Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery
|
|
|
- Prosper Hopkins
- 10 years ago
- Views:
Transcription
1 Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery Yu Cai, Yixin Luo, Erich F. Haratsch*, Ken Mai, Onur Mutlu Carnegie Mellon University, *LSI Corporation 1
2 Many use cases: You Probably Know + High performance, low energy consumption 2
3 Flash Controller NAND Flash Memory Challenges Requires erase before program (write) High raw bit error rate CPU Raw Flash Memory Chips ECC Controller 3
4 Raw bit error rate (RBER) ~2000 ~3000 Limited Flash Memory Lifetime Goal: Extend flash memory lifetime at low cost P/E Cycle Lifetime ECC-correctable RBER Program/Erase (P/E) Cycles (or Writes Per Cell) 4
5 Retention Loss Charge leakage over time 0 0 Flash cell Retention error 1 One dominant source of flash memory errors [DATE 12, ICCD 12] 5
6 Before I show you how we extend flash lifetime NAND Flash 101 6
7 Threshold Voltage (V th ) Flash cell Flash cell 1 0 Normalized V th 7
8 Threshold Voltage (V th ) Distribution Probability Density Function (PDF) 1 0 Normalized V th 8
9 Read Reference Voltage (V ref ) DF V ref 1 0 Normalized V th 9
10 Multi-Level Cell (MLC) DF Erased (11) ER-P1 V ref P1 (10) P1-P2 V ref P2 (00) P2-P3 V ref P3 (01) Normalized V th 10
11 Threshold Voltage Reduces Over Time Before After some retention retention loss: loss: DF P1 (10) P2 (00) P3 (01) Normalized V th 11
12 Fixed Read Reference Voltage Becomes Suboptimal Before After some retention retention loss: loss: DF P1 (10) P1-P2 V ref P2 (00) P2-P3 V ref P3 (01) Raw bit errors Normalized V th 12
13 P1-P2 OPT P2-P3 OPT Optimal Read Reference Voltage (OPT) After some retention loss: DF P1 (10) P1-P2 V ref P2 (00) P2-P3 V ref P3 (01) Minimal raw bit errors Normalized V th 13
14 Goal 1: Design a low-cost mechanism that dynamically finds the optimal read reference voltage 14
15 Retention Failure After significant some retention retention loss: loss: DF P1 (10) P1-P2 V ref P2 (00) P2-P3 V ref P3 (01) Uncorrectable Correctable errors Normalized V th 15
16 Goal 1: Design a low-cost mechanism that dynamically finds the optimal read reference voltage Goal 2: Design an offline mechanism to recover data after detecting uncorrectable errors 16
17 To understand the effects of retention loss: - Characterize retention loss using real chips 17
18 To understand the effects of retention loss: - Characterize retention loss using real chips Goal 1: Design a low-cost mechanism that dynamically finds the optimal read reference voltage Goal 2: Design an offline mechanism to recover data after detecting uncorrectable errors 18
19 Characterization Methodology FPGA-based flash memory testing platform [Cai+,FCCM 11] 19
20 Characterization Methodology FPGA-based flash memory testing platform Real 20- to 24-nm MLC NAND flash chips 0- to 40-day worth of retention loss Room temperature (20⁰C) 0 to 50k P/E Cycles 20
21 Characterize the effects of retention loss 1. Threshold Voltage Distribution 2. Optimal Read Reference Voltage 3. RBER and P/E Cycle Lifetime 21
22 PDF 1. Threshold Voltage (V th ) Distribution P1 P2 P3 Normalized V th 22
23 1. Threshold Voltage (V th ) Distribution 40-day 0-day 40-day 0-day P1 P2 P3 Finding: Cell s threshold voltage decreases over time 23
24 2. Optimal Read Reference Voltage (OPT) 40-day OPT 0-day OPT 40-day OPT 0-day OPT P1 P2 P3 Finding: OPT decreases over time 24
25 RBER 3. RBER and P/E Cycle Lifetime P/E Cycles 25
26 Nominal Lifetime Extended Lifetime 3. RBER and P/E Cycle Lifetime Reading data with 7-day worth of retention loss. V ref closer to actual OPT Actual OPT ECC-correctable RBER Finding: Using actual OPT achieves the longest lifetime 26
27 Characterization Summary Due to retention loss Cell s threshold voltage (V th ) decreases over time Optimal read reference voltage (OPT) decreases over time Using the actual OPT for reading Achieves the longest lifetime 27
