SRAM Scaling Limit: Its Circuit & Architecture Solutions
|
|
|
- Gwendoline Harper
- 10 years ago
- Views:
Transcription
1 SRAM Scaling Limit: Its Circuit & Architecture Solutions Nam Sung Kim, Ph.D. Assistant Professor Department of Electrical and Computer Engineering University of Wisconsin - Madison
2 SRAM VCC min Challenges 1.2V V CC 0.7V 0.6V (stand-by) VCC/Freq scaling for power efficient computing requires SRAMs to operate at low VCC I i i ti b t SRAM f il li iti th Increasing process variations exacerbate SRAM failures limiting the lowest core operating VCC VCC min
3 SRAM VCC min Challenges 1.2V V CC 0.7V 0.6V (stand-by) VCC/Freq scaling for power efficient computing requires SRAMs to operate at low VCC SRAM area scaling is getting harder because of process variations and voltage scaling! Increasing process variations exacerbate SRAM failures limiting iti the lowest core operating VCC VCC min
4 SRAM Failure Mechanisms Read Failure Write Failure Voltage( V) WL Voltage(V V) Time (ps) Time (ps) WL WL - V T + V T + V T - V T V T + V T + V T + V T + V T - V T - V T + V T BL BL# BL BL#
5 Process Variation Trend Threshold variation: Gate length variation: ITRS Projection for Vth and Leff Vairations Corresponding SRAM Failure Probability vs VCC Courtesy: K. Cao
6 Process Variation Trend Threshold variation: Increasing random variations & decreasing VCC w/ technology scaling begin to limit SRAM size & VCC scaling! Gate length variation: ITRS Projection for Vth and Leff Vairations Corresponding SRAM Failure Probability vs VCC Courtesy: K. Cao
7 Circuit Solution Dynamic/adaptive techniques 6T SRAM Dual supply column-based technique 1 Assisted read/write techniques 2,3,4 1. K. Zhang et al. A 3-GHz 70-Mb SRAM in 65-nm CMOS Technology With Integrated Column-Based Dynamic Power Supply. IEEE J. Solid-State Circuits vol 41 no 1, pp , M. Khellah, N. Kim, et al. PVT-Variations and Supply-Noise Tolerant 45nm Dense Cache Arrays with Diffusion-Notch-Free (DNF) 6T SRAM Cells and Dynamic Multi-Vcc Circuits. it In Proc. IEEE VLSI Circuit it Symposium, Jun F. Hamzaoglu, K. Zhang, et al. A 153Mb-SRAM Design with Dynamic Stability Enhancement and Leakage Reduction in 45nm High-κ Metal-Gate CMOS Technology. ISSCC S. Ohbayashi. A 65-nm SoC Embedded 6T-SRAM Designed for manufacturability With Read and Write Operation Stabilizing Circuits. IEEE J. Solid-State Circuits vol 42 no 4, pp , SRAM cell sizing +ECCs 6T SRAM cell area vs. failure rate trade-off Carefully sized 6T SRAM cells for large caches have been more area efficient than 8T 1 and 10T 2,3 SRAMs at the same VCC min Stronger ECCs allow us to continue VCC min scaling (for now) 1. N. Verma, A. Chandrakasan. A 65nm 8T Sub-Vt SRAM Employing Sense-Amplifier Redundancy. ISSCC B. Calhoun, A. Chandrakasan. A 256kb Sub-threshold SRAM in 65nm CMOS. ISSCC I. Chang, J. Kim, K. Roy. A 32kb 10T Subthreshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90nm CMOS. ISSCC Z. Chishti, et al. Improving Cache Lifetime Reliability at Ultra-low Voltages. MICRO 2009.
