Operating Systems. RAID Redundant Array of Independent Disks. Submitted by Ankur Niyogi 2003EE20367
|
|
|
- Darcy Hall
- 10 years ago
- Views:
Transcription
1 Operating Systems RAID Redundant Array of Independent Disks Submitted by Ankur Niyogi 2003EE20367
2 YOUR DATA IS Do we have backups of all our data???? - The stuff we cannot afford to lose?? How often do we do backups??? - Daily, Weekly or Monthly?? Are they magnetic, optical or physical?? How long would it take to totally recover from the disaster???
3 FLOW OF PRESENTATION Secondary storage advantages and limitations Increasing Reliability via Redundancy RAID Mirroring and Data-Striping RAID Levels
4 Secondary Storage Devices Significant role in storing large amount of data as memory is expensive Plays a vital role when disk is used as virtual memory Magnetic in nature Characteristically uses a moving head disk mechanism to read and write data
5 RAID : Redundant Array of Inexpensive Disks Performance limitation of Disks: - Performance of a single disk is very limited Throughput : 125 reqs/s Bandwidth : MB/s (max) 15-30MB/s (sustained) Very difficult to significantly improve the performance of disk drives - Disks are electromechanical devices Speed gap between disks and CPU/Memory is widening - CPU speed 60% / year - Disks speed 10-15% / year Improvement in disk technologies is still very impressive BUT only in the capacity / cost area.
6 What does RAID stand for? In 1987, Patterson, Gibson and Katz at the University of California Berkeley, published a paper entitled A Case for Redundant Array of Inexpensive Disks(RAID). Described the various types of Disk Arrays, referred to as the acronym RAID. The basic idea of RAID was to combine multiple, small inexpensive disks drive into an array of disk drives which yields performance exceeding that of a Single, Large Expensive Drive(SLED). Additionally this array of drives appear to the computer as a single logical storage unit or drive.
7 Improvement of Reliability via Redundancy In a SLED Reliabity becomes a big problem as the data in an entire disk may be lost. As the number of disks per component increases, the probability of failure also increases. - Suppose a (reliable) disk fails every 100,000 hrs. Reliabity of a disk in an array of N disks = Reliability of 1 disk / N hrs / 100 = 1000 hrs = days!! Solution? Redundancy
8 Redundancy Mirroring Data Striping
9 Mirroring Duplicate every disk Logical disk consists of two physical disks. Every write is carried out on both disks. If one of the disk fails, data read from the other Data permanently lost only if the second disk fails before the first failed disk is replaced.
10 Reliability in Mirroring Suppose mean time to repair is 10 hrs, the mean time to data loss of a mirrored disk system is 100,000 ^ 2 / (2 * 10) hrs ~ 57,000 years! Main disadvantage : Most expensive approach.
11 Parallel Disk Systems We cannot improve the disk performance significantly as a single drive - But many applications require high performance storage systems? Solutions : - Parallel Disk Systems - Higher Reliability and Higher data-transfer rate.
12 DATA STRIPING Fundamental to RAID A method of concatenating multiple drives into one logical storage unit. Splitting the bits of each byte across multiple disks : bit level striping e.g. an array of eight disks, write bit i of each byte to disk I Sectors are eight times the normal size Eight times the access rate Similarly for blocks of file, block-level striping
13 Logical to Physical Data mapping for striping strip 0 strip 1 strip 2 Physical Disk 0 Physical Disk 1 Physical Disk 2 Physical Disk 3 strip 3 strip 4 strip 5 strip 6 strip 0 strip 4 strip 8 strip 12 strip 1 strip 5 strip 9 strip 13 strip 2 strip 6 strip 10 strip 14 strip 3 strip 7 strip 11 strip 15 strip 7 strip 8 strip 9 strip 10 strip11 strip 12 strip 13 strip 14 strip 15
14 RAID LEVELS Data are distributed across the array of disk drives Redundant disk capacity is used to store parity information, which guarantees data recoverability in case of a disk failure Levels decided according to schemes to provide redundancy at lower cost by using striping and parity bits Different cost-performance trade-offs