28 To understand the effects of retention loss: - Characterize retention loss using real chips Goal 1: Design a low-cost mechanism that dynamically finds the optimal read reference voltage Goal 2: Design an offline mechanism to recover data after detecting uncorrectable errors 28
29 Naïve Solution: Sweeping V ref Key idea: Read the data multiple times with different read reference voltages until the raw bit errors are correctable by ECC Finds the optimal read reference voltage Requires many read-retries higher read latency 29
30 Comparison of Flash Read Techniques Flash Read Techniques Lifetime (P/E Cycle) Performance (Read Latency) Fixed V ref Sweeping V ref Our Goal 30
31 Observations 1. The optimal read reference voltage gradually decreases over time Key idea: Record the old OPT as a prediction (V pred ) of the actual OPT Benefit: Close to actual OPT Fewer read retries 2. The amount of retention loss is similar across pages within a flash block Key idea: Record only one V pred for each block Benefit: Small storage overhead (768KB out of 512GB) 31
32 Retention Optimized Reading (ROR) Components: 1. Online pre-optimization algorithm Periodically records a V pred for each block 2. Improved read-retry technique Utilizes the recorded V pred to minimize read-retry count 32
33 1. Online Pre-Optimization Algorithm Triggered periodically (e.g., per day) Find and record an OPT as per-block V pred Performed in background Small storage overhead DF New V pred Old V pred Normalized V th 33
34 2. Improved Read-Retry Technique Performed as normal read V pred already close to actual OPT Decrease V ref if V pred fails, and retry DF OPT V pred Very close Normalized V th 34
35 Retention Optimized Reading: Summary Flash Read Techniques Lifetime (P/E Cycle) Performance (Read Latency) Fixed V ref Sweeping V ref 64% ROR Nom. Life: 2.4% 64% Ext. Life: 70.4% 35
36 To understand the effects of retention loss: - Characterize retention loss using real chips Goal 1: Design a low-cost mechanism that dynamically finds the optimal read reference voltage Goal 2: Design an offline mechanism to recover data after detecting uncorrectable errors 36
37 Retention Failure After some significant retention retention loss: loss: DF P1 (10) P1-P2 V ref P2 (00) P2-P3 V ref P3 (01) Uncorrectable Correctable errors Normalized V th 37
38 Leakage Speed Variation DF S low-leaking cell F ast-leaking cell Normalized V th 38
39 Initially, Right After Programming DF P2 P3 S S F F F S F S Normalized V th 39
40 After Some Retention Loss DF Fast-leaking cells have lower V th P2 P3 Slow-leaking cells have higher V th S S F F F S F S Normalized V th 40
41 Eventually: Retention Failure DF P2 OPT P3 S S F F F F S S Normalized V th 41
42 Retention Failure Recovery (RFR) Key idea: Guess original state of the cell from its leakage speed property Three steps 1. Identify risky cells 2. Identify fast-/slow-leaking cells 3. Guess original states 42
43 OPT σ OPT OPT+σ 1. Identify Risky Cells DF Risky + S = P2 cells + F = P3 Key Formula S F F S Normalized V th 43
44 OPT σ OPT OPT+σ 2. Identifying Fast- vs. Slow-Leaking Cells DF Risky + S = P2 cells + F = P3 Key Formula???? Normalized V th 44
45 OPT σ OPT OPT+σ 2. Identifying Fast- vs. Slow-Leaking Cells DF Risky + S = P2 cells + F = P3 Key Formula S??? F?? F S? Normalized V th 45
46 3. Guess Original States DF Risky + S = P2 cells + F = P3 Key Formula S F F S Normalized V th 46
47 RFR Evaluation Program with random data 28 days Expect to eliminate 50% of raw bit errors ECC can correct remaining errors Detect failure, backup data Recover data 12 addt l. days 47
48 To understand the effects of retention loss: - Characterize retention loss using real chips Goal 1: Design a low-cost mechanism that dynamically finds the optimal read reference voltage Goal 2: Design an offline mechanism to recover data after detecting uncorrectable errors 48
49 Conclusion Problem: Retention loss reduces flash lifetime Overall Goal: Extend flash lifetime at low cost Flash Characterization: Developed an understanding of the effects of retention loss in real chips Retention Optimized Reading: A low-cost mechanism that dynamically finds the optimal read reference voltage 64% lifetime, 70.4% read latency Retention Failure Recovery: An offline mechanism that recovers data after detecting uncorrectable errors Raw bit error rate 50%, reduces data loss 49
50 Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery Yu Cai, Yixin Luo, Erich F. Haratsch*, Ken Mai, Onur Mutlu Carnegie Mellon University, *LSI Corporation 50
51 Backup Slides 51
52 RFR Motivation Data loss can happen in many ways 1. High P/E cycle 2. High temperature accelerates retention loss 3. High retention age (lost power for a long time) 52
53 What if there are other errors? Key: RFR does not have to correct all errors Example: ECC can correct 40 errors in a page Corrupted page has 20 retention errors, 25 other errors (45 total errors) After RFR: 10 retention errors, 30 other errors (40 total errors ECC correctable) 53
Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery
Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery Yu Cai, Yixin Luo, Erich F. Haratsch *, Ken Mai, Onur Mutlu Carnegie Mellon University, * LSI Corporation [email protected],
Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis
Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis Yu Cai 1, Erich F. Haratsch 2, Onur Mutlu 1 and Ken Mai 1 1 Department of Electrical and Computer Engineering, Carnegie
Solid State Drive Technology
Technical white paper Solid State Drive Technology Differences between SLC, MLC and TLC NAND Table of contents Executive summary... 2 SLC vs MLC vs TLC... 2 NAND cell technology... 2 Write amplification...
Programming Matters. MLC NAND Reliability and Best Practices for Data Retention. Data I/O Corporation. Anthony Ambrose President & CEO
Programming Matters MLC NAND Reliability and Best Practices for Data Retention Data I/O Corporation Anthony Ambrose President & CEO Flash Memory Summit 2013 Santa Clara, CA 1 Executive Summary As Process
Low-Power Error Correction for Mobile Storage
Low-Power Error Correction for Mobile Storage Jeff Yang Principle Engineer Silicon Motion 1 Power Consumption The ECC engine will consume a great percentage of power in the controller Both RAID and LDPC
Yaffs NAND Flash Failure Mitigation
Yaffs NAND Flash Failure Mitigation Charles Manning 2012-03-07 NAND flash is one of very few types of electronic device which are knowingly shipped with errors and are expected to generate further errors
NAND Flash Architecture and Specification Trends
NAND Flash Architecture and Specification Trends Michael Abraham ([email protected]) NAND Solutions Group Architect Micron Technology, Inc. August 2011 1 Topics NAND Flash trends SSD/Enterprise application
BER-Based Wear Leveling and Bad Block Management for NAND Flash
BER-Based Wear Leveling and Bad Block Management for NAND Flash Borja Peleato, Haleh Tabrizi, Rajiv Agarwal, Jeffrey Ferreira Electrical and Computer Engineering, Purdue University bpeleato@purdueedu DSSD,
Database!Fatal!Flash!Flaws!No!One! Talks!About!!!
MarcStaimer,President&CDSDragonSlayerConsulting W h i t e P A P E R DatabaseFatalFlashFlawsNoOne TalksAbout AndHowtoAvoidThem WHITEPAPER DatabaseFatalFlashFlawsNoOneTalksAbout AndHowtoAvoidThem DatabaseFatalFlashFlawsNoOneTalksAbout
SLC vs. MLC: An Analysis of Flash Memory
SLC vs. MLC: An Analysis of Flash Memory Examining the Quality of Memory: Understanding the Differences between Flash Grades Table of Contents Abstract... 3 Introduction... 4 Flash Memory Explained...
Linux flash file systems JFFS2 vs UBIFS
Linux flash file systems JFFS2 vs UBIFS Chris Simmonds 2net Limited Embedded Systems Conference UK. 2009 Copyright 2009, 2net Limited Overview Many embedded systems use raw flash chips JFFS2 has been the
Trends in NAND Flash Memory Error Correction
Trends in NAND Flash Memory Error Correction June 2009 Eric Deal Cyclic Design Introduction NAND Flash is a popular storage media because of its ruggedness, power efficiency, and storage capacity. Flash
An In-Depth Look at Variable Stripe RAID (VSR)
An In-Depth Look at Variable Stripe RAID (VSR) A white paper by Robbie Stevens, Senior Marketing/Technical Writer 10777 Westheimer Rd. Houston, TX 77042 www.ramsan.com Scan this QR code with your smartphone
Important Differences Between Consumer and Enterprise Flash Architectures
Important Differences Between Consumer and Enterprise Flash Architectures Robert Sykes Director of Firmware Flash Memory Summit 2013 Santa Clara, CA OCZ Technology Introduction This presentation will describe
Don t Let RAID Raid the Lifetime of Your SSD Array
Don t Let RAID Raid the Lifetime of Your SSD Array Sangwhan Moon Texas A&M University A. L. Narasimha Reddy Texas A&M University Abstract Parity protection at system level is typically employed to compose
SLC vs MLC: Proper Flash Selection for SSDs in Industrial, Military and Avionic Applications. A TCS Space & Component Technology White Paper
SLC vs MLC: Proper Flash Selection for SSDs in Industrial, Military and Avionic Applications A TCS Space & Component Technology White Paper Introduction As with most storage technologies, NAND Flash vendors
Temperature Considerations for Industrial Embedded SSDs
I-Temp SSDs: Temperature Considerations for Industrial Embedded SSDs NAND flash-based SSDs and memory cards continue to be the dominant storage media for most industrial-embedded systems. Historically,
Industrial Flash Storage Module
April 9, 2012 Version 1. 1 Industrial Flash Storage Module Author: Precyan Lee E-mail: [email protected] April 9, 2012 Version 1. 1 Table of Contents Current Market Trends for Flash Storage...
NAND Flash Architecture and Specification Trends
NAND Flash Architecture and Specification Trends Michael Abraham ([email protected]) NAND Solutions Group Architect Micron Technology, Inc. August 2012 1 Topics NAND Flash Architecture Trends The Cloud
NAND Flash FAQ. Eureka Technology. apn5_87. NAND Flash FAQ
What is NAND Flash? What is the major difference between NAND Flash and other Memory? Structural differences between NAND Flash and NOR Flash What does NAND Flash controller do? How to send command to
The Technologies & Architectures. President, Demartek
Deep Dive on Solid State t Storage The Technologies & Architectures Dennis Martin Dennis Martin President, Demartek Demartek Company Overview Industry analysis with on-site test lab Lab includes servers,
SLC vs MLC: Which is best for high-reliability apps?
SLC vs MLC: Which is best for high-reliability apps? Here's an examination of trade-offs, with an emphasis on how they affect the reliability of storage targeted at industrial, military and avionic applications.
Intel Solid-State Drive 320 Series
Intel Solid-State Drive 320 Series Enterprise Server/Storage Application Product Specification Addendum Form Factors: 1.8-inch and 2.5-inch Capacity: 80/160/300 GB (1.8-inch) 40/80/120/160/300/600 GB (2.5-inch)
Endurance Models for Cactus Technologies Industrial-Grade Flash Storage Products. White Paper CTWP006
Endurance Models for Cactus Technologies Industrial-Grade Flash Storage Products White Paper CTWP006 Cactus Technologies Limited Suite C, 15/F, Capital Trade Center 6 Tsun Yip Street, Kwun Tong Kowloon,
NAND Flash Memory Reliability in Embedded Computer Systems
WHITE PAPER NAND Flash Memory Reliability in Embedded Computer Systems Ian Olson INTRODUCTION NAND flash memory named after the NAND logic gates it is constructed from is used for nonvolatile data storage
SLC vs MLC NAND and The Impact of Technology Scaling. White paper CTWP010
SLC vs MLC NAND and The mpact of Technology Scaling White paper CTWP010 Cactus Technologies Limited Suite C, 15/F, Capital Trade Center 62 Tsun Yip Street, Kwun Tong Kowloon, Hong Kong Tel: +852-2797-2277
NAND Basics Understanding the Technology Behind Your SSD
03 Basics Understanding the Technology Behind Your SSD Although it may all look the same, all is not created equal: SLC, 2-bit MLC, 3-bit MLC (also called TLC), synchronous, asynchronous, ONFI 1.0, ONFI
Data Storage Time Sensitive ECC Schemes for MLC NAND Flash Memories
Data Storage Time Sensitive ECC Schemes for MLC NAND Flash Memories C. Yang, D. Muckatira, A. Kulkarni, C. Chakrabarti School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe,
Solid State Drive (SSD) FAQ
Solid State Drive (SSD) FAQ Santosh Kumar Rajesh Vijayaraghavan O c t o b e r 2 0 1 1 List of Questions Why SSD? Why Dell SSD? What are the types of SSDs? What are the best Use cases & applications for
3D NAND Technology Implications to Enterprise Storage Applications
3D NAND Technology Implications to Enterprise Storage Applications Jung H. Yoon Memory Technology IBM Systems Supply Chain Outline Memory Technology Scaling - Driving Forces Density trends & outlook Bit
Flash Memory Jan Genoe KHLim Universitaire Campus, Gebouw B 3590 Diepenbeek Belgium
Flash Memory Jan Genoe KHLim Universitaire Campus, Gebouw B 3590 Diepenbeek Belgium http://www.khlim.be/~jgenoe [1] http://en.wikipedia.org/wiki/flash_memory Geheugen 1 Product evolution Jan Genoe: Geheugen
Addressing Fatal Flash Flaws That Plague All Flash Storage Arrays
Addressing Fatal Flash Flaws That Plague All Flash Storage Arrays By Scott D. Lowe, vexpert Co-Founder, ActualTech Media February, 2015 Table of Contents Introduction: How Flash Storage Works 3 Flash Storage
Comparison of NAND Flash Technologies Used in Solid- State Storage
An explanation and comparison of SLC and MLC NAND technologies August 2010 Comparison of NAND Flash Technologies Used in Solid- State Storage By Shaluka Perera IBM Systems and Technology Group Bill Bornstein
WP001 - Flash Management A detailed overview of flash management techniques
WHITE PAPER A detailed overview of flash management techniques November 2013 951 SanDisk Drive, Milpitas, CA 95035 2013 SanDIsk Corporation. All rights reserved www.sandisk.com Table of Contents 1. Introduction...
Gaussian Tail or Long Tail: On Error Characterization of MLC NAND Flash
Gaussian Tail or Long Tail: On Error Characterization of MLC NAND Flash Presented by: Shu-Yi Jack Wong Computer Engineering University of Toronto, Ontario, Canada Importance and Positioning A Multi-Level-Cell
Incremental Redundancy to Reduce Data Retention Errors in Flash-based SSDs
Incremental Redundancy to Reduce Data Retention Errors in Flash-based SSDs Heejin Park University of Seoul [email protected] Jaeho Kim Hongik University [email protected] Jongmoo Choi Dankook University [email protected]
Choosing the Right NAND Flash Memory Technology
Choosing the Right NAND Flash Memory Technology A Basic Introduction to NAND Flash Offerings Dean Klein Vice President of System Memory Development Micron Technology, Inc. Executive Summary A 75% increase
How To Write On A Flash Memory Flash Memory (Mlc) On A Solid State Drive (Samsung)
Using MLC NAND in Datacenters (a.k.a. Using Client SSD Technology in Datacenters) Tony Roug, Intel Principal Engineer SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA.
PowerProtector: Superior Data Protection for NAND Flash
PowerProtector: Superior Data Protection for NAND Flash Introduction The unstable power conditions of outdoor applications such as transportation, telecommunications/networking and embedded systems run
Lifetime Improvement of NAND Flash-based Storage Systems Using Dynamic Program and Erase Scaling
Lifetime Improvement of NAND Flash-based Storage Systems Using Dynamic Program and Erase Scaling Jaeyong Jeong and Sangwook Shane Hahn, Seoul National University; Sungjin Lee, MIT/CSAIL; Jihong Kim, Seoul
io3 Enterprise Mainstream Flash Adapters Product Guide
io3 Enterprise Mainstream Flash s Product Guide Engineered for application acceleration, the Lenovo io3 Enterprise Mainstream PCIe Flash Storage s can help deliver higher performance than typical solid-state
Solid State Technology What s New?
Solid State Technology What s New? Dennis Martin, President, Demartek www.storagedecisions.com Agenda: Solid State Technology What s New? Demartek About Us Solid-state storage overview Types of NAND flash
Advantages of e-mmc 4.4 based Embedded Memory Architectures
Embedded NAND Solutions from 2GB to 128GB provide configurable MLC/SLC storage in single memory module with an integrated controller By Scott Beekman, senior business development manager Toshiba America
Offline Deduplication for Solid State Disk Using a Lightweight Hash Algorithm
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2015.15.5.539 ISSN(Online) 2233-4866 Offline Deduplication for Solid State
High-Performance SSD-Based RAID Storage. Madhukar Gunjan Chakhaiyar Product Test Architect
High-Performance SSD-Based RAID Storage Madhukar Gunjan Chakhaiyar Product Test Architect 1 Agenda HDD based RAID Performance-HDD based RAID Storage Dynamics driving to SSD based RAID Storage Evolution
Flash Memory Basics for SSD Users
Flash Memory Basics for SSD Users April 2014, Rainer W. Kaese Toshiba Electronics Europe Storage Products Division SSD vs. HDD Enterprise SSD Can write the full capacity 30x per day over lifetime Client/Laptop
An Overview of Flash Storage for Databases
An Overview of Flash Storage for Databases Vadim Tkachenko Morgan Tocker http://percona.com MySQL CE Apr 2010 -2- Introduction Vadim Tkachenko Percona Inc, CTO and Lead of Development Morgan Tocker Percona
The Efficient LDPC DSP System for SSD
The Efficient LDPC DSP System for SSD Jeff Yang Principle Engineer Silicon Motion 1 Agenda Error recovery flow LDPC design for NAND flash. High efficient Data-retention recovery. High efficient LDPC operation
1 / 25. CS 137: File Systems. Persistent Solid-State Storage
1 / 25 CS 137: File Systems Persistent Solid-State Storage Technology Change is Coming Introduction Disks are cheaper than any solid-state memory Likely to be true for many years But SSDs are now cheap
White Paper. Avoiding premature failure of NAND Flash memory. Inhalt
Avoiding premature failure of NAND Flash memory In practice, the real lifetime of flash memory is dependent on a large number of parameters which are often not even mentioned in the data sheets from the
SOLID STATE DRIVES AND PARALLEL STORAGE
SOLID STATE DRIVES AND PARALLEL STORAGE White paper JANUARY 2013 1.888.PANASAS www.panasas.com Overview Solid State Drives (SSDs) have been touted for some time as a disruptive technology in the storage
Flash Memory. Jian-Jia Chen (Slides are based on Yuan-Hao Chang) TU Dortmund Informatik 12 Germany 2015 年 01 月 27 日. technische universität dortmund
12 Flash Memory Jian-Jia Chen (Slides are based on Yuan-Hao Chang) TU Dortmund Informatik 12 Germany 2015 年 01 月 27 日 These slides use Microsoft clip arts Microsoft copyright restrictions apply Springer,
Technical Note. NOR Flash Cycling Endurance and Data Retention. Introduction. TN-12-30: NOR Flash Cycling Endurance and Data Retention.
Technical Note TN-12-30: NOR Flash Cycling Endurance and Data Retention Introduction NOR Flash Cycling Endurance and Data Retention Introduction NOR Flash memory is subject to physical degradation that
How it can benefit your enterprise. Dejan Kocic Netapp
PRESENTATION Case for flash TITLE GOES storage HERE How it can benefit your enterprise Dejan Kocic Netapp SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless otherwise
Flash-Friendly File System (F2FS)
Flash-Friendly File System (F2FS) Feb 22, 2013 Joo-Young Hwang ([email protected]) S/W Dev. Team, Memory Business, Samsung Electronics Co., Ltd. Agenda Introduction FTL Device Characteristics
Implementation and Challenging Issues of Flash-Memory Storage Systems
Implementation and Challenging Issues of Flash-Memory Storage Systems Tei-Wei Kuo Department of Computer Science & Information Engineering National Taiwan University Agenda Introduction Management Issues
Flash s Role in Big Data, Past Present, and Future OBJECTIVE ANALYSIS. Jim Handy
Flash s Role in Big Data, Past Present, and Future Jim Handy Tutorial: Fast Storage for Big Data Hot Chips Conference August 25, 2013 Memorial Auditorium Stanford University OBJECTIVE ANALYSIS OBJECTIVE
Solid State Drives Data Reliability and Lifetime. Abstract
Solid State Drives Data Reliability and Lifetime White Paper Alan R. Olson & Denis J. Langlois April 7, 2008 Abstract The explosion of flash memory technology has dramatically increased storage capacity
Data Distribution Algorithms for Reliable. Reliable Parallel Storage on Flash Memories
Data Distribution Algorithms for Reliable Parallel Storage on Flash Memories Zuse Institute Berlin November 2008, MEMICS Workshop Motivation Nonvolatile storage Flash memory - Invented by Dr. Fujio Masuoka
File System Management
Lecture 7: Storage Management File System Management Contents Non volatile memory Tape, HDD, SSD Files & File System Interface Directories & their Organization File System Implementation Disk Space Allocation
SSD Server Hard Drives for IBM
New for 2011! Axiom is introducing a new line of SSD Hot-Swap Server Hard Drives. Our high performance SSD hard drives have been paired with system specific Hot-Swap trays to deliver seamless integration
Understanding endurance and performance characteristics of HP solid state drives
Understanding endurance and performance characteristics of HP solid state drives Technology brief Introduction... 2 SSD endurance... 2 An introduction to endurance... 2 NAND organization... 2 SLC versus
Nasir Memon Polytechnic Institute of NYU
Nasir Memon Polytechnic Institute of NYU SSD Drive Technology Overview SSD Drive Components NAND FLASH Microcontroller SSD Drive Forensics Challenges Overview SSD s are fairly new to the market Whereas
A Flash Storage Technical. and. Economic Primer. and. By Mark May Storage Consultant, By James Green, vexpert Virtualization Consultant
A Flash Storage Technical and Economic Primer y Mark May Storage Consultant, y James Green, vexpert Virtualization Consultant and Scott D. Lowe, vexpert Co-Founder, ActualTech Media March, 2015 Table of
In-Block Level Redundancy Management for Flash Storage System
, pp.309-318 http://dx.doi.org/10.14257/ijmue.2015.10.9.32 In-Block Level Redundancy Management for Flash Storage System Seung-Ho Lim Division of Computer and Electronic Systems Engineering Hankuk University
COS 318: Operating Systems. Storage Devices. Kai Li and Andy Bavier Computer Science Department Princeton University
COS 318: Operating Systems Storage Devices Kai Li and Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318/ Today s Topics! Magnetic disks!
Flash for Databases. September 22, 2015 Peter Zaitsev Percona
Flash for Databases September 22, 2015 Peter Zaitsev Percona In this Presentation Flash technology overview Review some of the available technology What does this mean for databases? Specific opportunities
NAND Flash Memories. Understanding NAND Flash Factory Pre-Programming. Schemes
NAND Flash Memories Understanding NAND Flash Factory Pre-Programming Schemes Application Note February 2009 an_elnec_nand_schemes, version 1.00 Version 1.00/02.2009 Page 1 of 20 NAND flash technology enables
MirrorBit Technology: The Foundation for Value-Added Flash Memory Solutions FLASH FORWARD
MirrorBit Technology: The Foundation for Value-Added Flash Memory Solutions FLASH FORWARD MirrorBit Technology: The Future of Flash Memory is Here Today Spansion is redefining the Flash memory industry
Algorithms and Methods for Distributed Storage Networks 3. Solid State Disks Christian Schindelhauer
Algorithms and Methods for Distributed Storage Networks 3. Solid State Disks Institut für Informatik Wintersemester 2007/08 Solid State Disks Motivation 2 10 5 1980 1985 1990 1995 2000 2005 2010 PRODUCTION
The Bleak Future of NAND Flash Memory
The Bleak Future of NAND Memory Laura M. Grupp, John D. Davis, Steven Swanson Department of Computer Science and Engineering, University of California, San Diego Microsoft Research, Mountain View Abstract
Optimizing NAND Flash-Based SSDs via Retention Relaxation
Optimizing -Based SSDs via Retention Relaxation Ren-Shuo Liu, Chia-Lin Yang, and Wei Wu National Taiwan University and Intel Corporation {[email protected], [email protected], [email protected]}
Booting from NAND Flash Memory
Booting from NAND Flash Memory Introduction NAND flash memory technology differs from NOR flash memory which has dominated the embedded flash memory market in the past. Traditional applications for NOR
Maximizing Your Server Memory and Storage Investments with Windows Server 2012 R2
Executive Summary Maximizing Your Server Memory and Storage Investments with Windows Server 2012 R2 October 21, 2014 What s inside Windows Server 2012 fully leverages today s computing, network, and storage
Indexing on Solid State Drives based on Flash Memory
Indexing on Solid State Drives based on Flash Memory Florian Keusch MASTER S THESIS Systems Group Department of Computer Science ETH Zurich http://www.systems.ethz.ch/ September 2008 - March 2009 Supervised
Flash Memories. João Pela (52270), João Santos (55295) December 22, 2008 IST
Flash Memories João Pela (52270), João Santos (55295) IST December 22, 2008 João Pela (52270), João Santos (55295) (IST) Flash Memories December 22, 2008 1 / 41 Layout 1 Introduction 2 How they work 3
Nonlinear Multi-Error Correction Codes for Reliable NAND Flash Memories
1 Nonlinear Multi-Error Correction Codes for Reliable NAND Flash Memories Zhen Wang, Student Member, IEEE, Mark Karpovsky, Fellow, IEEE, and Ajay Joshi, Member, IEEE Abstract Multi-level cell (MLC NAND
IEEE Milestone Proposal: Creating the Foundation of the Data Storage Flash Memory Industry
Abstract Flash memory used for mass data storage has supplanted the photographic film and floppy disk markets. It has also largely replaced the use of magnetic tape, CD, DVD and magnetic hard disk drives
Trabajo 4.5 - Memorias flash
Memorias flash II-PEI 09/10 Trabajo 4.5 - Memorias flash Wojciech Ochalek This document explains the concept of flash memory and describes it s the most popular use. Moreover describes also Microdrive
Vol.2. Industrial SD Memory. Program/Erase Endurance. Extended Temperature. Power Failure Robustness
2013 Vol.2 Industrial SD Memory Extended Temperature Power Failure Robustness Program/Erase Endurance Specifications for industrial applications demanding high reliability. Various customization to meet
Solid State Storage in a Hard Disk Package. Brian McKean, LSI Corporation
Solid State Storage in a Hard Disk Package Brian McKean, LSI Corporation SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individual members may
COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University. (http://www.cs.princeton.edu/courses/cos318/)
COS 318: Operating Systems Storage Devices Kai Li Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) Today s Topics Magnetic disks Magnetic disk performance
Flash-optimized Data Progression
A Dell white paper Howard Shoobe, Storage Enterprise Technologist John Shirley, Product Management Dan Bock, Product Management Table of contents Executive summary... 3 What is different about Dell Compellent
Rugged & Reliable Data Storage Solid-State State Flash Disk overview
Rugged & Reliable Data Storage Solid-State State Flash Disk overview Roni Kornitz M-Systems Inc 8371 Central Ave, Suite A Newark CA 94560 Phone: +1-510-494-2090 x142 FAX: +1-510-494-5545 E-mail: [email protected]
Physical Data Organization
Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor
Frequently Asked Questions March 2013. s620 SATA SSD Enterprise-Class Solid-State Device. Frequently Asked Questions
March 2013 s620 SATA SSD Enterprise-Class Solid-State Device Frequently Asked Questions Frequently Asked Questions Q: What about advanced data protection? A: In mission-critical enterprise and datacenter
RoHS Compliant SATA High Capacity Flash Drive Series Datasheet for SAFD 25NH-M
RoHS Compliant SATA High Capacity Flash Drive Series Datasheet for SAFD 25NH-M February 9 th, 2015 Revision 1.4 This Specification Describes the Features and Capabilities of the Standard and Industrial
Managing the evolution of Flash : beyond memory to storage
Managing the evolution of Flash : beyond memory to storage Tony Kim Director, Memory Marketing Samsung Semiconductor I nc. Nonvolatile Memory Seminar Hot Chips Conference August 22, 2010 Memorial Auditorium
THE CEO S GUIDE TO INVESTING IN FLASH STORAGE
THE CEO S GUIDE TO INVESTING IN FLASH STORAGE EXECUTIVE SUMMARY Flash storage is every data center s version of a supercharged sports car. Nothing beats it in speed, efficiency, and handling though it
USB Flash Drive Engineering Specification
USB Flash Drive Engineering Specification Document Number: L5ENG00242 Revision: B No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical,
Flash 101. Violin Memory Switzerland. Violin Memory Inc. Proprietary 1
Flash 101 Violin Memory Switzerland Violin Memory Inc. Proprietary 1 Agenda - What is Flash? - What is the difference between Flash types? - Why are SSD solutions different from Flash Storage Arrays? -
Key Factors for Industrial Flash Storage
Key Factors for Industrial Flash Storage By Chanson Lin Email: [email protected] EmBestor Technology Inc. http://www.embestor.com Santa Clara, CA 1 Agenda Industrial Flash Storage Overview Performance
AN1819 APPLICATION NOTE Bad Block Management in Single Level Cell NAND Flash Memories
APPLICATION NOTE Bad Block Management in Single Level Cell NAND Flash Memories This Application Note explains how to recognize factory generated Bad Blocks, and to manage Bad Blocks that develop during