8 Circuit Solution Dynamic/adaptive techniques 6T SRAM Dual supply column-based technique 1 Assisted read/write techniques 2,3,4 1. K. Zhang et al. A 3-GHz 70-Mb SRAM in 65-nm CMOS Technology With Integrated Column-Based Dynamic Power Supply. IEEE J. Solid-State Circuits vol 41 no 1, pp , M. Khellah, N. Kim, et al. PVT-Variations and Supply-Noise Tolerant 45nm Dense Cache Arrays with Diffusion-Notch-Free (DNF) 6T Order-of-magnitude SRAM Cells and Dynamic Multi-Vcc Circuits. In Proc. IEEE failure VLSI Circuit it Symposium, rate Jun reduction w/ 3. F. Hamzaoglu, K. Zhang, et al. A 153Mb-SRAM Design with Dynamic Stability Enhancement and Leakage Reduction in 45nm High-κ Metal-Gate conventional CMOS Technology. ISSCC 6T SRAM + small overhead! 4. S. Ohbayashi. A 65-nm SoC Embedded 6T-SRAM Designed for manufacturability With Read and Write Operation Stabilizing Circuits. IEEE J. Solid-State Circuits vol 42 no 4, pp , SRAM cell sizing +ECCs 6T SRAM cell area vs. failure rate trade-off Carefully sized 6T SRAM cells for large caches have been more area efficient than 8T 1 and 10T 2,3 SRAMs at the same VCC min Stronger ECCs allow us to continue VCC min scaling (for now) 1. N. Verma, A. Chandrakasan. A 65nm 8T Sub-Vt SRAM Employing Sense-Amplifier Redundancy. ISSCC B. Calhoun, A. Chandrakasan. A 256kb Sub-threshold SRAM in 65nm CMOS. ISSCC I. Chang, J. Kim, K. Roy. A 32kb 10T Subthreshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90nm CMOS. ISSCC Z. Chishti, et al. Improving Cache Lifetime Reliability at Ultra-low Voltages. MICRO Can we continue the current trend w/ 6T SRAM? Probably not.
9 Architecture Solution Norm Failure Rate 1.E+21 1E 1.E E+15 1.E+12 1.E+09 1.E+06 1E+03 1.E mV iso-failure point w/ 15% LLC size difference 4MB-Small Cell 4MB-Medium Cell 4MB- ULV 1.E Voltage 4MB-Small Cell w/ 1-way disabled Small cell is 15% smaller, but 100mV higher VCC min than medium one Allowing failure in any one LLC way in each set w/ small cell give 100mV lower VCC min while 15% smaller overall cache area.
10 Dynamic Cache Resizing Designing a large cache operating at both high and low voltages is very challenging Lower operating voltage requires a larger area per bit Can we design a configurable cache? Allow as big cache size as possible when performance is important Allow as low voltage as possible at the expense of cache capacity when power is important t At lower voltages and frequencies Processor performance is less sensitive to on-chip cache size due to reduced frequency gap b/w main memory and on-chip cache Reduce cache size to lower VCC min at lower freq since performance impact is very small!
11 Conclusion VCC/Freq scaling for power efficient computing Require SRAMs to operate at low VCC Increasing random variations & decreasing VCC w/ technology scaling Begin to limit it SRAM size scaling! Various adaptive/dynamic + sizing + ECC techniques Have reduced the SRAM failure rate by order-of-magnitude of failure rate w/ conventional 6T SRAM + small overhead. So far, 6T SRAM has been more area efficient than 8T and 10T SRAM for large cache structures Incorporating architecture techniques Lower VCC min by trading cache capacity w/ lower VCC min The performance impact is very small due to reduced frequency gap b/w main memory and on-chip caches
Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology
Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Nahid Rahman Department of electronics and communication FET-MITS (Deemed university), Lakshmangarh, India B. P. Singh Department
Intel Labs at ISSCC 2012. Copyright Intel Corporation 2012
Intel Labs at ISSCC 2012 Copyright Intel Corporation 2012 Intel Labs ISSCC 2012 Highlights 1. Efficient Computing Research: Making the most of every milliwatt to make computing greener and more scalable
Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications
Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications TRIPTI SHARMA, K. G. SHARMA, B. P. SINGH, NEHA ARORA Electronics & Communication Department MITS Deemed University,
