Central Processing Unit (CPU)
|
|
|
- Mary Greer
- 9 years ago
- Views:
Transcription
1 Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following lectures, we will learn: Instruction representation Data transfer mechanism between MM and CPU The internal functional units of two different CPU architectures How these units are interconnected How a processor executes instructions
2 Instruction Representation CPU operation is determined by the instruction it executes Collection of these instructions that a CPU can execute forms its Instruction Set An instruction is represented as sequence of bits, for example: Instruction is divided into fields B B 8 1 Opcode Operand1 Operand2 Opcode indicates the operation to be performed, eg., 92 above indicates a copy operation we need two operands one source and other destination Opcode represents nature of operands (data or address), operand 1 is address and operand 2 is data mode (register or memory), operand 1 is memory, and operand 2 is immediate data
3 Basic Instruction Types Not all instructions require two operands 3-address instructions Operation Source1, Source2, Destination e.g. Add A, B, C ; C = A + B 2-address instructions Operation Source, Destination e.g. Move B, C ; C = B Add A, C ; C = C + A Here Source2 is implicitly the destination 1-address instructions e.g. Load A Store C 0-address instructions e.g. Stop
4 Simple Instruction Set Assume we have a processor whose Instruction Set consists of four machine language instructions Move from a memory location to a data register in CPU Move from a data register in CPU to a memory location Add the contents of a memory location to a data register Stop Suppose our program for Z = X + Y looks like: Move X, D0 Add Y, D0 Move D0, Z Stop move $ This program is coded into machine instruction and suppose is loaded into memory starting at location $ add move stop
5 How does the CPU know which instruction to execute? There is a dedicated register in CPU called Program Counter (PC) that points to the memory location where next instruction is stored Therefore, at start PC = $ Instruction is in Main Memory it is to be transferred (fetched) to CPU to be executed CPU has an Instruction Register (IR) that holds the instruction What kind of instruction is to be executed? CPU has its own Instruction Interpreter (Decoder) Followed by Instruction execution Next instruction follows. PC is incremented by length of instruction just completed
6 Mechanism of Transferring Data from MM to CPU CPU has an external bus that connects it to the Memory and I/O devices. The data lines are connected to the processor via the Memory Data Register (MDR) The address lines are connected to the processor via the Memory Address Register (MAR) Memory address from where the instruction/data is to be accessed is copied into MAR Contents of MAR are loaded onto address bus Corresponding memory location accessed Contents of this location put onto data bus Data on data bus loaded into MDR MAR MDR Address bus Data bus CPU Control bus R/W MM
7 CISC and RISC Reduced Instruction Set Computers (RISC) Performs simple instructions that require small number of basic steps to execute (smaller S) Requires large number of instructions to perform a given task large code size (larger N) more RAM is needed to store the assembly level instructions Advantage: Low cycles per second each instruction is executed faster in one clock cycle (smaller R) Example: Advanced RISC Machines (ARM) processor Complex Instruction Set Computers (CISC) Complex instructions that involve large number of steps (larger S) Fewer instructions needed (smaller N) small code size Commands represent more closely to high-level languages Less RAM required to store the program Disadvantage: High cycles per second Example: Motorola processor, Intel x86
