BLAST CONSIDERATIONS

Designer s NOTEBOOK BLAST CONSIDERATIONS For a surface blast, the most directly affected building elements are the façade and structural members on the lower four stories. Although the walls can be designed

### SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

### Session 5D: Benefits of Live Load Testing and Finite Element Modeling in Rating Bridges

Session 5D: Benefits of Live Load Testing and Finite Element Modeling in Rating Bridges Douglas R. Heath P.E., Structural Engineer Corey Richard P.E., Project Manager AECOM Overview Bridge Testing/Rating

### Chapter 9 CONCRETE STRUCTURE DESIGN REQUIREMENTS

Chapter 9 CONCRETE STRUCTURE DESIGN REQUIREMENTS 9.1 GENERAL 9.1.1 Scope. The quality and testing of concrete and steel (reinforcing and anchoring) materials and the design and construction of concrete

### A.2 AASHTO Type IV, LRFD Specifications

A.2 AASHTO Type IV, LRFD Specifications A.2.1 INTRODUCTION A.2.2 DESIGN PARAMETERS 1'-5.0" Detailed example showing sample calculations for design of typical Interior AASHTO Type IV prestressed concrete

Introduction to LRFD, Loads and Loads Distribution Thomas K. Saad, P.E. Federal Highway Administration Chicago, IL Evolution of Design Methodologies SLD Methodology: (f t ) D + (f t ) L 0.55F y, or 1.82(f

### 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

### Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t

Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a load-carrying

### Reinforced Concrete Design SHEAR IN BEAMS

CHAPTER Reinforced Concrete Design Fifth Edition SHEAR IN BEAMS A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part I Concrete Design and Analysis 4a FALL 2002 By Dr.

### Detailing of Reinforcment in Concrete Structures

Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

### SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

### MATERIALS AND MECHANICS OF BENDING

HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

### REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition

CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition CONCRETE Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

### Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02

ENGINEERING DATA REPORT NUMBER 51 Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02 A SERVICE OF THE CONCRETE REINFORCING STEEL INSTITUTE Introduction Section 1.2.1 in the

### 1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

### Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

### STRUCTURAL WELDED WIRE REINFORCEMENT

STRUCTURAL WELDED WIRE REINFORCEMENT 2 1 WIRE REINFORCEMENT INSTITUTE, INC. Excellence Set in Concrete www.wirereinforcementinstitute.org Manual of Standard Practice Structural Welded Wire Reinforcement

### ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM

Ninth LACCEI Latin American and Caribbean Conference (LACCEI 11), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-, 11,

### Design Example 1 Reinforced Concrete Wall

Design Example 1 Reinforced Concrete Wall OVERVIEW The structure in this design example is an eight-story office with load-bearing reinforced concrete walls as its seismic-force-resisting system. This

### Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250

Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..

### The Design of Reinforced Concrete Slabs

EGN-5439 The Design of Tall Buildings Lecture #14 The Design of Reinforced Concrete Slabs Via the Direct Method as per ACI 318-05 L. A. Prieto-Portar - 2008 Reinforced concrete floor systems provide an

### INTERNATIONAL BUILDING CODE STRUCTURAL

INTERNATIONAL BUILDING CODE STRUCTURAL S5-06/07 1604.11 (New), 1605 (New) Proposed Change as Submitted: Proponent: William M. Connolly, State of New Jersey, Department of Community Affairs, Division of

### Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -)

Cause: external force P Force vs. Stress Effect: internal stress f 05 Force vs. Stress Copyright G G Schierle, 2001-05 press Esc to end, for next, for previous slide 1 Type of Force 1 Axial (tension /

### National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination

Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8-hour Vertical Forces (Gravity/Other)

### SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams

### Chapter 8. Flexural Analysis of T-Beams

Chapter 8. Flexural Analysis of T-s 8.1. Reading Assignments Text Chapter 3.7; ACI 318, Section 8.10. 8.2. Occurrence and Configuration of T-s Common construction type.- used in conjunction with either

### FOOTING DESIGN EXAMPLE

County: Any Design: BRG Date: 10/007 Hwy: Any Ck Dsn: BRG Date: 10/007 FOOTING DESIGN EXAMPLE Design: Based on AASHTO LRFD 007 Specifications, TxDOT LRFD Bridge Design Manual, and TxDOT Project 0-4371

### TABLE OF CONTENTS. Roof Decks 172 B, BA, BV Deck N, NA Deck. Form Decks 174.6 FD,.6 FDV Deck 1.0 FD, 1.0 FDV Deck 1.5 FD Deck 2.0 FD Deck 3.