數 位 積 體 電 路 Digital Integrated Circuits
IEE5049 - Spring 2012 數 位 積 體 電 路 Digital Integrated Circuits Course Overview Professor Wei Hwang 黃 威 教 授 Department of Electronics Engineering National Chiao Tung University [email protected] Wei
Leakage Power Reduction Using Sleepy Stack Power Gating Technique
Leakage Power Reduction Using Sleepy Stack Power Gating Technique M.Lavanya, P.Anitha M.E Student [Applied Electronics], Dept. of ECE, Kingston Engineering College, Vellore, Tamil Nadu, India Assistant
DRG-Cache: A Data Retention Gated-Ground Cache for Low Power 1
DRG-Cache: A Data Retention Gated-Ground Cache for Low Power 1 ABSTRACT In this paper we propose a novel integrated circuit and architectural level techniue to reduce leakage power consumption in high
Design and analysis of flip flops for low power clocking system
Design and analysis of flip flops for low power clocking system Gabariyala sabadini.c PG Scholar, VLSI design, Department of ECE,PSNA college of Engg and Tech, Dindigul,India. Jeya priyanka.p PG Scholar,
Chapter 2 Heterogeneous Multicore Architecture
Chapter 2 Heterogeneous Multicore Architecture 2.1 Architecture Model In order to satisfy the high-performance and low-power requirements for advanced embedded systems with greater fl exibility, it is
Power consumption is now the major technical
COVER FEATURE Leakage Current: Moore s Law Meets Static Power Microprocessor design has traditionally focused on dynamic power consumption as a limiting factor in system integration. As feature sizes shrink
On the Use of Strong BCH Codes for Improving Multilevel NAND Flash Memory Storage Capacity
On the Use of Strong BCH Codes for Improving Multilevel NAND Flash Memory Storage Capacity Fei Sun, Ken Rose, and Tong Zhang ECSE Department, Rensselaer Polytechnic Institute, USA Abstract This paper investigates
DESIGN CHALLENGES OF TECHNOLOGY SCALING
DESIGN CHALLENGES OF TECHNOLOGY SCALING IS PROCESS TECHNOLOGY MEETING THE GOALS PREDICTED BY SCALING THEORY? AN ANALYSIS OF MICROPROCESSOR PERFORMANCE, TRANSISTOR DENSITY, AND POWER TRENDS THROUGH SUCCESSIVE
Test Solution for Data Retention Faults in Low-Power SRAMs
Test Solution for Data Retention Faults in Low-Power SRAMs L. B. Zordan 1 A. Bosio 1 L. Dilillo 1 P. Girard 1 A. Todri 1 A. Virazel 1 N. Badereddine 2 1 LIRMM - Université Montpellier II / CNRS 161, rue
Power Reduction Techniques in the SoC Clock Network. Clock Power
Power Reduction Techniques in the SoC Network Low Power Design for SoCs ASIC Tutorial SoC.1 Power Why clock power is important/large» Generally the signal with the highest frequency» Typically drives a
A New Programmable RF System for System-on-Chip Applications
Vol. 6, o., April, 011 A ew Programmable RF System for System-on-Chip Applications Jee-Youl Ryu 1, Sung-Woo Kim 1, Jung-Hun Lee 1, Seung-Hun Park 1, and Deock-Ho Ha 1 1 Dept. of Information and Communications
«A 32-bit DSP Ultra Low Power accelerator»
«A 32-bit DSP Ultra Low Power accelerator» E. Beigné [email protected] CEA LETI MINATEC, Grenoble, France www.cea.fr Low power SOC challenges : Energy Efficiency Fine-Grain AVFS solutions FDSOI technology
ISSCC 2003 / SESSION 4 / CLOCK RECOVERY AND BACKPLANE TRANSCEIVERS / PAPER 4.7
ISSCC 2003 / SESSION 4 / CLOCK RECOVERY AND BACKPLANE TRANSCEIVERS / PAPER 4.7 4.7 A 2.7 Gb/s CDMA-Interconnect Transceiver Chip Set with Multi-Level Signal Data Recovery for Re-configurable VLSI Systems
International Journal of Electronics and Computer Science Engineering 1482
International Journal of Electronics and Computer Science Engineering 1482 Available Online at www.ijecse.org ISSN- 2277-1956 Behavioral Analysis of Different ALU Architectures G.V.V.S.R.Krishna Assistant
Price/performance Modern Memory Hierarchy
Lecture 21: Storage Administration Take QUIZ 15 over P&H 6.1-4, 6.8-9 before 11:59pm today Project: Cache Simulator, Due April 29, 2010 NEW OFFICE HOUR TIME: Tuesday 1-2, McKinley Last Time Exam discussion
Low-Power Error Correction for Mobile Storage