8 General Purpose Register (GPR)Architecture Its functional units are: Data Registers: D0, D1, D2,..., D7 for arithmetic operations holds any kind of data Address Registers: A0, A1, A2,..., A7 serve as pointers to memory addresses Working Registers: several such registers serve as scratch pads for CPU Program Counter (PC) holding the address in memory of the next instruction to be executed. After an instruction is fetched from memory, the PC is automatically incremented to hold the address of, or point to, the next instruction to be executed. Instruction Register (IR) holds the most recently read instruction from memory while it is being decoded by the Instruction Interpreter. Memory Address Register (MAR) holds the address of the next location to be accessed in memory. Memory Buffer Register (MBR or MDR) holds the data just read from memory, or the data which is about to be written to memory. Buffer is referring to temporarily holding data. Status Register (SR) to record status information
9 GPR CPU Register File IR MBR Data bus MAR Address bus ALU Interpreter PC Memory Control CPU 16 bit 8 bit Increment Memory
10 Program Execution Fetch Cycle: Processor fetches one instruction at a time from successive memory locations until a branch/jump occurs. Instructions are located in the memory location pointed to by the PC Instruction is loaded into the IR Increment the contents of the PC by the size of an instruction Decode Cycle: Instruction is decoded/interpreted, opcode will provide the type of operation to be performed, the nature and mode of the operands Decoder and control logic unit is responsible to select the registers involved and direct the data transfer. Execute Cycle: Carry out the actions specified by the instruction in the IR
11 Execution for add D1,D2 in a GPR processor MAR PC MDR M[MAR] PC PC + 2 Fetch IR MDR Decode D2 D1 + D2 Execute
12 GPR CPU Register File IR MBR Data bus Type equation here. MAR Address bus ALU Interpreter PC Memory Control CPU 16 bit 8 bit Increment Memory
13 Execution for add X,D0 in a GPR processor MAR PC MDR M[MAR] PC PC + 2 Fetch IR MDR Decode Address X extracted from IR MAR IR (X) Contents of Address X transferred to MDR Contents of Address X added to D0 MDR M[MAR] D0 MDR + D0 Execute
14 GPR CPU Register File IR MBR Data bus Type equation here. MAR Address bus ALU Interpreter PC Memory Control CPU 16 bit 8 bit Increment Memory
15 Instruction Execution Time Clock Cycles (P) regular time intervals defined by the CPU clock Clock Rate, R = 1/P cycles per second (Hz) 500 MHz => P = 2ns 1.25 GHz => P = 0.8ns For each instruction: Fetch: Total 12 clock cycles MAR PC 1 MDR M[MAR] 10 IR MBR 1 Decode: 2 clock cycles Execute: depends on instruction Micro Step Number of Clock Cycles Register Transfer 1 Decoding 2 Add 2 Multiply 5 Memory Access 10
16 Accumulator (Acc)Architecture Its functional units are same as GPR architecture, except there is only ONE register accumulator (Acc) instead of the Register File Ex: Z = X + Y Move contents of location X to Acc Add contents of location Y to Acc Move from Acc to location Z Stop All operations and data movements are on this single register Most of the instructions in the instruction set require only one Operand Destination and Source are implicitly Acc Leads to shorter instructions but program may be slower to execute since there are more moves to memory for intermediate results (to free Acc) May lead to inefficiency
17 Accumulator Architecture CPU Acc MBR Data bus IR MAR Address bus ALU Interpreter PC Memory Control CPU 16 bit 10 bit Increment Memory
18 Execution for Add Y in an Acc Architecture MAR PC MDR M[MAR] PC PC + 2 Fetch IR MDR Decode Address X extracted from IR MAR IR (X) Contents of Address X transferred to MDR Contents of Address X added to Accumulator MDR M[MAR] Acc MDR + Acc Execute
19 GPR vs Acc Let the following instructions be allowed: For GPR machine (with 4 data reg) Move R i, R j Move R i, M[X] Move M[X], R i Add R i, M[X] Add R i, R j Sub R i, M[X] ; R i R j ; R i M[X] ; M[X] R i ; R i R i + M[X] ; R i R i + R j ; R i R i M[X] For Accumulator machine Add x Sub x Mult x LD x ST x Stop ; Acc Acc + M[X] ; Acc Acc M[X] ; Acc Acc M[X] ; Acc M[X] ; M[X] Acc Sub R i, R j Mult R i, R j Stop ; R i R i R j ; R i R i R j Note that M[X] = x
20 GPR vs Acc Assembly Program for a <- (x + y) * (x y) For GPR machine (with 4 data reg) Move D0, X Add D0, Y Move D1, X Sub D1, Y Mult D0, D1 Move A, D0 Stop For Accumulator machine LD X ADD Y ST C LD X SUB Y MULT C ST A STOP
LSN 2 Computer Processors
LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2
PROBLEMS. which was discussed in Section 1.6.3.
