Computer Organization. and Instruction Execution. August 22
|
|
|
- Gervase Berry
- 9 years ago
- Views:
Transcription
1 Computer Organization and Instruction Execution August 22 CSC201 Section 002 Fall, 2000
2 The Main Parts of a Computer CSC201 Section Copyright 2000, Douglas Reeves 2
3 I/O and Storage Devices (lots of devices, we'll discuss later) I/O devices talk to the CPU via an interface transmits device status, operation to perform, data to be transferred CSC201 Section Copyright 2000, Douglas Reeves 3
4 Buses A bus = wires connecting the parts together There are lots of buses in a computer system CSC201 Section Copyright 2000, Douglas Reeves 4
5 Properties of Buses How many wires are dedicated to transferring data? called the "width" of the data bus How fast the bus can transfer data? What control and status signals does the bus have? How many address lines does the bus have? CSC201 Section Copyright 2000, Douglas Reeves 5
6 An Example: the PCI Bus Main high-speed bus standardized in PCs Speed up to 66 MHz Data width up to 64 bits Up to 200 wires total (data + address + control) CSC201 Section Copyright 2000, Douglas Reeves 6
7 Main Memory Purpose is to store programs that are executing, and the data they need Speed: 1-5ns (fast memory), ns (slow memory) Compared with speed of a disk: a million times faster! But, about a thousand times more expensive plus, data is lost when power is removed CSC201 Section Copyright 2000, Douglas Reeves 7
8 Memory as Post Office Mailboxes There are a fixed number of boxes Every box has a number, or address Every box has the same, fixed size Boxes have varying contents CSC201 Section Copyright 2000, Douglas Reeves 8
9 The Unit of Addressability In x86 (and most other) architectures, each memory location stores one byte (8 bits) CSC201 Section Copyright 2000, Douglas Reeves 9
10 Memory Addresses and Size A memory address is specified with n bits this means can be at most 2^n memory locations nowadays, 32-bit addresses are common N 2^N 16 64K 24 16M 32 4G *10^ *10^19 CSC201 Section Copyright 2000, Douglas Reeves 10
11 The Memory Interface CSC201 Section Copyright 2000, Douglas Reeves 11
12 The Memory Read Operation The CPU outputs a memory address, then issues the Read command The memory looks up the data at the requested location, while the CPU waits The memory sends the data to the CPU CSC201 Section Copyright 2000, Douglas Reeves 12
13 The Memory Write Operation The CPU outputs a memory address, outputs the data, then issues the Write command The memory receives the data, stores it in the specified location CSC201 Section Copyright 2000, Douglas Reeves 13
14 Read Only Memory (ROM) Can read the contents, but not change them (easily) Useful for storing boot-strap routines, constant-valued parameters CSC201 Section Copyright 2000, Douglas Reeves 14
15 Words Most data types are bigger than one byte The "word size" of a computer = the size of general-purpose registers a word consists of consecutive bytes in memory "word address" = address of first byte of the word Operand sizes in the Pentium # of bits Called 8 Byte 16 Word 32 Doubleword 64 quadword CSC201 Section Copyright 2000, Douglas Reeves 15
16 Interpreting Memory Contents You can't look at the value and tell what it means; everything is a bit string! it's up to the program to interpret the contents of memory Example: CSC201 Section Copyright 2000, Douglas Reeves 16
17 The Central Processing Unit, or Processor The "brain" of a computer executes program instructions, controls all the parts of the computer Consists of registers, the ALU (arithmetic logic unit), and the control unit CSC201 Section Copyright 2000, Douglas Reeves 17
18 The CPU (cont( cont.) Registers are temporary storage locations advantages: speed and efficiency The Arithmetic-Logic Unit (ALU) is where data is manipulated (add, AND, compare, multiply, etc.) The control unit determines the sequence and timing of everything the CPU does CSC201 Section Copyright 2000, Douglas Reeves 18
19 How Does an Instruction Get Executed? A special register contains the address of the instruction The CPU "fetches" the instruction from memory at that address The CPU "decodes" the instruction to figure out what to do The CPU "fetches" any data (operands) needed by the instruction, from memory or registers The CPU "executes" the operation specified by the instruction on this data The CPU "stores" any results into a register or memory CSC201 Section Copyright 2000, Douglas Reeves 19
20 The Instruction Cycle CSC201 Section Copyright 2000, Douglas Reeves 20
21 How Does a Complete Program Get Executed? The "special register" is initialized to point to the first instruction of the program As part of the instruction fetch cycle, the "special register" is updated to point to the next instruction When one instruction is finished, the cycle is begun all over again the CPU never quits; it is always executing something CSC201 Section Copyright 2000, Douglas Reeves 21