Low-Power Error Correction for Mobile Storage Jeff Yang Principle Engineer Silicon Motion 1 Power Consumption The ECC engine will consume a great percentage of power in the controller Both RAID and LDPC
On-chip clock error characterization for clock distribution system
On-chip clock error characterization for clock distribution system Chuan Shan, Dimitri Galayko, François Anceau Laboratoire d informatique de Paris 6 (LIP6) Université Pierre & Marie Curie (UPMC), Paris,
All Programmable Logic. Hans-Joachim Gelke Institute of Embedded Systems. Zürcher Fachhochschule
All Programmable Logic Hans-Joachim Gelke Institute of Embedded Systems Institute of Embedded Systems 31 Assistants 10 Professors 7 Technical Employees 2 Secretaries www.ines.zhaw.ch Research: Education:
Efficient Motion Estimation by Fast Three Step Search Algorithms
Efficient Motion Estimation by Fast Three Step Search Algorithms Namrata Verma 1, Tejeshwari Sahu 2, Pallavi Sahu 3 Assistant professor, Dept. of Electronics & Telecommunication Engineering, BIT Raipur,
Chapter 6. 6.1 Introduction. Storage and Other I/O Topics. p. 570( 頁 585) Fig. 6.1. I/O devices can be characterized by. I/O bus connections
Chapter 6 Storage and Other I/O Topics 6.1 Introduction I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections
Digital Design for Low Power Systems
Digital Design for Low Power Systems Shekhar Borkar Intel Corp. Outline Low Power Outlook & Challenges Circuit solutions for leakage avoidance, control, & tolerance Microarchitecture for Low Power System
路 論 Chapter 15 System-Level Physical Design
Introduction to VLSI Circuits and Systems 路 論 Chapter 15 System-Level Physical Design Dept. of Electronic Engineering National Chin-Yi University of Technology Fall 2007 Outline Clocked Flip-flops CMOS
Naveen Muralimanohar Rajeev Balasubramonian Norman P Jouppi
Optimizing NUCA Organizations and Wiring Alternatives for Large Caches with CACTI 6.0 Naveen Muralimanohar Rajeev Balasubramonian Norman P Jouppi University of Utah & HP Labs 1 Large Caches Cache hierarchies
Low Power and Reliable SRAM Memory Cell and Array Design
Springer Series in Advanced Microelectronics 31 Low Power and Reliable SRAM Memory Cell and Array Design Bearbeitet von Koichiro Ishibashi, Kenichi Osada 1. Auflage 2011. Buch. XI, 143 S. Hardcover ISBN
CHARGE pumps are the circuits that used to generate dc
INTERNATIONAL JOURNAL OF DESIGN, ANALYSIS AND TOOLS FOR CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JUNE 2011 27 A Charge Pump Circuit by using Voltage-Doubler as Clock Scheme Wen Chang Huang, Jin Chang Cheng,
ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7
ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7 13.7 A 40Gb/s Clock and Data Recovery Circuit in 0.18µm CMOS Technology Jri Lee, Behzad Razavi University of California, Los Angeles, CA
S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India
Power reduction on clock-tree using Energy recovery and clock gating technique S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India Abstract Power consumption of
A 1-GSPS CMOS Flash A/D Converter for System-on-Chip Applications
A -GSPS CMOS Flash A/D Converter for System-on-Chip Applications Jincheol Yoo, Kyusun Choi, and Ali Tangel Department of Computer Science & Department of Computer & Engineering Communications Engineering
2B1459 System-on-Chip Applications (5CU/7.5ECTS) Course Number for Graduate Students (2B5476, 4CU)
2B1459 System-on-Chip Applications (5CU/7.5ECTS) Course Number for Graduate Students (2B5476, 4CU) Course Coordinator: Dr. Li-Rong Zheng Laboratory of Electronics and Computer Systems Royal Institute of
Reconfigurable Architecture Requirements for Co-Designed Virtual Machines
Reconfigurable Architecture Requirements for Co-Designed Virtual Machines Kenneth B. Kent University of New Brunswick Faculty of Computer Science Fredericton, New Brunswick, Canada [email protected] Micaela Serra
{The Non-Volatile Memory Technology Database (NVMDB)}, UCSD-CSE Techreport CS2015-1011