22 CHAPTER 1 BASIC STRUCTURE OF COMPUTERS (Corrisponde al cap. 1 - Introduzione al calcolatore) PROBLEMS 1.1 List the steps needed to execute the machine instruction LOCA,R0 in terms of transfers between
Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2
Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of
(Refer Slide Time: 00:01:16 min)
Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control
CPU Organisation and Operation
CPU Organisation and Operation The Fetch-Execute Cycle The operation of the CPU 1 is usually described in terms of the Fetch-Execute cycle. 2 Fetch-Execute Cycle Fetch the Instruction Increment the Program
Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University [email protected].
Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University [email protected] Review Computers in mid 50 s Hardware was expensive
MICROPROCESSOR AND MICROCOMPUTER BASICS
Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit
CSCI 4717 Computer Architecture. Function. Data Storage. Data Processing. Data movement to a peripheral. Data Movement
CSCI 4717/5717 Computer Architecture Topic: Functional View & History Reading: Sections 1.2, 2.1, & 2.3 Function All computer functions are comprised of four basic operations: Data processing Data storage
CHAPTER 4 MARIE: An Introduction to a Simple Computer
CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 195 4.2 CPU Basics and Organization 195 4.2.1 The Registers 196 4.2.2 The ALU 197 4.2.3 The Control Unit 197 4.3 The Bus 197 4.4 Clocks
Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan
Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software
Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek
Instruction Set Architecture or How to talk to computers if you aren t in Star Trek The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture
Central Processing Unit
Chapter 4 Central Processing Unit 1. CPU organization and operation flowchart 1.1. General concepts The primary function of the Central Processing Unit is to execute sequences of instructions representing
CHAPTER 7: The CPU and Memory
CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides
How It All Works. Other M68000 Updates. Basic Control Signals. Basic Control Signals
CPU Architectures Motorola 68000 Several CPU architectures exist currently: Motorola Intel AMD (Advanced Micro Devices) PowerPC Pick one to study; others will be variations on this. Arbitrary pick: Motorola
CPU Organization and Assembly Language
COS 140 Foundations of Computer Science School of Computing and Information Science University of Maine October 2, 2015 Outline 1 2 3 4 5 6 7 8 Homework and announcements Reading: Chapter 12 Homework:
Computer Organization and Architecture
Computer Organization and Architecture Chapter 11 Instruction Sets: Addressing Modes and Formats Instruction Set Design One goal of instruction set design is to minimize instruction length Another goal
1 Classical Universal Computer 3
Chapter 6: Machine Language and Assembler Christian Jacob 1 Classical Universal Computer 3 1.1 Von Neumann Architecture 3 1.2 CPU and RAM 5 1.3 Arithmetic Logical Unit (ALU) 6 1.4 Arithmetic Logical Unit
Computer Organization. and Instruction Execution. August 22
Computer Organization and Instruction Execution August 22 CSC201 Section 002 Fall, 2000 The Main Parts of a Computer CSC201 Section Copyright 2000, Douglas Reeves 2 I/O and Storage Devices (lots of devices,
EC 362 Problem Set #2
EC 362 Problem Set #2 1) Using Single Precision IEEE 754, what is FF28 0000? 2) Suppose the fraction enhanced of a processor is 40% and the speedup of the enhancement was tenfold. What is the overall speedup?