22 CSC201 Section Copyright 2000, Douglas Reeves 22
23 Clocks and Timing The actions of a CPU are synchronized by an external clock The speed with which the clock ticks determines how fast the CPU runs MHz = one million clock ticks / second GHz = one billion clock ticks / second CSC201 Section Copyright 2000, Douglas Reeves 23
Central Processing Unit (CPU)
Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following
Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design
Learning Outcomes Simple CPU Operation and Buses Dr Eddie Edwards [email protected] At the end of this lecture you will Understand how a CPU might be put together Be able to name the basic components
Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance
What You Will Learn... Computers Are Your Future Chapter 6 Understand how computers represent data Understand the measurements used to describe data transfer rates and data storage capacity List the components
Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to:
55 Topic 3 Computer Performance Contents 3.1 Introduction...................................... 56 3.2 Measuring performance............................... 56 3.2.1 Clock Speed.................................
Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan
Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory 1 1. Memory Organisation 2 Random access model A memory-, a data byte, or a word, or a double
Let s put together a Manual Processor
Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce
CHAPTER 7: The CPU and Memory
CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides
Computer-System Architecture
Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection General System Architecture 2.1 Computer-System Architecture 2.2 Computer-System
Central Processing Unit
Chapter 4 Central Processing Unit 1. CPU organization and operation flowchart 1.1. General concepts The primary function of the Central Processing Unit is to execute sequences of instructions representing
150127-Microprocessor & Assembly Language
Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessor-based systems are designed around the Z80. The Z80 microprocessor needs an
Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.
Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how
MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1
MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable
Chapter 02: Computer Organization. Lesson 04: Functional units and components in a computer organization Part 3 Bus Structures
Chapter 02: Computer Organization Lesson 04: Functional units and components in a computer organization Part 3 Bus Structures Objective: Understand the IO Subsystem and Understand Bus Structures Understand
The Central Processing Unit:
The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Objectives Identify the components of the central processing unit and how they work together and interact with memory Describe how
what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?
Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX
CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX Multiple Choice: 1. Processing information involves: A. accepting information from the outside world. B. communication with another computer. C. performing arithmetic
CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions
CS101 Lecture 26: Low Level Programming John Magee 30 July 2013 Some material copyright Jones and Bartlett 1 Overview/Questions What did we do last time? How can we control the computer s circuits? How
Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System?
Management Challenge Managing Hardware Assets What computer processing and storage capability does our organization need to handle its information and business transactions? What arrangement of computers
The Bus (PCI and PCI-Express)
4 Jan, 2008 The Bus (PCI and PCI-Express) The CPU, memory, disks, and all the other devices in a computer have to be able to communicate and exchange data. The technology that connects them is called the
MICROPROCESSOR AND MICROCOMPUTER BASICS
Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit
MACHINE ARCHITECTURE & LANGUAGE
in the name of God the compassionate, the merciful notes on MACHINE ARCHITECTURE & LANGUAGE compiled by Jumong Chap. 9 Microprocessor Fundamentals A system designer should consider a microprocessor-based
Communicating with devices
Introduction to I/O Where does the data for our CPU and memory come from or go to? Computers communicate with the outside world via I/O devices. Input devices supply computers with data to operate on.
Block diagram of typical laptop/desktop
What's in a computer? logical or functional organization: "architecture" what the pieces are, what they do, how they work how they are connected, how they work together what their properties are physical
PROBLEMS. which was discussed in Section 1.6.3.