The Non-Volatile Memory Technology Database (NVMDB) UCSD-CSE Techreport CS2015-1011 Kosuke Suzuki Fujitsu Laboratories Ltd. [email protected] Steven Swanson UC San Diego [email protected] Flash,
NAND Flash Architecture and Specification Trends
NAND Flash Architecture and Specification Trends Michael Abraham ([email protected]) NAND Solutions Group Architect Micron Technology, Inc. August 2012 1 Topics NAND Flash Architecture Trends The Cloud
Evaluating Embedded Non-Volatile Memory for 65nm and Beyond
Evaluating Embedded Non-Volatile Memory for 65nm and Beyond Wlodek Kurjanowicz DesignCon 2008 Sidense Corp 2008 Agenda Introduction: Why Embedded NVM? Embedded Memory Landscape Antifuse Memory evolution
1. Memory technology & Hierarchy
1. Memory technology & Hierarchy RAM types Advances in Computer Architecture Andy D. Pimentel Memory wall Memory wall = divergence between CPU and RAM speed We can increase bandwidth by introducing concurrency
3D NAND Technology Implications to Enterprise Storage Applications
3D NAND Technology Implications to Enterprise Storage Applications Jung H. Yoon Memory Technology IBM Systems Supply Chain Outline Memory Technology Scaling - Driving Forces Density trends & outlook Bit
A Dual-Mode NAND Flash Memory: 1-Gb Multilevel and High-Performance 512-Mb Single-Level Modes
1700 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001 A Dual-Mode NAND Flash Memory: 1-Gb Multilevel and High-Performance 512-Mb Single-Level Modes Taehee Cho, Yeong-Taek Lee, Eun-Cheol
Energy aware RAID Configuration for Large Storage Systems
Energy aware RAID Configuration for Large Storage Systems Norifumi Nishikawa [email protected] Miyuki Nakano [email protected] Masaru Kitsuregawa [email protected] Abstract
McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures
McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures Sheng Li, Junh Ho Ahn, Richard Strong, Jay B. Brockman, Dean M Tullsen, Norman Jouppi MICRO 2009
Data Storage Time Sensitive ECC Schemes for MLC NAND Flash Memories
Data Storage Time Sensitive ECC Schemes for MLC NAND Flash Memories C. Yang, D. Muckatira, A. Kulkarni, C. Chakrabarti School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe,
Computer Architecture
Computer Architecture Random Access Memory Technologies 2015. április 2. Budapest Gábor Horváth associate professor BUTE Dept. Of Networked Systems and Services [email protected] 2 Storing data Possible
Low leakage and high speed BCD adder using clock gating technique
Low leakage and high speed BCD adder using clock gating technique Mr. Suri shiva 1 Mr K.R.Anudeep Laxmikanth 2 Mr. Naveen Kumar.Ch 3 Abstract The growing market of mobile, battery powered electronic systems
Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery
Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery Yu Cai, Yixin Luo, Erich F. Haratsch*, Ken Mai, Onur Mutlu Carnegie Mellon University, *LSI Corporation 1 Many use
An Analytical Model for the Calculation of the Expected Miss Ratio in Faulty Caches
An Analytical Model for the Calculation of the Expected Miss Ratio in Faulty Caches Daniel Sánchez Yiannakis Sazeides Juan L. Aragón José M.García Dept. of Computer Engineering Department of Computer Science
Implementation Details
LEON3-FT Processor System Scan-I/F FT FT Add-on Add-on 2 2 kbyte kbyte I- I- Cache Cache Scan Scan Test Test UART UART 0 0 UART UART 1 1 Serial 0 Serial 1 EJTAG LEON_3FT LEON_3FT Core Core 8 Reg. Windows
Linux flash file systems JFFS2 vs UBIFS
Linux flash file systems JFFS2 vs UBIFS Chris Simmonds 2net Limited Embedded Systems Conference UK. 2009 Copyright 2009, 2net Limited Overview Many embedded systems use raw flash chips JFFS2 has been the
FAULT TOLERANCE FOR MULTIPROCESSOR SYSTEMS VIA TIME REDUNDANT TASK SCHEDULING
FAULT TOLERANCE FOR MULTIPROCESSOR SYSTEMS VIA TIME REDUNDANT TASK SCHEDULING Hussain Al-Asaad and Alireza Sarvi Department of Electrical & Computer Engineering University of California Davis, CA, U.S.A.