15 RAID 0 Striping at the level of blocks Data split across in drives resulting in higher data throughput Performance is very good but the failure of any disk in the array results in data loss RAID 0 commonly referred to as striping Reliability Problems : No mirroring or parity bits
16 RAID 1 Introduce redundancy through mirroring Expensive Performance Issues -- No data loss if either drive fails Good read performance Reasonable write performance Cost / MB is high Commonly referred to as mirroring
17 RAID 1(Mirrored) strip 0 strip 1 strip 2 strip 3 strip 4 strip 5 strip 6 strip 7 strip 8 strip 9 strip 10 strip 11 strip 12 strip 13 strip 14 strip 15 strip 0 strip 1 strip 2 strip 3 strip 4 strip 5 strip 6 strip 7 strip 8 strip 9 strip 10 strip 11 strip 12 strip 13 strip 14 strip 15
18 RAID 2 Uses Hamming (or any other) error-correcting code (ECC) Intended for use in drives which do not have built-in error detection Central idea is if one of the disks fail the remaining bits of the byte and the associated ECC bits can be used to reconstruct the data Not very popular b 0 b 2 f 0 (b) f 1 (b) f 2 (b) b 1 b 2
19 RAID 3 Improves upon RAID 2, known as Bit-Interleaved Parity Disk Controllers can detect whether a sector has been read correctly. Storage overhead is reduced only 1 parity disk Expense of computing and writing parity Need to include a dedicated parity hardware b 0 b 1 b 2 b 2 P(b)
20 RAID 4 Stripes data at a block level across several drives, with parity stored on one drive - block-interleaved parity Allows recovery from the failure of any of the disks Performance is very good for reads Writes require that parity data be updated each time. Slows small random writes but large writes are fairly fast block 0 block 1 block 2 block 3 P(0-3) block 4 block 5 block 6 block 7 P(4-7) block 8 block 9 block 10 block 11 P(8-11) block 12 block 13 block 14 block 15 P(12-15)
21 RAID 5 Block-interleaved Distributed parity Spreads data and parity among all N+1 disks, rather than storing data in N disks and parity in 1 disk Avoids potential overuse of a single parity disk improvement over RAID 4 Most common parity RAID system block 0 block 1 block 2 block 3 P(0-3) block 4 block 5 block 6 P(4-7) block 7 block 8 block 9 P(8-11) block 10 block 11 block 12 P(12-15) block 13 block 14 block 15 P(16-19) block 16 block 17 block 18 block 19
22 P+Q Redundancy RAID 6
23 RAID(0+1) and RAID(1+0)
24 RAID 10 Advantages Highly fault tolerant High data availability Very good read / write performance Disadvantages Very expensive Applications Where high performance and redundancy are critical
25 Selecting a RAID Level RAID 0 High-Performance applications where data loss is not critical RAID 1 High Reliability with fast recovery RAID 10/01 Both performance and reliability are important, e.g. in small databases RAID 5 Preferred for storing large volumes of data RAID 6 Not Supported currently by many RAID implementations
26 References r61505.csie.nctu.edu.tw/og/project/extra6-ch8-raid.ppt 3. A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts, 7th Edition, John Wiley & Sons, 2005
technology brief RAID Levels March 1997 Introduction Characteristics of RAID Levels
technology brief RAID Levels March 1997 Introduction RAID is an acronym for Redundant Array of Independent Disks (originally Redundant Array of Inexpensive Disks) coined in a 1987 University of California
Lecture 36: Chapter 6
Lecture 36: Chapter 6 Today s topic RAID 1 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f. one large disk) Parallelism improves performance Plus extra disk(s) for
PIONEER RESEARCH & DEVELOPMENT GROUP
SURVEY ON RAID Aishwarya Airen 1, Aarsh Pandit 2, Anshul Sogani 3 1,2,3 A.I.T.R, Indore. Abstract RAID stands for Redundant Array of Independent Disk that is a concept which provides an efficient way for
RAID. Storage-centric computing, cloud computing. Benefits:
RAID Storage-centric computing, cloud computing. Benefits: Improved reliability (via error correcting code, redundancy). Improved performance (via redundancy). Independent disks. RAID Level 0 Provides
Reliability and Fault Tolerance in Storage
Reliability and Fault Tolerance in Storage Dalit Naor/ Dima Sotnikov IBM Haifa Research Storage Systems 1 Advanced Topics on Storage Systems - Spring 2014, Tel-Aviv University http://www.eng.tau.ac.il/semcom
CS420: Operating Systems