22 CHAPTER 1 BASIC STRUCTURE OF COMPUTERS (Corrisponde al cap. 1 - Introduzione al calcolatore) PROBLEMS 1.1 List the steps needed to execute the machine instruction LOCA,R0 in terms of transfers between
Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2
Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of
Basic Computer Organization
Chapter 2 Basic Computer Organization Objectives To provide a high-level view of computer organization To describe processor organization details To discuss memory organization and structure To introduce
LSN 2 Computer Processors
LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2
CHAPTER 4 MARIE: An Introduction to a Simple Computer
CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 195 4.2 CPU Basics and Organization 195 4.2.1 The Registers 196 4.2.2 The ALU 197 4.2.3 The Control Unit 197 4.3 The Bus 197 4.4 Clocks
Computer Systems Structure Input/Output
Computer Systems Structure Input/Output Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output Ward 1 Ward 2 Examples of I/O Devices
CPU Organisation and Operation
CPU Organisation and Operation The Fetch-Execute Cycle The operation of the CPU 1 is usually described in terms of the Fetch-Execute cycle. 2 Fetch-Execute Cycle Fetch the Instruction Increment the Program
Read this before starting!
Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 4717 Computer Architecture TEST 2 for Fall Semester, 2006 Section
(Refer Slide Time: 00:01:16 min)
Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control
COMPUTER HARDWARE. Input- Output and Communication Memory Systems
COMPUTER HARDWARE Input- Output and Communication Memory Systems Computer I/O I/O devices commonly found in Computer systems Keyboards Displays Printers Magnetic Drives Compact disk read only memory (CD-ROM)
Levels of Programming Languages. Gerald Penn CSC 324
Levels of Programming Languages Gerald Penn CSC 324 Levels of Programming Language Microcode Machine code Assembly Language Low-level Programming Language High-level Programming Language Levels of Programming
Chapter 1: Introduction. What is an Operating System?
Chapter 1: Introduction What is an Operating System? Mainframe Systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered System Real -Time Systems Handheld Systems Computing Environments
What's in a computer?
What's in a computer? logical or functional organization: "architecture" what the pieces are, what they do, how they work how they are connected, how they work together what their properties are physical
Pentium vs. Power PC Computer Architecture and PCI Bus Interface
Pentium vs. Power PC Computer Architecture and PCI Bus Interface CSE 3322 1 Pentium vs. Power PC Computer Architecture and PCI Bus Interface Nowadays, there are two major types of microprocessors in the
TIMING DIAGRAM O 8085
5 TIMING DIAGRAM O 8085 5.1 INTRODUCTION Timing diagram is the display of initiation of read/write and transfer of data operations under the control of 3-status signals IO / M, S 1, and S 0. As the heartbeat
The Motherboard Chapter #5
The Motherboard Chapter #5 Amy Hissom Key Terms Advanced Transfer Cache (ATC) A type of L2 cache contained within the Pentium processor housing that is embedded on the same core processor die as the CPU
Chapter 13. PIC Family Microcontroller
Chapter 13 PIC Family Microcontroller Lesson 01 PIC Characteristics and Examples PIC microcontroller characteristics Power-on reset Brown out reset Simplified instruction set High speed execution Up to
1 PERSONAL COMPUTERS
PERSONAL COMPUTERS 1 2 Personal computer a desktop computer a laptop a tablet PC or a handheld PC Software applications for personal computers include word processing spreadsheets databases web browsers
Introduction to Operating Systems. Perspective of the Computer. System Software. Indiana University Chen Yu
Introduction to Operating Systems Indiana University Chen Yu Perspective of the Computer System Software A general piece of software with common functionalities that support many applications. Example:
COMPUTER ARCHITECTURE. Input/Output
HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK COMPUTER ARCHITECTURE Lecture 17 Input/Output Sommersemester 2002 Leitung: Prof. Dr. Miroslaw Malek www.informatik.hu-berlin.de/rok/ca CA - XVII -
Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1
Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 5 Memory-I Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would Pre-Requisite