TECHNOLOGY BRIEF. Compaq RAID on a Chip Technology EXECUTIVE SUMMARY CONTENTS
TECHNOLOGY BRIEF August 1999 Compaq Computer Corporation Prepared by ISSD Technology Communications CONTENTS Executive Summary 1 Introduction 3 Subsystem Technology 3 Processor 3 SCSI Chip4 PCI Bridge
Nanotechnologies for the Integrated Circuits
Nanotechnologies for the Integrated Circuits September 23, 2015 Dr. Bertrand Cambou Professor of Practice NAU, Cybersecurity School of Informatics, Computing, and Cyber-Systems Agenda The Market Silicon
Model-Based Synthesis of High- Speed Serial-Link Transmitter Designs
Model-Based Synthesis of High- Speed Serial-Link Transmitter Designs Ikchan Jang 1, Soyeon Joo 1, SoYoung Kim 1, Jintae Kim 2, 1 College of Information and Communication Engineering, Sungkyunkwan University,
A Survey on ARM Cortex A Processors. Wei Wang Tanima Dey
A Survey on ARM Cortex A Processors Wei Wang Tanima Dey 1 Overview of ARM Processors Focusing on Cortex A9 & Cortex A15 ARM ships no processors but only IP cores For SoC integration Targeting markets:
A CDMA Based Scalable Hierarchical Architecture for Network- On-Chip
www.ijcsi.org 241 A CDMA Based Scalable Hierarchical Architecture for Network- On-Chip Ahmed A. El Badry 1 and Mohamed A. Abd El Ghany 2 1 Communications Engineering Dept., German University in Cairo,
SLC vs MLC NAND and The Impact of Technology Scaling. White paper CTWP010
SLC vs MLC NAND and The mpact of Technology Scaling White paper CTWP010 Cactus Technologies Limited Suite C, 15/F, Capital Trade Center 62 Tsun Yip Street, Kwun Tong Kowloon, Hong Kong Tel: +852-2797-2277
Architectures and Design Methodologies for Micro and Nanocomputing
Architectures and Design Methodologies for Micro and Nanocomputing PhD Poster Day, December 4, 2014 Matteo Bollo 1 (ID: 24367, I PhD Year) Tutor: Maurizio Zamboni 1 Collaborators: Mariagrazia Graziano
Enabling Technologies for Distributed Computing
Enabling Technologies for Distributed Computing Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF Multi-core CPUs and Multithreading Technologies
Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1
Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 5 Memory-I Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would Pre-Requisite
This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture?
This Unit: Putting It All Together CIS 501 Computer Architecture Unit 11: Putting It All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Amir Roth with contributions by Milo
Energy Constrained Resource Scheduling for Cloud Environment
Energy Constrained Resource Scheduling for Cloud Environment 1 R.Selvi, 2 S.Russia, 3 V.K.Anitha 1 2 nd Year M.E.(Software Engineering), 2 Assistant Professor Department of IT KSR Institute for Engineering
760 Veterans Circle, Warminster, PA 18974 215-956-1200. Technical Proposal. Submitted by: ACT/Technico 760 Veterans Circle Warminster, PA 18974.