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
İSTANBUL AYDIN UNIVERSITY
İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit
MACHINE ARCHITECTURE & LANGUAGE
in the name of God the compassionate, the merciful notes on MACHINE ARCHITECTURE & LANGUAGE compiled by Jumong Chap. 9 Microprocessor Fundamentals A system designer should consider a microprocessor-based
150127-Microprocessor & Assembly Language
Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessor-based systems are designed around the Z80. The Z80 microprocessor needs an
Computer organization
Computer organization Computer design an application of digital logic design procedures Computer = processing unit + memory system Processing unit = control + datapath Control = finite state machine inputs
MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1
MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable
UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC180B Lab 7: MISP Processor Design Spring 1995
UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering EEC180B Lab 7: MISP Processor Design Spring 1995 Objective: In this lab, you will complete the design of the MISP processor,
Administrative Issues
CSC 3210 Computer Organization and Programming Introduction and Overview Dr. Anu Bourgeois (modified by Yuan Long) Administrative Issues Required Prerequisites CSc 2010 Intro to CSc CSc 2310 Java Programming
Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design
Learning Outcomes Simple CPU Operation and Buses Dr Eddie Edwards [email protected] At the end of this lecture you will Understand how a CPU might be put together Be able to name the basic components
COMPUTER ORGANIZATION AND ARCHITECTURE. Slides Courtesy of Carl Hamacher, Computer Organization, Fifth edition,mcgrawhill
COMPUTER ORGANIZATION AND ARCHITECTURE Slides Courtesy of Carl Hamacher, Computer Organization, Fifth edition,mcgrawhill COMPUTER ORGANISATION AND ARCHITECTURE The components from which computers are built,
Addressing The problem. When & Where do we encounter Data? The concept of addressing data' in computations. The implications for our machine design(s)
Addressing The problem Objectives:- When & Where do we encounter Data? The concept of addressing data' in computations The implications for our machine design(s) Introducing the stack-machine concept Slide
Summary of the MARIE Assembly Language
Supplement for Assignment # (sections.8 -. of the textbook) Summary of the MARIE Assembly Language Type of Instructions Arithmetic Data Transfer I/O Branch Subroutine call and return Mnemonic ADD X SUBT
A3 Computer Architecture
A3 Computer Architecture Engineering Science 3rd year A3 Lectures Prof David Murray [email protected] www.robots.ox.ac.uk/ dwm/courses/3co Michaelmas 2000 1 / 1 6. Stacks, Subroutines, and Memory
Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
Instruction Set Architecture
Instruction Set Architecture Consider x := y+z. (x, y, z are memory variables) 1-address instructions 2-address instructions LOAD y (r :=y) ADD y,z (y := y+z) ADD z (r:=r+z) MOVE x,y (x := y) STORE x (x:=r)
a storage location directly on the CPU, used for temporary storage of small amounts of data during processing.
CS143 Handout 18 Summer 2008 30 July, 2008 Processor Architectures Handout written by Maggie Johnson and revised by Julie Zelenski. Architecture Vocabulary Let s review a few relevant hardware definitions:
Central Processing Unit Simulation Version v2.5 (July 2005) Charles André University Nice-Sophia Antipolis
Central Processing Unit Simulation Version v2.5 (July 2005) Charles André University Nice-Sophia Antipolis 1 1 Table of Contents 1 Table of Contents... 3 2 Overview... 5 3 Installation... 7 4 The CPU
Chapter 5 Instructor's Manual
The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 5 Instructor's Manual Chapter Objectives Chapter 5, A Closer Look at Instruction
l C-Programming l A real computer language l Data Representation l Everything goes down to bits and bytes l Machine representation Language
198:211 Computer Architecture Topics: Processor Design Where are we now? C-Programming A real computer language Data Representation Everything goes down to bits and bytes Machine representation Language
Processor Architectures
ECPE 170 Jeff Shafer University of the Pacific Processor Architectures 2 Schedule Exam 3 Tuesday, December 6 th Caches Virtual Memory Input / Output OperaKng Systems Compilers & Assemblers Processor Architecture
Chapter 1 Computer System Overview
Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides
Microprocessor and Microcontroller Architecture
Microprocessor and Microcontroller Architecture 1 Von Neumann Architecture Stored-Program Digital Computer Digital computation in ALU Programmable via set of standard instructions input memory output Internal
what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?
Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the
TIMING DIAGRAM O 8085
5 TIMING DIAGRAM O 8085 5.1 INTRODUCTION Timing diagram is the display of initiation of read/write and transfer of data operations under the control of 3-status signals IO / M, S 1, and S 0. As the heartbeat
An Overview of Stack Architecture and the PSC 1000 Microprocessor
An Overview of Stack Architecture and the PSC 1000 Microprocessor Introduction A stack is an important data handling structure used in computing. Specifically, a stack is a dynamic set of elements in which
Chapter 01: Introduction. Lesson 02 Evolution of Computers Part 2 First generation Computers
Chapter 01: Introduction Lesson 02 Evolution of Computers Part 2 First generation Computers Objective Understand how electronic computers evolved during the first generation of computers First Generation
Instruction Set Design
Instruction Set Design Instruction Set Architecture: to what purpose? ISA provides the level of abstraction between the software and the hardware One of the most important abstraction in CS It s narrow,
Chapter 2 Topics. 2.1 Classification of Computers & Instructions 2.2 Classes of Instruction Sets 2.3 Informal Description of Simple RISC Computer, SRC
Chapter 2 Topics 2.1 Classification of Computers & Instructions 2.2 Classes of Instruction Sets 2.3 Informal Description of Simple RISC Computer, SRC See Appendix C for Assembly language information. 2.4
Instruction Set Architecture (ISA)
Instruction Set Architecture (ISA) * Instruction set architecture of a machine fills the semantic gap between the user and the machine. * ISA serves as the starting point for the design of a new machine
Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level
System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY
CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions
CS101 Lecture 26: Low Level Programming John Magee 30 July 2013 Some material copyright Jones and Bartlett 1 Overview/Questions What did we do last time? How can we control the computer s circuits? How
18-447 Computer Architecture Lecture 3: ISA Tradeoffs. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013
18-447 Computer Architecture Lecture 3: ISA Tradeoffs Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013 Reminder: Homeworks for Next Two Weeks Homework 0 Due next Wednesday (Jan 23), right
Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX
Overview CISC Developments Over Twenty Years Classic CISC design: Digital VAX VAXÕs RISC successor: PRISM/Alpha IntelÕs ubiquitous 80x86 architecture Ð 8086 through the Pentium Pro (P6) RJS 2/3/97 Philosophy
Instruction Set Architecture. Datapath & Control. Instruction. LC-3 Overview: Memory and Registers. CIT 595 Spring 2010
Instruction Set Architecture Micro-architecture Datapath & Control CIT 595 Spring 2010 ISA =Programmer-visible components & operations Memory organization Address space -- how may locations can be addressed?
Building a computer. Electronic Numerical Integrator and Computer (ENIAC)
Building a computer Electronic Numerical Integrator and Computer (ENIAC) CSCI 255: Introduc/on to Embedded Systems Keith Vertanen Copyright 2011 Layers of abstrac
Notes on Assembly Language
Notes on Assembly Language Brief introduction to assembly programming The main components of a computer that take part in the execution of a program written in assembly code are the following: A set of
Unit A451: Computer systems and programming. Section 2: Computing Hardware 1/5: Central Processing Unit
Unit A451: Computer systems and programming Section 2: Computing Hardware 1/5: Central Processing Unit Section Objectives Candidates should be able to: (a) State the purpose of the CPU (b) Understand the
CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions
CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions All computers, from the first room-sized mainframes, to today's powerful desktop, laptop and even hand-held PCs, perform
The WIMP51: A Simple Processor and Visualization Tool to Introduce Undergraduates to Computer Organization
The WIMP51: A Simple Processor and Visualization Tool to Introduce Undergraduates to Computer Organization David Sullins, Dr. Hardy Pottinger, Dr. Daryl Beetner University of Missouri Rolla Session I.
PROBLEMS #20,R0,R1 #$3A,R2,R4
506 CHAPTER 8 PIPELINING (Corrisponde al cap. 11 - Introduzione al pipelining) PROBLEMS 8.1 Consider the following sequence of instructions Mul And #20,R0,R1 #3,R2,R3 #$3A,R2,R4 R0,R2,R5 In all instructions,
Intel 8086 architecture
Intel 8086 architecture Today we ll take a look at Intel s 8086, which is one of the oldest and yet most prevalent processor architectures around. We ll make many comparisons between the MIPS and 8086
Chapter 9 Computer Design Basics!