NK YORK COLLEGE OF PENNSYLVANIA HG OK 2 RAID YORK COLLEGE OF PENNSYLVAN James Moscola Department of Physical Sciences York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz,
How To Write A Disk Array
200 Chapter 7 (This observation is reinforced and elaborated in Exercises 7.5 and 7.6, and the reader is urged to work through them.) 7.2 RAID Disks are potential bottlenecks for system performance and
Price/performance Modern Memory Hierarchy
Lecture 21: Storage Administration Take QUIZ 15 over P&H 6.1-4, 6.8-9 before 11:59pm today Project: Cache Simulator, Due April 29, 2010 NEW OFFICE HOUR TIME: Tuesday 1-2, McKinley Last Time Exam discussion
CS 6290 I/O and Storage. Milos Prvulovic
CS 6290 I/O and Storage Milos Prvulovic Storage Systems I/O performance (bandwidth, latency) Bandwidth improving, but not as fast as CPU Latency improving very slowly Consequently, by Amdahl s Law: fraction
RAID. RAID 0 No redundancy ( AID?) Just stripe data over multiple disks But it does improve performance. Chapter 6 Storage and Other I/O Topics 29
RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f. one large disk) Parallelism improves performance Plus extra disk(s) for redundant data storage Provides fault tolerant
Data Storage - II: Efficient Usage & Errors
Data Storage - II: Efficient Usage & Errors Week 10, Spring 2005 Updated by M. Naci Akkøk, 27.02.2004, 03.03.2005 based upon slides by Pål Halvorsen, 12.3.2002. Contains slides from: Hector Garcia-Molina
RAID. Contents. Definition and Use of the Different RAID Levels. The different RAID levels: Definition Cost / Efficiency Reliability Performance
RAID Definition and Use of the Different RAID Levels Contents The different RAID levels: Definition Cost / Efficiency Reliability Performance Further High Availability Aspects Performance Optimization
Input / Ouput devices. I/O Chapter 8. Goals & Constraints. Measures of Performance. Anatomy of a Disk Drive. Introduction - 8.1
Introduction - 8.1 I/O Chapter 8 Disk Storage and Dependability 8.2 Buses and other connectors 8.4 I/O performance measures 8.6 Input / Ouput devices keyboard, mouse, printer, game controllers, hard drive,
Dependable Systems. 9. Redundant arrays of. Prof. Dr. Miroslaw Malek. Wintersemester 2004/05 www.informatik.hu-berlin.de/rok/zs
Dependable Systems 9. Redundant arrays of inexpensive disks (RAID) Prof. Dr. Miroslaw Malek Wintersemester 2004/05 www.informatik.hu-berlin.de/rok/zs Redundant Arrays of Inexpensive Disks (RAID) RAID is
Chapter 6. 6.1 Introduction. Storage and Other I/O Topics. p. 570( 頁 585) Fig. 6.1. I/O devices can be characterized by. I/O bus connections
Chapter 6 Storage and Other I/O Topics 6.1 Introduction I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections
Chapter 6 External Memory. Dr. Mohamed H. Al-Meer
Chapter 6 External Memory Dr. Mohamed H. Al-Meer 6.1 Magnetic Disks Types of External Memory Magnetic Disks RAID Removable Optical CD ROM CD Recordable CD-R CD Re writable CD-RW DVD Magnetic Tape 2 Introduction
Striped Set, Advantages and Disadvantages of Using RAID
Algorithms and Methods for Distributed Storage Networks 4: Volume Manager and RAID Institut für Informatik Wintersemester 2007/08 RAID Redundant Array of Independent Disks Patterson, Gibson, Katz, A Case
RAID Overview: Identifying What RAID Levels Best Meet Customer Needs. Diamond Series RAID Storage Array
ATTO Technology, Inc. Corporate Headquarters 155 Crosspoint Parkway Amherst, NY 14068 Phone: 716-691-1999 Fax: 716-691-9353 www.attotech.com [email protected] RAID Overview: Identifying What RAID Levels
Storing Data: Disks and Files
Storing Data: Disks and Files (From Chapter 9 of textbook) Storing and Retrieving Data Database Management Systems need to: Store large volumes of data Store data reliably (so that data is not lost!) Retrieve
IBM ^ xseries ServeRAID Technology
IBM ^ xseries ServeRAID Technology Reliability through RAID technology Executive Summary: t long ago, business-critical computing on industry-standard platforms was unheard of. Proprietary systems were
RAID HARDWARE. On board SATA RAID controller. RAID drive caddy (hot swappable) SATA RAID controller card. Anne Watson 1
RAID HARDWARE On board SATA RAID controller SATA RAID controller card RAID drive caddy (hot swappable) Anne Watson 1 RAID The word redundant means an unnecessary repetition. The word array means a lineup.