Pages identified with the NMBS Logo as shown above, have been produced by NMBS to assist specifiers and consumers in the application of New Millennium Building Systems Deck products. Pages identified with

### SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

### INTRODUCTION TO BEAMS

CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

### The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

### Strengthening of Large Storage Tank Foundation Walls in an Aggressive Environment by External Post-tensioning. May 7th 2013: Dominique Deschamps

Strengthening of Large Storage Tank Foundation Walls in an Aggressive Environment by External Post-tensioning May 7th 2013: Dominique Deschamps Scope of the paper Presentation of the project Cause of cracks

### SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Freiburg, Germany SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS H.

### SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES IN ACI 318. S.K. Ghosh, Ph. D. Neil M. Hawkins, Ph. D. BACKGROUND

SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES IN ACI 318 by S.K. Ghosh, Ph. D. Neil M. Hawkins, Ph. D. President Professor Emeritus S.K. Ghosh Associates Inc. Department of Civil Engineering

### ETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA

ETABS Integrated Building Design Software Concrete Shear Wall Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all

### INFLUENCES OF LOCALLY PRODUCED AND IMPORTED REINFORCING STEEL ON THE BEHAVIOUR OF REINFORCED CONCRETE MEMBERS. Chris Allington 1 Des Bull 2 SUMMARY

INFLUENCES OF LOCALLY PRODUCED AND IMPORTED REINFORCING STEEL ON THE BEHAVIOUR OF REINFORCED CONCRETE MEMBERS Chris Allington 1 Des Bull 2 SUMMARY The design of reinforced concrete members is heavily influenced

### SLAB DESIGN EXAMPLE. Deck Design (AASHTO LRFD 9.7.1) TYPICAL SECTION. County: Any Hwy: Any Design: BRG Date: 7/2010

County: Any Hwy: Any Design: BRG Date: 7/2010 SLAB DESIGN EXAMPLE Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010) as prescribed by TxDOT Bridge Design

### Anchorage of Wood Shear Walls to Concrete for Tension and Shear 2009 IBC brings about several changes from 2006 IBC

Anchorage of Wood Shear Walls to Concrete for Tension and Shear 2009 IBC brings about several changes from 2006 IBC By Shane Vilasineekul, P.E. Since the publication of the 2006 International Building

### ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT

International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 10, Oct 2015, pp. 25-35 Article ID: IJCIET_06_10_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=10

### PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim.

CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition PRESTRESSED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental

### Product catalogue PRODUCT LINES REINFORCING STEEL BARS PREFABRICATED REINFORCEMENT WIRE MESH TRANSPORTATION INSTALLATION

Product catalogue 2015 PRODUCT LINES REINFORCING STEEL BARS PREFABRICATED REINFORCEMENT WIRE MESH TRANSPORTATION INSTALLATION 11240 199 Street Edmonton AB T5S 2C6 Phone: 780.488.4235 Fax: 780.425.4232

### TZ WEDGE ANCHOR FOR CRACKED AND UNCRACKED CONCRETE

SECTION 2.2 PAGE 1 / 9 l DESCRIPTION UCAN TZ torque controlled mechanical expansion wedge anchors have a Category 1 classification. They are used to resist static, wind and seismic tension and shear loads

### Wall Framing Technical Guide. LP SolidStart LSL & LVL. 1730F b -1.35E and 2360F b -1.55E LSL 2250F b -1.5E and 2900F b -2.0E LVL. U.S.

U.S. Technical Guide LP SolidStart LSL & LVL Wall Framing Technical Guide 1730F b -1.35E and 2360F b -1.55E LSL 2250F b -1.5E and 2900F b -2.0E LVL Please verify availability with the LP SolidStart Engineered

### Cover. When to Specify Intermediate Precast Concrete Shear Walls. 10.10 Rev 4. White Paper WP004

Cover Introduction In regard to precast concrete systems, the addition of two new categories of Seismic Force Resisting Systems (SFRS) in IBC 2006 has created some confusion about whether to specify intermediate

### HOW TO DESIGN CONCRETE STRUCTURES Beams

HOW TO DESIGN CONCRETE STRUCTURES Beams Instructions for the Members of BIBM, CEMBUREAU, EFCA and ERMCO: It is the responsibility of the Members (national associations) of BIBM, CEMBUREAU, EFCA and ERMCO

### Detailing of Reinforcement in Concrete Structures

THE CIVIL & STRUCTURAL ENGINEERING PANEL ENGINEERS AUSTRALIA SYDNEY DIVISION 28 August 2012 Detailing of Reinforcement in Concrete Structures R.I. Gilbert Introduction: Detailing is often considered to