Chapter 4 System Unit Components. Discovering Computers 2012. Your Interactive Guide to the Digital World
Chapter 4 System Unit Components Discovering Computers 2012 Your Interactive Guide to the Digital World Objectives Overview Differentiate among various styles of system units on desktop computers, notebook
Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
on an system with an infinite number of processors. Calculate the speedup of
1. Amdahl s law Three enhancements with the following speedups are proposed for a new architecture: Speedup1 = 30 Speedup2 = 20 Speedup3 = 10 Only one enhancement is usable at a time. a) If enhancements
A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware
A+ Guide to Managing and Maintaining Your PC, 7e Chapter 1 Introducing Hardware Objectives Learn that a computer requires both hardware and software to work Learn about the many different hardware components
Discovering Computers 2011. Living in a Digital World
Discovering Computers 2011 Living in a Digital World Objectives Overview Differentiate among various styles of system units on desktop computers, notebook computers, and mobile devices Identify chips,
EC 362 Problem Set #2
EC 362 Problem Set #2 1) Using Single Precision IEEE 754, what is FF28 0000? 2) Suppose the fraction enhanced of a processor is 40% and the speedup of the enhancement was tenfold. What is the overall speedup?
Computer organization
Computer organization Computer design an application of digital logic design procedures Computer = processing unit + memory system Processing unit = control + datapath Control = finite state machine inputs
Building a computer. Electronic Numerical Integrator and Computer (ENIAC)
Building a computer Electronic Numerical Integrator and Computer (ENIAC) CSCI 255: Introduc/on to Embedded Systems Keith Vertanen Copyright 2011 Layers of abstrac
Technical Product Specifications Dell Dimension 2400 Created by: Scott Puckett
Technical Product Specifications Dell Dimension 2400 Created by: Scott Puckett Page 1 of 11 Table of Contents Technical Product Specifications Model 3 PC Technical Diagrams Front Exterior Specifications
Have both hardware and software. Want to hide the details from the programmer (user).
Input/Output Devices Chapter 5 of Tanenbaum. Have both hardware and software. Want to hide the details from the programmer (user). Ideally have the same interface to all devices (device independence).
Unit A451: Computer systems and programming. Section 2: Computing Hardware 1/5: Central Processing Unit
Unit A451: Computer systems and programming Section 2: Computing Hardware 1/5: Central Processing Unit Section Objectives Candidates should be able to: (a) State the purpose of the CPU (b) Understand the
CISC, RISC, and DSP Microprocessors
CISC, RISC, and DSP Microprocessors Douglas L. Jones ECE 497 Spring 2000 4/6/00 CISC, RISC, and DSP D.L. Jones 1 Outline Microprocessors circa 1984 RISC vs. CISC Microprocessors circa 1999 Perspective:
Buffer Management 5. Buffer Management
5 Buffer Management Copyright 2004, Binnur Kurt A journey of a byte Buffer Management Content 156 A journey of a byte Suppose in our program we wrote: outfile
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit
Quiz for Chapter 6 Storage and Other I/O Topics 3.10
Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in Red 1. [6 points] Give a concise answer to each
Computer Architecture
Computer Architecture Random Access Memory Technologies 2015. április 2. Budapest Gábor Horváth associate professor BUTE Dept. Of Networked Systems and Services [email protected] 2 Storing data Possible
An Introduction to Computer Science and Computer Organization Comp 150 Fall 2008
An Introduction to Computer Science and Computer Organization Comp 150 Fall 2008 Computer Science the study of algorithms, including Their formal and mathematical properties Their hardware realizations
An Introduction to High-Frequency Circuits and Signal Integrity
An Introduction to High-Frequency Circuits and Signal Integrity 1 Outline The electromagnetic spectrum Review of market and technology trends Semiconductors industry Computers industry Communication industry
Hello, and welcome to this presentation of the STM32 SDMMC controller module. It covers the main features of the controller which is used to connect
Hello, and welcome to this presentation of the STM32 SDMMC controller module. It covers the main features of the controller which is used to connect the CPU to an SD card, MMC card, or an SDIO device.