How To Create A Multi Disk Raid
Click on the diagram to see RAID 0 in action RAID Level 0 requires a minimum of 2 drives to implement RAID 0 implements a striped disk array, the data is broken down into blocks and each block is written
What is RAID and how does it work?
What is RAID and how does it work? What is RAID? RAID is the acronym for either redundant array of inexpensive disks or redundant array of independent disks. When first conceived at UC Berkley the former
Module 6. RAID and Expansion Devices
Module 6 RAID and Expansion Devices Objectives 1. PC Hardware A.1.5 Compare and contrast RAID types B.1.8 Compare expansion devices 2 RAID 3 RAID 1. Redundant Array of Independent (or Inexpensive) Disks
Why disk arrays? CPUs speeds increase faster than disks. - Time won t really help workloads where disk in bottleneck
1/19 Why disk arrays? CPUs speeds increase faster than disks - Time won t really help workloads where disk in bottleneck Some applications (audio/video) require big files Disk arrays - make one logical
CS 61C: Great Ideas in Computer Architecture. Dependability: Parity, RAID, ECC
CS 61C: Great Ideas in Computer Architecture Dependability: Parity, RAID, ECC Instructor: Justin Hsia 8/08/2013 Summer 2013 Lecture #27 1 Review of Last Lecture MapReduce Data Level Parallelism Framework
RAID Technology Overview
RAID Technology Overview HP Smart Array RAID Controllers HP Part Number: J6369-90050 Published: September 2007 Edition: 1 Copyright 2007 Hewlett-Packard Development Company L.P. Legal Notices Copyright
How to choose the right RAID for your Dedicated Server
Overview of RAID Let's first address, "What is RAID and what does RAID stand for?" RAID, an acronym for "Redundant Array of Independent Disks, is a storage technology that links or combines multiple hard
An Introduction to RAID. Giovanni Stracquadanio [email protected] www.dmi.unict.it/~stracquadanio
An Introduction to RAID Giovanni Stracquadanio [email protected] www.dmi.unict.it/~stracquadanio Outline A definition of RAID An ensemble of RAIDs JBOD RAID 0...5 Configuring and testing a Linux
RAID Made Easy By Jon L. Jacobi, PCWorld
9916 Brooklet Drive Houston, Texas 77099 Phone 832-327-0316 www.safinatechnolgies.com RAID Made Easy By Jon L. Jacobi, PCWorld What is RAID, why do you need it, and what are all those mode numbers that
W4118: RAID. Instructor: Junfeng Yang
W4118: RAID Instructor: Junfeng Yang References: Modern Operating Systems (3 rd edition), Operating Systems Concepts (8 th edition), previous W4118, and OS at MIT, Stanford, and UWisc RAID motivation Performance
1 Storage Devices Summary
Chapter 1 Storage Devices Summary Dependability is vital Suitable measures Latency how long to the first bit arrives Bandwidth/throughput how fast does stuff come through after the latency period Obvious
Physical Data Organization
Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor
Summer Student Project Report
Summer Student Project Report Dimitris Kalimeris National and Kapodistrian University of Athens June September 2014 Abstract This report will outline two projects that were done as part of a three months
Disk Storage & Dependability
Disk Storage & Dependability Computer Organization Architectures for Embedded Computing Wednesday 19 November 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition,
DELL RAID PRIMER DELL PERC RAID CONTROLLERS. Joe H. Trickey III. Dell Storage RAID Product Marketing. John Seward. Dell Storage RAID Engineering
DELL RAID PRIMER DELL PERC RAID CONTROLLERS Joe H. Trickey III Dell Storage RAID Product Marketing John Seward Dell Storage RAID Engineering http://www.dell.com/content/topics/topic.aspx/global/products/pvaul/top
Hard Disk Drives and RAID
Hard Disk Drives and RAID Janaka Harambearachchi (Engineer/Systems Development) INTERFACES FOR HDD A computer interfaces is what allows a computer to send and retrieve information for storage devices such