### Performance of Existing Reinforced Concrete Columns under Bidirectional Shear & Axial Loading

Performance of Existing Reinforced Concrete Columns under Bidirectional Shear & Axial Loading Laura M. Flores University of California, San Diego REU Institution: University of California, Berkeley REU

### Steel Deck. A division of Canam Group

Steel Deck A division of Canam Group TABLE OF CONTENTS PAGE OUR SERVICES... 4 NOTES ABOUT LOAD TABLES... 5 P-3615 & P-3606 DIMENSIONS & PHYSICAL PROPERTIES... 6 FACTORED AND SERVICE LOADS... 7 P-2436 &

### Designing Concrete Structures:

E702.4 Designing Concrete Structures: Design American Concrete Institute Advancing concrete knowledge L. H. Taber, PE Example Problem: Design Problem Statement Provide a detailed strength design (durability

### June Safe Load Tables High strength precast & prestressed concrete lintels

June 2003 Safe Load Tables High strength precast & prestressed concrete lintels corporate Policy Cast-Crete lintels and sills have been incorporated into structures throughout Florida and other southeastern

### International Nursing and Rehab Center Addition 4815 S. Western Blvd. Chicago, IL

PROJECT International Nursing and Rehab Center Addition 4815 S. Western Blvd. Chicago, IL EXP. 11/30/2014 STRUCTURAL CALCULATIONS July 24, 2014 BOWMAN, BARRETT & ASSOCIATES INC. CONSULTING ENGINEERS 312.228.0100

### SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

### Over-Reinforced Concrete Beam Design ACI

Note: Over-reinforced typically means the tensile steel does not yield at failure. for this example, over-reinforced means the section is not tension controlled per ACI standards even though the steel

### Appendix : According to IBC 2003, table , the minimum uniformly distributed live loads and minimum concentrated live loads are as follow:

Appendix Dead and Live Loads International Building Code 2003 (IBC) 1607.1: According to IBC 2003, table 1607.1, the minimum uniformly distributed live loads and minimum concentrated live loads are as

### FEBRUARY 2014 LRFD BRIDGE DESIGN 4-1

FEBRUARY 2014 LRFD BRIDGE DESIGN 4-1 4. STRUCTURAL ANALYSIS AND EVALUATION The analysis of bridges and structures is a mixture of science and engineering judgment. In most cases, use simple models with

### L I G H T W E I G H T STEEL FRAMING

C A N A D I A N S H E E T S T E E L B U I L D I N G I N S T I T U T E L I G H T W E I G H T STEEL FRAMING wall stud & floor joist load tables 1 CSSBI 58-2011 TABLE OF CONTENTS Commentary Preface... 2 Introduction...

### RC Detailing to Eurocode 2

RC Detailing to Eurocode 2 Jenny Burridge MA CEng MICE MIStructE Head of Structural Engineering Structural Eurocodes BS EN 1990 (EC0): BS EN 1991 (EC1): Basis of structural design Actions on Structures

### CONCRETE SHEAR WALL CONSTRUCTION M. Ofelia Moroni, University of Chile, Santiago, Chile

BACKGROUND CONCRETE SHEAR WALL CONSTRUCTION M. Ofelia Moroni, University of Chile, Santiago, Chile Buildings with cast-in-situ reinforced concrete shear walls are widespread in many earthquake-prone countries

### Deflections. Question: What are Structural Deflections?

Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the

### Formwork for Concrete

UNIVERSITY OF WASHINGTON DEPARTMENT OF CONSTRUCTION MANAGEMENT CM 420 TEMPORARY STRUCTURES Winter Quarter 2007 Professor Kamran M. Nemati Formwork for Concrete Horizontal Formwork Design and Formwork Design

### Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables

Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables Yogesh Ghodke, G. R. Gandhe Department of Civil Engineering, Deogiri Institute of Engineering and Management

### A beam is a structural member that is subjected primarily to transverse loads and negligible

Chapter. Design of Beams Flexure and Shear.1 Section force-deformation response & Plastic Moment (M p ) A beam is a structural member that is subjected primarily to transverse loads and negligible axial

### CONTRACT SPECIFICATIONS - SEISMIC ISOLATION BEARINGS

CONTRACT SPECIFICATIONS - SEISMIC ISOLATION BEARINGS 1.0 DESIGN 1.1 Scope of Work 1.1.1 This work shall consist of furnishing Isolation Bearings and installing Isolation Bearing Assemblies at the locations

### Design of Fully Restrained Moment Connections per AISC LRFD 3rd Edition (2001)

PDHonline Course S154 (4 PDH) Design of Fully Restrained Moment Connections per AISC LRFD 3rd Edition (2001) Instructor: Jose-Miguel Albaine, M.S., P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive

### The Strength of Concrete

Chapter The Strength of Concrete.1 The Importance of Strength.2 Strength Level Required KINDS OF STRENGTH. Compressive Strength.4 Flexural Strength.5 Tensile Strength.6 Shear, Torsion and Combined Stresses.7

### LEGACY REPORT. www.icc-es.org (800) 423-6587 (562) 699-0543 A Subsidiary of the International Code Council. *Corrected March 2014

ICC-ES Legacy Report PFC-3700* Issued October 2003 www.icc-es.org (00) 423-57 (52) 99-0543 A Subsidiary of the International Code Council Legacy report on the 1997 Uniform Building Code and the 2000 International

### SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver

### 1 Barlines Rebar Detailing Standards in the Philippines

Barlines Rebar Detailing Standards in the Philippines METRIC (SI), STANDARD HOOKS AND OTHER DETAILING CRITERIAS By Amadeus (Mady) Magpile, President and CEO INTRODUCTION This is first in a series of articles

### GRADE 500C REINFORCEMENT GUARANTEED DUCTILITY

CI/SfB September 2005 28 Eq 4 Uniclass P227 GRADE 500C REINFORCEMENT GUARANTEED DUCTILITY CELSA p1 INDEX INDEX p3 p4 p11 INTRODUCTION DUCTILITY Introduction to ductility The need for ductility in reinforcing

### ASSESSMENT AND PROPOSED STRUCTURAL REPAIR STRATEGIES FOR BRIDGE PIERS IN TAIWAN DAMAGED BY THE JI-JI EARTHQUAKE ABSTRACT

ASSESSMENT AND PROPOSED STRUCTURAL REPAIR STRATEGIES FOR BRIDGE PIERS IN TAIWAN DAMAGED BY THE JI-JI EARTHQUAKE Pei-Chang Huang 1, Graduate Research Assistant / MS Candidate Yao T. Hsu 2, Ph.D., PE, Associate

### Conceptual Design of Buildings (Course unit code 1C2)

(Course unit code 1C2) Module C Design of Steel Members J.P. Jaspart (University of Liège) 520121-1-2011-1-CZ-ERA MUNDUS-EMMC Bolts are the main type of fasteners used in steel joints. The main geometrical

### Incorporating Steel Fibers in Your Concrete Slab

Incorporating Steel Fibers in Your Concrete Slab Alabama Concrete Industries Association October 15, 2013 Birmingham, AL October 16, 2013 Huntsville, AL PRESENTATION BY David Parham SE Regional Sales Manager

### 1) Identification of intended use and occupancy of a structure by owner 2) Development of architectural plans and layout by architect

1.0 INTRODUCTION TO STRUCTURAL ENGINEERING 1.1 GENERAL INTRODUCTION Structural design is a systematic and iterative process that involves: 1) Identification of intended use and occupancy of a structure

### Aluminium systems profile selection

Aluminium systems profile selection The purpose of this document is to summarise the way that aluminium profile selection should be made, based on the strength requirements for each application. Curtain

### Optimum proportions for the design of suspension bridge

Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

### A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System

A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System Dr.Binu Sukumar #1, A.Hemamathi *2, S.Kokila #3 C.Hanish #4 #1 Professor &Head, Department of Civil Engineering,

### REPORT HOLDER: JENWEST ENTERPRISES LLC, DBA ADVANCED CONNECTOR SYSTEMS 321 SOUTH 1240 WEST #15 LINDON, UTAH 84042 EVALUATION SUBJECT:

0 ICC ES Report ICC ES (800) 423 6587 (562) 699 0543 www.icc es.org 000 Most Widely Accepted and Trusted ESR 3635 Reissued 04/2016 This report is subject to renewal 04/2018. DIVISION: 03 00 00 CONCRETE

### Shear Forces and Bending Moments

Chapter 4 Shear Forces and Bending Moments 4.1 Introduction Consider a beam subjected to transverse loads as shown in figure, the deflections occur in the plane same as the loading plane, is called the

### Wire Fabric and Reinforcement

Wire Fabric and Reinforcement Under the state specification for 709.08 for concrete reinforcement, ASTM A 82 is called out. Under the state specification 709.10 for concrete reinforcement, ASTM A 185 is

### Reinforcing Steel - Chapter 7. The What and Where of Reinforcing Steel

Reinforcing Steel - Chapter 7 The What and Where of Reinforcing Steel What is Reinforcing Steel High strength steel rods Where is Reinforcing Steel Used Placed in concrete to increase resistance to bending