760 Veterans Circle, Warminster, PA 18974 215-956-1200 Technical Proposal Submitted by: ACT/Technico 760 Veterans Circle Warminster, PA 18974 for Conduction Cooled NAS Revision 4/3/07 CC/RAIDStor: Conduction
Slide Set 8. for ENCM 369 Winter 2015 Lecture Section 01. Steve Norman, PhD, PEng
Slide Set 8 for ENCM 369 Winter 2015 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2015 ENCM 369 W15 Section
How To Improve Performance On A Single Chip Computer
: Redundant Arrays of Inexpensive Disks this discussion is based on the paper:» A Case for Redundant Arrays of Inexpensive Disks (),» David A Patterson, Garth Gibson, and Randy H Katz,» In Proceedings
The Bleak Future of NAND Flash Memory
The Bleak Future of NAND Memory Laura M. Grupp, John D. Davis, Steven Swanson Department of Computer Science and Engineering, University of California, San Diego Microsoft Research, Mountain View Abstract
Offloading file search operation for performance improvement of smart phones
Offloading file search operation for performance improvement of smart phones Ashutosh Jain [email protected] Vigya Sharma [email protected] Shehbaz Jaffer [email protected] Kolin Paul
Semiconductor Memories
Semiconductor Memories Semiconductor memories array capable of storing large quantities of digital information are essential to all digital systems Maximum realizable data storage capacity of a single
A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION
35'th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting San Diego, December 2-4, 2003 A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION Józef Kalisz and Ryszard Szplet
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,
STMicroelectronics. Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI. SOI Processes 130nm, 65nm. SiGe 130nm
STMicroelectronics Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI SOI Processes 130nm, 65nm SiGe 130nm CMP Process Portfolio from ST Moore s Law 130nm CMOS : HCMOS9GP More than Moore
IC-EMC Simulation of Electromagnetic Compatibility of Integrated Circuits
IC-EMC Simulation of Electromagnetic Compatibility of Integrated Circuits SUMMARY CONTENTS 1. CONTEXT 2. TECHNOLOGY TRENDS 3. MOTIVATION 4. WHAT IS IC-EMC 5. SUPPORTED STANDARD 6. EXAMPLES CONTEXT - WHY
Operating Systems. RAID Redundant Array of Independent Disks. Submitted by Ankur Niyogi 2003EE20367
Operating Systems RAID Redundant Array of Independent Disks Submitted by Ankur Niyogi 2003EE20367 YOUR DATA IS LOST@#!! Do we have backups of all our data???? - The stuff we cannot afford to lose?? How
NAND Flash FAQ. Eureka Technology. apn5_87. NAND Flash FAQ
What is NAND Flash? What is the major difference between NAND Flash and other Memory? Structural differences between NAND Flash and NOR Flash What does NAND Flash controller do? How to send command to
Low Power AMD Athlon 64 and AMD Opteron Processors
Low Power AMD Athlon 64 and AMD Opteron Processors Hot Chips 2004 Presenter: Marius Evers Block Diagram of AMD Athlon 64 and AMD Opteron Based on AMD s 8 th generation architecture AMD Athlon 64 and AMD
Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.2, APRIL, 2015 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2015.15.2.286 ISSN(Online) 2233-4866 Highly Scalable NAND Flash Memory Cell
DDR subsystem: Enhancing System Reliability and Yield
DDR subsystem: Enhancing System Reliability and Yield Agenda Evolution of DDR SDRAM standards What is the variation problem? How DRAM standards tackle system variability What problems have been adequately
Chapter 10: Virtual Memory. Lesson 03: Page tables and address translation process using page tables
Chapter 10: Virtual Memory Lesson 03: Page tables and address translation process using page tables Objective Understand page tables Learn the offset fields in the virtual and physical addresses Understand
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN USING DIFFERENT FOUNDRIES Priyanka Sharma 1 and Rajesh Mehra 2 1 ME student, Department of E.C.E, NITTTR, Chandigarh, India 2 Associate Professor, Department
ISSCC 2004 / SESSION 17 / MEMS AND SENSORS / 17.4