RAID: Redundant Arrays of Independent Disks
RAID: Redundant Arrays of Independent Disks Dependable Systems Dr.-Ing. Jan Richling Kommunikations- und Betriebssysteme TU Berlin Winter 2012/2013 RAID: Introduction Redundant array of inexpensive disks
VERY IMPORTANT NOTE! - RAID
Disk drives are an integral part of any computing system. Disk drives are usually where the operating system and all of an enterprise or individual s data are stored. They are also one of the weakest links
RAID Basics Training Guide
RAID Basics Training Guide Discover a Higher Level of Performance RAID matters. Rely on Intel RAID. Table of Contents 1. What is RAID? 2. RAID Levels RAID 0 RAID 1 RAID 5 RAID 6 RAID 10 RAID 0+1 RAID 1E
Fault Tolerance & Reliability CDA 5140. Chapter 3 RAID & Sample Commercial FT Systems
Fault Tolerance & Reliability CDA 5140 Chapter 3 RAID & Sample Commercial FT Systems - basic concept in these, as with codes, is redundancy to allow system to continue operation even if some components
Why disk arrays? CPUs improving faster than disks
Why disk arrays? CPUs improving faster than disks - disks will increasingly be bottleneck New applications (audio/video) require big files (motivation for XFS) Disk arrays - make one logical disk out of
CS 153 Design of Operating Systems Spring 2015
CS 153 Design of Operating Systems Spring 2015 Lecture 22: File system optimizations Physical Disk Structure Disk components Platters Surfaces Tracks Arm Track Sector Surface Sectors Cylinders Arm Heads
RAID Performance Analysis
RAID Performance Analysis We have six 500 GB disks with 8 ms average seek time. They rotate at 7200 RPM and have a transfer rate of 20 MB/sec. The minimum unit of transfer to each disk is a 512 byte sector.
IncidentMonitor Server Specification Datasheet
IncidentMonitor Server Specification Datasheet Prepared by Monitor 24-7 Inc October 1, 2015 Contact details: [email protected] North America: +1 416 410.2716 / +1 866 364.2757 Europe: +31 088 008.4600
CS161: Operating Systems
CS161: Operating Systems Matt Welsh [email protected] Lecture 18: RAID April 19, 2007 2007 Matt Welsh Harvard University 1 RAID Redundant Arrays of Inexpensive Disks Invented in 1986-1987 by David Patterson
California Software Labs
WHITE PAPERS FEBRUARY 2006 California Software Labs CSWL INC R e a l i z e Y o u r I d e a s Redundant Array of Inexpensive Disks (RAID) Redundant Array of Inexpensive Disks (RAID) aids development of
RAID. Tiffany Yu-Han Chen. # The performance of different RAID levels # read/write/reliability (fault-tolerant)/overhead
RAID # The performance of different RAID levels # read/write/reliability (fault-tolerant)/overhead Tiffany Yu-Han Chen (These slides modified from Hao-Hua Chu National Taiwan University) RAID 0 - Striping
Introduction. What is RAID? The Array and RAID Controller Concept. Click here to print this article. Re-Printed From SLCentral
Click here to print this article. Re-Printed From SLCentral RAID: An In-Depth Guide To RAID Technology Author: Tom Solinap Date Posted: January 24th, 2001 URL: http://www.slcentral.com/articles/01/1/raid
Definition of RAID Levels
RAID The basic idea of RAID (Redundant Array of Independent Disks) is to combine multiple inexpensive disk drives into an array of disk drives to obtain performance, capacity and reliability that exceeds
Sistemas Operativos: Input/Output Disks
Sistemas Operativos: Input/Output Disks Pedro F. Souto ([email protected]) April 28, 2012 Topics Magnetic Disks RAID Solid State Disks Topics Magnetic Disks RAID Solid State Disks Magnetic Disk Construction
RAID Overview 91.520
RAID Overview 91.520 1 The Motivation for RAID Computing speeds double every 3 years Disk speeds can t keep up Data needs higher MTBF than any component in system IO Performance and Availability Issues!
Filing Systems. Filing Systems
Filing Systems At the outset we identified long-term storage as desirable characteristic of an OS. EG: On-line storage for an MIS. Convenience of not having to re-write programs. Sharing of data in an
SSDs and RAID: What s the right strategy. Paul Goodwin VP Product Development Avant Technology
SSDs and RAID: What s the right strategy Paul Goodwin VP Product Development Avant Technology SSDs and RAID: What s the right strategy Flash Overview SSD Overview RAID overview Thoughts about Raid Strategies
Block1. Block2. Block3. Block3 Striping
Introduction to RI Team members: 電 機 一 94901150 王 麒 鈞, 電 機 一 94901151 吳 炫 逸, 電 機 一 94901154 孫 維 隆. Motivation Gosh, my hard disk is broken again, and my computer can t boot normally. I even have no chance
RAID Technology. RAID Overview
Technology In the 1980s, hard-disk drive capacities were limited and large drives commanded a premium price. As an alternative to costly, high-capacity individual drives, storage system developers began
RAID Level Descriptions. RAID 0 (Striping)
RAID Level Descriptions RAID 0 (Striping) Offers low cost and maximum performance, but offers no fault tolerance; a single disk failure results in TOTAL data loss. Businesses use RAID 0 mainly for tasks
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 13-1
Slide 13-1 Chapter 13 Disk Storage, Basic File Structures, and Hashing Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files Hashed Files Dynamic and Extendible
an analysis of RAID 5DP
an analysis of RAID 5DP a qualitative and quantitative comparison of RAID levels and data protection hp white paper for information about the va 7000 series and periodic updates to this white paper see
Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 412, University of Maryland. Guest lecturer: David Hovemeyer.
Guest lecturer: David Hovemeyer November 15, 2004 The memory hierarchy Red = Level Access time Capacity Features Registers nanoseconds 100s of bytes fixed Cache nanoseconds 1-2 MB fixed RAM nanoseconds
Disks and RAID. Profs. Bracy and Van Renesse. based on slides by Prof. Sirer
Disks and RAID Profs. Bracy and Van Renesse based on slides by Prof. Sirer 50 Years Old! 13th September 1956 The IBM RAMAC 350 Stored less than 5 MByte Reading from a Disk Must specify: cylinder # (distance
File System & Device Drive. Overview of Mass Storage Structure. Moving head Disk Mechanism. HDD Pictures 11/13/2014. CS341: Operating System
CS341: Operating System Lect 36: 1 st Nov 2014 Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati File System & Device Drive Mass Storage Disk Structure Disk Arm Scheduling RAID
Chapter 13 Disk Storage, Basic File Structures, and Hashing.
Chapter 13 Disk Storage, Basic File Structures, and Hashing. Copyright 2004 Pearson Education, Inc. Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files
Chapter 13. Chapter Outline. Disk Storage, Basic File Structures, and Hashing
Chapter 13 Disk Storage, Basic File Structures, and Hashing Copyright 2007 Ramez Elmasri and Shamkant B. Navathe Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files
What is RAID--BASICS? Mylex RAID Primer. A simple guide to understanding RAID
What is RAID--BASICS? Mylex RAID Primer A simple guide to understanding RAID Let's look at a hard disk... Several platters stacked on top of each other with a little space in between. One to n platters
How To Improve Performance On A Single Chip Computer
: Redundant Arrays of Inexpensive Disks this discussion is based on the paper:» A Case for Redundant Arrays of Inexpensive Disks (),» David A Patterson, Garth Gibson, and Randy H Katz,» In Proceedings
Storage and File Structure
Storage and File Structure Chapter 10: Storage and File Structure Overview of Physical Storage Media Magnetic Disks RAID Tertiary Storage Storage Access File Organization Organization of Records in Files
Overview of I/O Performance and RAID in an RDBMS Environment. By: Edward Whalen Performance Tuning Corporation
Overview of I/O Performance and RAID in an RDBMS Environment By: Edward Whalen Performance Tuning Corporation Abstract This paper covers the fundamentals of I/O topics and an overview of RAID levels commonly
CSE 120 Principles of Operating Systems
CSE 120 Principles of Operating Systems Fall 2004 Lecture 13: FFS, LFS, RAID Geoffrey M. Voelker Overview We ve looked at disks and file systems generically Now we re going to look at some example file
RAID Storage, Network File Systems, and DropBox
RAID Storage, Network File Systems, and DropBox George Porter CSE 124 February 24, 2015 * Thanks to Dave Patterson and Hong Jiang Announcements Project 2 due by end of today Office hour today 2-3pm in
Chapter 9: Peripheral Devices: Magnetic Disks
Chapter 9: Peripheral Devices: Magnetic Disks Basic Disk Operation Performance Parameters and History of Improvement Example disks RAID (Redundant Arrays of Inexpensive Disks) Improving Reliability Improving
Assessing RAID ADG vs. RAID 5 vs. RAID 1+0
White Paper October 2001 Prepared by Industry Standard Storage Group Compaq Computer Corporation Contents Overview...3 Defining RAID levels...3 Evaluating RAID levels...3 Choosing a RAID level...4 Assessing
File System Design and Implementation
Transactions and Reliability Sarah Diesburg Operating Systems CS 3430 Motivation File systems have lots of metadata: Free blocks, directories, file headers, indirect blocks Metadata is heavily cached for
Chapter 10: Mass-Storage Systems
Chapter 10: Mass-Storage Systems Physical structure of secondary storage devices and its effects on the uses of the devices Performance characteristics of mass-storage devices Disk scheduling algorithms
Storage Options for Document Management
Storage Options for Document Management Document management and imaging systems store large volumes of data, which must be maintained for long periods of time. Choosing storage is not simply a matter of
Lecture 23: Multiprocessors
Lecture 23: Multiprocessors Today s topics: RAID Multiprocessor taxonomy Snooping-based cache coherence protocol 1 RAID 0 and RAID 1 RAID 0 has no additional redundancy (misnomer) it uses an array of disks
Chapter 13. Disk Storage, Basic File Structures, and Hashing
Chapter 13 Disk Storage, Basic File Structures, and Hashing Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files Hashed Files Dynamic and Extendible Hashing
An Introduction to RAID 6 ULTAMUS TM RAID
An Introduction to RAID 6 ULTAMUS TM RAID The highly attractive cost per GB of SATA storage capacity is causing RAID products based on the technology to grow in popularity. SATA RAID is now being used
VAIO Computer Recovery Options Guide
VAIO Computer Recovery Options Guide This guide provides information about restoring individual software programs, software drivers, drive partition(s), or the hard disk drive to the original factory settings.
William Stallings Computer Organization and Architecture 7 th Edition. Chapter 6 External Memory
William Stallings Computer Organization and Architecture 7 th Edition Chapter 6 External Memory Types of External Memory Magnetic Disk RAID Removable Optical CD-ROM CD-Recordable (CD-R) CD-R/W DVD Magnetic
RAID technology and IBM TotalStorage NAS products
IBM TotalStorage Network Attached Storage October 2001 RAID technology and IBM TotalStorage NAS products By Janet Anglin and Chris Durham Storage Networking Architecture, SSG Page No.1 Contents 2 RAID
EMC Backup and Recovery for Microsoft SQL Server 2008 Enabled by EMC Celerra Unified Storage
EMC Backup and Recovery for Microsoft SQL Server 2008 Enabled by EMC Celerra Unified Storage Applied Technology Abstract This white paper describes various backup and recovery solutions available for SQL
Guide to SATA Hard Disks Installation and RAID Configuration
Guide to SATA Hard Disks Installation and RAID Configuration 1. Guide to SATA Hard Disks Installation...2 1.1 Serial ATA (SATA) Hard Disks Installation...2 2. Guide to RAID Configurations...3 2.1 Introduction
RAID Storage System of Standalone NVR
ACTi Knowledge Base Category: Installation & Configuration Note Sub-category: Hardware; Recording & Storage Model: XNR-4200, GNR-2000 Firmware: Software: Author: Ando.Meritee Published: 2011/05/04 Reviewed:
Outline. Database Management and Tuning. Overview. Hardware Tuning. Johann Gamper. Unit 12
Outline Database Management and Tuning Hardware Tuning Johann Gamper 1 Free University of Bozen-Bolzano Faculty of Computer Science IDSE Unit 12 2 3 Conclusion Acknowledgements: The slides are provided
Chapter 11 I/O Management and Disk Scheduling
Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization
Hardware Configuration Guide
Hardware Configuration Guide Contents Contents... 1 Annotation... 1 Factors to consider... 2 Machine Count... 2 Data Size... 2 Data Size Total... 2 Daily Backup Data Size... 2 Unique Data Percentage...
BrightStor ARCserve Backup for Windows
BrightStor ARCserve Backup for Windows Tape RAID Option Guide r11.5 D01183-1E This documentation and related computer software program (hereinafter referred to as the "Documentation") is for the end user's
Availability and Disaster Recovery: Basic Principles
Availability and Disaster Recovery: Basic Principles by Chuck Petch, WVS Senior Technical Writer At first glance availability and recovery may seem like opposites. Availability involves designing computer