Logic and Computer Design Fundamentals Chapter 9 Computer Design Basics! Part 2 A Simple Computer! Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode)
Chapter 5, The Instruction Set Architecture Level
Chapter 5, The Instruction Set Architecture Level 5.1 Overview Of The ISA Level 5.2 Data Types 5.3 Instruction Formats 5.4 Addressing 5.5 Instruction Types 5.6 Flow Of Control 5.7 A Detailed Example: The
GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT. COURSE CURRICULUM COURSE TITLE: COMPUTER ORGANIZATION AND ARCHITECTURE (Code: 3340705)
GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM COURSE TITLE: COMPUTER ORGANIZATION AND ARCHITECTURE (Code: 3340705) Diploma Programmes in which this course is offered Computer Engineering
The Java Virtual Machine and Mobile Devices. John Buford, Ph.D. [email protected] Oct 2003 Presented to Gordon College CS 311
The Java Virtual Machine and Mobile Devices John Buford, Ph.D. [email protected] Oct 2003 Presented to Gordon College CS 311 Objectives Review virtual machine concept Introduce stack machine architecture
Basic Computer Organization
Chapter 2 Basic Computer Organization Objectives To provide a high-level view of computer organization To describe processor organization details To discuss memory organization and structure To introduce
Week 1 out-of-class notes, discussions and sample problems
Week 1 out-of-class notes, discussions and sample problems Although we will primarily concentrate on RISC processors as found in some desktop/laptop computers, here we take a look at the varying types
Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.
Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how
The AVR Microcontroller and C Compiler Co-Design Dr. Gaute Myklebust ATMEL Corporation ATMEL Development Center, Trondheim, Norway
The AVR Microcontroller and C Compiler Co-Design Dr. Gaute Myklebust ATMEL Corporation ATMEL Development Center, Trondheim, Norway Abstract High Level Languages (HLLs) are rapidly becoming the standard
Computer Architectures
Computer Architectures 2. Instruction Set Architectures 2015. február 12. Budapest Gábor Horváth associate professor BUTE Dept. of Networked Systems and Services [email protected] 2 Instruction set architectures
A s we saw in Chapter 4, a CPU contains three main sections: the register section,
6 CPU Design A s we saw in Chapter 4, a CPU contains three main sections: the register section, the arithmetic/logic unit (ALU), and the control unit. These sections work together to perform the sequences
Chapter 4 Lecture 5 The Microarchitecture Level Integer JAVA Virtual Machine
Chapter 4 Lecture 5 The Microarchitecture Level Integer JAVA Virtual Machine This is a limited version of a hardware implementation to execute the JAVA programming language. 1 of 23 Structured Computer
Chapter 7D The Java Virtual Machine
This sub chapter discusses another architecture, that of the JVM (Java Virtual Machine). In general, a VM (Virtual Machine) is a hypothetical machine (implemented in either hardware or software) that directly
PART B QUESTIONS AND ANSWERS UNIT I
PART B QUESTIONS AND ANSWERS UNIT I 1. Explain the architecture of 8085 microprocessor? Logic pin out of 8085 microprocessor Address bus: unidirectional bus, used as high order bus Data bus: bi-directional
EE282 Computer Architecture and Organization Midterm Exam February 13, 2001. (Total Time = 120 minutes, Total Points = 100)
EE282 Computer Architecture and Organization Midterm Exam February 13, 2001 (Total Time = 120 minutes, Total Points = 100) Name: (please print) Wolfe - Solution In recognition of and in the spirit of the
CSC 2405: Computer Systems II
CSC 2405: Computer Systems II Spring 2013 (TR 8:30-9:45 in G86) Mirela Damian http://www.csc.villanova.edu/~mdamian/csc2405/ Introductions Mirela Damian Room 167A in the Mendel Science Building [email protected]
MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS
MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS 1) Which is the microprocessor comprises: a. Register section b. One or more ALU c. Control unit 2) What is the store by register? a. data b. operands
CISC, RISC, and DSP Microprocessors
CISC, RISC, and DSP Microprocessors Douglas L. Jones ECE 497 Spring 2000 4/6/00 CISC, RISC, and DSP D.L. Jones 1 Outline Microprocessors circa 1984 RISC vs. CISC Microprocessors circa 1999 Perspective:
Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance
What You Will Learn... Computers Are Your Future Chapter 6 Understand how computers represent data Understand the measurements used to describe data transfer rates and data storage capacity List the components
BASIC COMPUTER ORGANIZATION AND DESIGN
1 BASIC COMPUTER ORGANIZATION AND DESIGN Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle Memory Reference Instructions Input-Output and Interrupt Complete
Systems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture 9 - Register Transfer and Microoperations Microoperations Digital systems are modular in nature, with modules containing registers, decoders, arithmetic
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV UNIT I THE 8086 MICROPROCESSOR 1. What is the purpose of segment registers
The Central Processing Unit:
The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Objectives Identify the components of the central processing unit and how they work together and interact with memory Describe how
Pentium vs. Power PC Computer Architecture and PCI Bus Interface
Pentium vs. Power PC Computer Architecture and PCI Bus Interface CSE 3322 1 Pentium vs. Power PC Computer Architecture and PCI Bus Interface Nowadays, there are two major types of microprocessors in the
TYPES OF COMPUTERS AND THEIR PARTS MULTIPLE CHOICE QUESTIONS
MULTIPLE CHOICE QUESTIONS 1. What is a computer? a. A programmable electronic device that processes data via instructions to output information for future use. b. Raw facts and figures that has no meaning
Interpreters and virtual machines. Interpreters. Interpreters. Why interpreters? Tree-based interpreters. Text-based interpreters
Interpreters and virtual machines Michel Schinz 2007 03 23 Interpreters Interpreters Why interpreters? An interpreter is a program that executes another program, represented as some kind of data-structure.