Lesson Objectives. To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization
Lesson Objectives To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization AE3B33OSD Lesson 1 / Page 2 What is an Operating System? A
Chapter 3: Operating-System Structures. Common System Components
Chapter 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines System Design and Implementation System Generation 3.1
Addressing The problem. When & Where do we encounter Data? The concept of addressing data' in computations. The implications for our machine design(s)
Addressing The problem Objectives:- When & Where do we encounter Data? The concept of addressing data' in computations The implications for our machine design(s) Introducing the stack-machine concept Slide
TYPES OF COMPUTERS AND THEIR PARTS MULTIPLE CHOICE QUESTIONS
MULTIPLE CHOICE QUESTIONS 1. What is a computer? a. A programmable electronic device that processes data via instructions to output information for future use. b. Raw facts and figures that has no meaning
İSTANBUL AYDIN UNIVERSITY
İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER
Serial Communications
Serial Communications 1 Serial Communication Introduction Serial communication buses Asynchronous and synchronous communication UART block diagram UART clock requirements Programming the UARTs Operation
1. Memory technology & Hierarchy
1. Memory technology & Hierarchy RAM types Advances in Computer Architecture Andy D. Pimentel Memory wall Memory wall = divergence between CPU and RAM speed We can increase bandwidth by introducing concurrency
Chapter 11: Input/Output Organisation. Lesson 06: Programmed IO
Chapter 11: Input/Output Organisation Lesson 06: Programmed IO Objective Understand the programmed IO mode of data transfer Learn that the program waits for the ready status by repeatedly testing the status
Chapter 3: Operating-System Structures. System Components Operating System Services System Calls System Programs System Structure Virtual Machines
Chapter 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines Operating System Concepts 3.1 Common System Components
Traditional IBM Mainframe Operating Principles
C H A P T E R 1 7 Traditional IBM Mainframe Operating Principles WHEN YOU FINISH READING THIS CHAPTER YOU SHOULD BE ABLE TO: Distinguish between an absolute address and a relative address. Briefly explain
Lesson-16: Real time clock DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK
DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK Lesson-16: Real time clock 1 Real Time Clock (RTC) A clock, which is based on the interrupts at preset intervals. An interrupt service routine executes
Lizy Kurian John Electrical and Computer Engineering Department, The University of Texas as Austin
BUS ARCHITECTURES Lizy Kurian John Electrical and Computer Engineering Department, The University of Texas as Austin Keywords: Bus standards, PCI bus, ISA bus, Bus protocols, Serial Buses, USB, IEEE 1394
Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level
System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY
The I2C Bus. NXP Semiconductors: UM10204 I2C-bus specification and user manual. 14.10.2010 HAW - Arduino 1
The I2C Bus Introduction The I2C-bus is a de facto world standard that is now implemented in over 1000 different ICs manufactured by more than 50 companies. Additionally, the versatile I2C-bus is used
Types Of Operating Systems
Types Of Operating Systems Date 10/01/2004 1/24/2004 Operating Systems 1 Brief history of OS design In the beginning OSes were runtime libraries The OS was just code you linked with your program and loaded
Chapter 5 Busses, Ports and Connecting Peripherals
Chapter 5 Busses, Ports and Connecting Peripherals 1 The Bus bus - groups of wires on a circuit board that carry information (bits - on s and off s) between computer components on a circuit board or within
CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions
CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions All computers, from the first room-sized mainframes, to today's powerful desktop, laptop and even hand-held PCs, perform
Technical Note. Micron NAND Flash Controller via Xilinx Spartan -3 FPGA. Overview. TN-29-06: NAND Flash Controller on Spartan-3 Overview
Technical Note TN-29-06: NAND Flash Controller on Spartan-3 Overview Micron NAND Flash Controller via Xilinx Spartan -3 FPGA Overview As mobile product capabilities continue to expand, so does the demand
Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer
Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, [email protected] School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.