ISSCC 2004 / SESSION 17 / MEMS AND SENSORS / 17.4 17.4 An Ultra-Low Energy Microcontroller for Smart Dust Wireless Sensor Networks Brett A. Warneke, Kristofer S.J. Pister University of California, Berkeley,
Secured Embedded Many-Core Accelerator for Big Data Processing
Secured Embedded Many- Accelerator for Big Data Processing Amey Kulkarni PhD Candidate Advisor: Professor Tinoosh Mohsenin Energy Efficient High Performance Computing (EEHPC) Lab University of Maryland,
A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem
A Novel Low Power, High Speed 4 Transistor CMOS Full Adder Cell with 5% Improvement in Threshold Loss Problem T. Vigneswaran, B. Mukundhan, and P. Subbarami Reddy Abstract Full adders are important components
Certification Document macle GmbH Grafenthal-S1212M 24/02/2015. macle GmbH Grafenthal-S1212M Storage system
macle GmbH Grafenthal-S1212M Storage system Executive summary After performing all tests, the macle GmbH Grafenthal-S1212M has been officially certified according to the Open-E Hardware Certification Program
Design of a Reliable Broadband I/O Employing T-coil
198 SEOK KIM et al : DESIGN OF A RELIABLE BROADBAND I/O EMPLOYING T-COIL Design of a Reliable Broadband I/O Employing T-coil Seok Kim, Shinae Kim, Goeun Jung, Kee-Won Kwon, and Jung-Hoon Chun Abstract
FLASH TECHNOLOGY DRAM/EPROM. Flash. 1980 1982 1984 1986 1988 1990 1992 1994 1996 Year Source: Intel/ICE, "Memory 1996"
10 FLASH TECHNOLOGY Overview Flash memory technology is a mix of EPROM and EEPROM technologies. The term flash was chosen because a large chunk of memory could be erased at one time. The name, therefore,
On-Chip Interconnection Networks Low-Power Interconnect
On-Chip Interconnection Networks Low-Power Interconnect William J. Dally Computer Systems Laboratory Stanford University ISLPED August 27, 2007 ISLPED: 1 Aug 27, 2007 Outline Demand for On-Chip Networks
Enabling Technologies for Distributed and Cloud Computing
Enabling Technologies for Distributed and Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF Multi-core CPUs and Multithreading
Memory Architecture and Management in a NoC Platform
Architecture and Management in a NoC Platform Axel Jantsch Xiaowen Chen Zhonghai Lu Chaochao Feng Abdul Nameed Yuang Zhang Ahmed Hemani DATE 2011 Overview Motivation State of the Art Data Management Engine
8 Gbps CMOS interface for parallel fiber-optic interconnects
8 Gbps CMOS interface for parallel fiberoptic interconnects Barton Sano, Bindu Madhavan and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California
Architekturen und Einsatz von FPGAs mit integrierten Prozessor Kernen. Hans-Joachim Gelke Institute of Embedded Systems Professur für Mikroelektronik
Architekturen und Einsatz von FPGAs mit integrierten Prozessor Kernen Hans-Joachim Gelke Institute of Embedded Systems Professur für Mikroelektronik Contents Überblick: Aufbau moderner FPGA Einblick: Eigenschaften
A Storage Architecture for High Speed Signal Processing: Embedding RAID 0 on FPGA
Journal of Signal and Information Processing, 12, 3, 382-386 http://dx.doi.org/1.4236/jsip.12.335 Published Online August 12 (http://www.scirp.org/journal/jsip) A Storage Architecture for High Speed Signal
DELL RAID PRIMER DELL PERC RAID CONTROLLERS. Joe H. Trickey III. Dell Storage RAID Product Marketing. John Seward. Dell Storage RAID Engineering
DELL RAID PRIMER DELL PERC RAID CONTROLLERS Joe H. Trickey III Dell Storage RAID Product Marketing John Seward Dell Storage RAID Engineering http://www.dell.com/content/topics/topic.aspx/global/products/pvaul/top
A Survey on Sequential Elements for Low Power Clocking System
Journal of Computer Applications ISSN: 0974 1925, Volume-5, Issue EICA2012-3, February 10, 2012 A Survey on Sequential Elements for Low Power Clocking System Bhuvana S ECE Department, Avinashilingam University
Switch Fabric Implementation Using Shared Memory
Order this document by /D Switch Fabric Implementation Using Shared Memory Prepared by: Lakshmi Mandyam and B. Kinney INTRODUCTION Whether it be for the World Wide Web or for an intra office network, today