Systems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture : Microprogrammed Control Microprogramming The control unit is responsible for initiating the sequence of microoperations that comprise instructions.
Quiz for Chapter 1 Computer Abstractions and Technology 3.10
Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in Red 1. [15 points] Consider two different implementations,
Computer Systems Design and Architecture by V. Heuring and H. Jordan
1-1 Chapter 1 - The General Purpose Machine Computer Systems Design and Architecture Vincent P. Heuring and Harry F. Jordan Department of Electrical and Computer Engineering University of Colorado - Boulder
OVERVIEW OF MICROPROCESSORS
C HAPTER 1 OVERVIEW OF MICROPROCESSORS 1.1 GENERAL A microprocessor is one of the most exciting technological innovations in electronics since the appearance of the transistor in 1948. This wonder device
Memory Elements. Combinational logic cannot remember
Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic
Computer Organization and Components
Computer Organization and Components IS5, fall 25 Lecture : Pipelined Processors ssociate Professor, KTH Royal Institute of Technology ssistant Research ngineer, University of California, Berkeley Slides
Computer Architecture Basics
Computer Architecture Basics CIS 450 Computer Organization and Architecture Copyright c 2002 Tim Bower The interface between a computer s hardware and its software is its architecture The architecture
612 CHAPTER 11 PROCESSOR FAMILIES (Corrisponde al cap. 12 - Famiglie di processori) PROBLEMS
612 CHAPTER 11 PROCESSOR FAMILIES (Corrisponde al cap. 12 - Famiglie di processori) PROBLEMS 11.1 How is conditional execution of ARM instructions (see Part I of Chapter 3) related to predicated execution
More on Pipelining and Pipelines in Real Machines CS 333 Fall 2006 Main Ideas Data Hazards RAW WAR WAW More pipeline stall reduction techniques Branch prediction» static» dynamic bimodal branch prediction
A SystemC Transaction Level Model for the MIPS R3000 Processor
SETIT 2007 4 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 25-29, 2007 TUNISIA A SystemC Transaction Level Model for the MIPS R3000 Processor
Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com
CSCI-UA.0201-003 Computer Systems Organization Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com Some slides adapted (and slightly modified)
OAMulator. Online One Address Machine emulator and OAMPL compiler. http://myspiders.biz.uiowa.edu/~fil/oam/
OAMulator Online One Address Machine emulator and OAMPL compiler http://myspiders.biz.uiowa.edu/~fil/oam/ OAMulator educational goals OAM emulator concepts Von Neumann architecture Registers, ALU, controller
Compilers I - Chapter 4: Generating Better Code
Compilers I - Chapter 4: Generating Better Code Lecturers: Paul Kelly ([email protected]) Office: room 304, William Penney Building Naranker Dulay ([email protected]) Materials: Office: room 562 Textbook
An Introduction to the ARM 7 Architecture
An Introduction to the ARM 7 Architecture Trevor Martin CEng, MIEE Technical Director This article gives an overview of the ARM 7 architecture and a description of its major features for a developer new