Introduction To Computers: Hardware and Software
What Is Hardware? Introduction To Computers: Hardware and Software A computer is made up of hardware. Hardware is the physical components of a computer system e.g., a monitor, keyboard, mouse and the computer
OVERVIEW OF MICROPROCESSORS
C HAPTER 1 OVERVIEW OF MICROPROCESSORS 1.1 GENERAL A microprocessor is one of the most exciting technological innovations in electronics since the appearance of the transistor in 1948. This wonder device
UMBC. ISA is the oldest of all these and today s computers still have a ISA bus interface. in form of an ISA slot (connection) on the main board.
Bus Interfaces Different types of buses: ISA (Industry Standard Architecture) EISA (Extended ISA) VESA (Video Electronics Standards Association, VL Bus) PCI (Periheral Component Interconnect) USB (Universal
1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12
C5 Solutions 1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12 To Compute 0 0 = 00000000 To Compute 1 Step 1. Convert 1 to binary 00000001 Step 2. Flip the bits 11111110
Data Cables. Schmitt TTL LABORATORY ELECTRONICS II
Data Cables Data cables link one instrument to another. Signals can attenuate or disperse on long wires. A direct wire works best for short cables of less than 10 ft. A TTL cable connection can use a Schmitt
A3 Computer Architecture
A3 Computer Architecture Engineering Science 3rd year A3 Lectures Prof David Murray [email protected] www.robots.ox.ac.uk/ dwm/courses/3co Michaelmas 2000 1 / 1 6. Stacks, Subroutines, and Memory
Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek
Instruction Set Architecture or How to talk to computers if you aren t in Star Trek The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture
Chapter 2: Computer-System Structures. Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General System Architecture
Chapter 2: Computer-System Structures Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General System Architecture Operating System Concepts 2.1 Computer-System Architecture
Computer Organization and Components
Computer Organization and Components IS1500, fall 2015 Lecture 5: I/O Systems, part I Associate Professor, KTH Royal Institute of Technology Assistant Research Engineer, University of California, Berkeley
Chapter 01: Introduction. Lesson 02 Evolution of Computers Part 2 First generation Computers
Chapter 01: Introduction Lesson 02 Evolution of Computers Part 2 First generation Computers Objective Understand how electronic computers evolved during the first generation of computers First Generation
MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS
MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS 1) Which is the microprocessor comprises: a. Register section b. One or more ALU c. Control unit 2) What is the store by register? a. data b. operands
Input / Ouput devices. I/O Chapter 8. Goals & Constraints. Measures of Performance. Anatomy of a Disk Drive. Introduction - 8.1
Introduction - 8.1 I/O Chapter 8 Disk Storage and Dependability 8.2 Buses and other connectors 8.4 I/O performance measures 8.6 Input / Ouput devices keyboard, mouse, printer, game controllers, hard drive,
8-Bit Flash Microcontroller for Smart Cards. AT89SCXXXXA Summary. Features. Description. Complete datasheet available under NDA
Features Compatible with MCS-51 products On-chip Flash Program Memory Endurance: 1,000 Write/Erase Cycles On-chip EEPROM Data Memory Endurance: 100,000 Write/Erase Cycles 512 x 8-bit RAM ISO 7816 I/O Port
Performance evaluation
Performance evaluation Arquitecturas Avanzadas de Computadores - 2547021 Departamento de Ingeniería Electrónica y de Telecomunicaciones Facultad de Ingeniería 2015-1 Bibliography and evaluation Bibliography
21152 PCI-to-PCI Bridge
Product Features Brief Datasheet Intel s second-generation 21152 PCI-to-PCI Bridge is fully compliant with PCI Local Bus Specification, Revision 2.1. The 21152 is pin-to-pin compatible with Intel s 21052,
Chapter 6. 6.1 Introduction. Storage and Other I/O Topics. p. 570( 頁 585) Fig. 6.1. I/O devices can be characterized by. I/O bus connections
Chapter 6 Storage and Other I/O Topics 6.1 Introduction I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections
