A note on the boundary behavior for a modiﬁed Green function in the upperhalf space


 Easter Fowler
 2 years ago
 Views:
Transcription
1 Zhag ad Pisarev Boudary Value Problems (015) 015:114 DOI /s z RESEARCH Ope Access A ote o the boudary behavior for a modiﬁed Gree fuctio i the upperhalf space Yulia Zhag1 ad Valery Pisarev* * Correspodece: Faculty of Sciece ad Techology, Uiversity of Wollogog, Wollogog, NSW 5, Australia Full list of author iformatio is available at the ed of the article Abstract Motivated by (Xu et al. i Boud. Value Probl. 013:6, 013) ad (Yag ad Re i Proc. Idia Acad. Sci. Math. Sci. 14(): , 014), i this paper we aim to costruct a modiﬁed Gree fuctio i the upperhalf space of the dimesioal Euclidea space, which geeralizes the boudary property of geeral Gree potetial. Keywords: modiﬁed Gree fuctio; capacity; upperhalf space 1 Itroductio ad mai results Let R ( ) deote the dimesioal Euclidea space. The upper halfspace H is the set H = x = (x, x,..., x ) R : x > }, whose boudary ad closure are H ad H respectively. For x R ad r >, let B(x, r) deote the ope ball with ceter at x ad radius r. Set Eα (x) = log x if α = =, if < α <. x α Let Gα be the Gree fuctio of order α for H, that is, Gα (x, y) = Eα (x y) Eα x y, x, y H, x = y, < α, where deotes reﬂectio i the boudary plae H just as y = (y, y,..., y ). I case α = =, we cosider the modiﬁed erel fuctio, which is deﬁed by E,m (x y) = E (x y) E (x y) + (log y m if y <, x = ( y )) if y. I case < α <, we deﬁe Eα,m (x y) = Eα (x y) Eα (x y) m α x = y α+ C if y <, x y ( x y ) if y, 015 Zhag ad Pisarev. This article is distributed uder the terms of the Creative Commos Attributio 4.0 Iteratioal Licese (http://creativecommos.org/liceses/by/4.0/), which permits urestricted use, distributio, ad reproductio i ay medium, provided you give appropriate credit to the origial author(s) ad the source, provide a li to the Creative Commos licese, ad idicate if chages were made.
2 Zhag ad Pisarev Boudary Value Problems (015) 015:114 Page of 7 where m is a oegative iteger, C ω α (t) (ω = ) is the ultraspherical (or Gegebauer) polyomial (see [1]). The expressio arises from the geeratig fuctio for Gegebauer polyomials ( 1 tr + r ) ω = C ω (t)r, (1.1) =0 where r <1, t 1adω > 0. The coefficiet C ω (t) is called the ultraspherical (or Gegebauer) polyomial of degree associated with ω, the fuctio C ω (t) isapolyomial of degree i t. The we defie the modified Gree fuctio G α,m (x, y)by G α,m (x, y)= E,m+1 (x y) E,m+1 (x y ) ifα = =, E α,m+1 (x y) E α,m+1 (x y ) if0<α <, where x, y H ad x y. We remar that this modified Gree fuctio is also used to give uique solutios of the Neuma ad Dirichlet problem i the upperhalf space [ 4]. Write G α,m (x, μ)= G α,m (x, y), H where μ is a oegative measure o H. HereotethatG,0 (x, μ) is othig but the geeral Gree potetial. Let be a oegative Borel measurable fuctio o R R,adset (y, μ)= (y, x) dμ(x) ad (μ, x)= (y, x) E E for a oegative measure μ o a Borel set E R.WedefieacapacityC by C (E)=sup μ ( R ), E H, where the supremum is tae over all oegative measures μ such that S μ (the support of μ) is cotaied i E ad (y, μ) 1foreveryy H. For β 0, δ 0adβ δ, we cosider the erel fuctio α,β,δ (y, x)=x β y δ G α(x, y). Now we prove the followig result. For related results i a smooth coe ad tube, we refer the reader to the papers by Qiao (see [5, 6]) ad LiaoSu (see [7]), respectively. The readers may also fid some related iterestig results with respect to the Schrödiger operator i the papers by Su (see [8]), by Polidoro ad Ragusa (see [9]) ad the refereces therei. Theorem Let + m α + δ + 0. If μ is a oegative measure o H satisfyig H <, (1.) +m α+δ+
3 Zhag ad Pisarev Boudary Value Problems (015) 015:114 Page 3 of 7 the there exists a Borel set E H with properties: x α β+δ+1 (1) lim x 0,x H E (1 + x ) G α,m(x, μ)=0; +m α+δ+ () i( α+β+δ) C α,β,δ (E i )<, i=1 where E i = x E : i x < i+1 }. Remar By usig Lemma 4 below, coditio () i Theorem with α =,β =0,δ =0 meas that E is thi at H i the sese of [10]. Some lemmas Throughout this paper, let M deote various costats idepedet of the variables i questios, which may be differet from lie to lie. Lemma 1 There exists a positive costat M such that G α (x, y) M, where 0< x y α+ α, x =(x 1, x,...,x ) ad y =(y 1, y,...,y ) i H. This ca be proved by a simple calculatio. Lemma Gegebauer polyomials have the followig properties: (1) C ω(t) Cω Ɣ(ω+) (1) = Ɣ(ω)Ɣ(+1), t 1; d () dt Cω (t)=ωcω+1 1 (t), 1; (3) =0 Cω (1)r =(1 r) ω ; (4) C α (t) C α (t ) ( α)c α+ 1 (1) t t, t 1, t 1. Proof (1) ad () ca be derived from [1], p.3. Equality (3) follows from expressio (1.1) by taig t = 1; property (4) is a easy cosequece of the mea value theorem, (1) ad also (). Lemma 3 For x, y R (α = =),we have the followig properties: (1) I m =0 x m 1 x x y +1 =0 ; y + () I =0 x+m+1 m+1 x y x m ; (3) G,m (x, y) G (x, y) M m x y x 1 =1 ; y +1 (4) G,m (x, y) M x y x 1 =m+1. y +1 The followig lemma ca be proved by usig Fuglede (see [11], Théorèm 7.8). Lemma 4 For ay Borel set E i H, we have C α (E)=Ĉ α (E), where Ĉ α (E)=if λ(h), α = α,0,0, the ifimum beig tae over all oegative measures λ o H such that α (λ, x) 1 for every x E. Followig [10], we say that a set E H is αthi at the boudary H if i( α) C α (E i )<, i=1 where E i = x E : i x < i+1 }. x y
4 Zhag ad Pisarev Boudary Value Problems (015) 015:114 Page 4 of 7 3 Proof of Theorem We write [ G α,m (x, μ)= G α (x, y) + G α (x, y) + Gα,m (x, y) G α (x, y) ] G 1 G G 3 + G α,m (x, y) + G α,m (x, y) G 4 G 5 = U 1 (x)+u (x)+u 3 (x)+u 4 (x)+u 5 (x), where G 1 = y H : x y x }, G = y H : y 1, x } < x y 3 x, G 3 = y H : y 1, x y 3 x }, G 4 = y H : y 1, x y >3 x }, G 5 = y H : y <1, x y > x }. We distiguish the followig two cases. Case 1. 0 < α <. By assumptio (1.)wecafidasequecea i } of positive umbers such that lim i a i = ad i=1 a ib i <,where b i = y H: i 1 <y < i+ } Cosider the sets +m α+δ+. E i = x H : i x < i+1 x α β+δ+1 }, (1 + x ) U 1(x) a 1 +m α+δ+ i (i 1)β for i =1,,...Set G = ( B x, x ). x E i The G y H : i 1 < y < i+ }.Letν be a oegative measure o H such that S ν E i,wheres ν is the support of ν.thewehave α,β,δ (y, ν) 1fory H ad H dν a i ( i+1)β x α β+δ+1 H (1 + x ) U 1(x) dν(x) +m α+δ+ Ma i ( i+1)β ( i+1)( α+δ+1) α,β,δ (y, ν) G Ma i ( i+1)β ( i+1)( α+δ+1) i+1 M α+β+δ+ i( α+β+δ) a i b i. y H: i 1 <y < i+ } y δ +m α+δ+ +m α+δ+
5 Zhag ad Pisarev Boudary Value Problems (015) 015:114 Page 5 of 7 So that C α,β,δ (E i ) M i( α+β+δ) a i b i, which yields i( α+β+δ) C α,β,δ (E i )<. i=1 Settig E = i=1 E i, we see that () i Theorem is satisfied ad lim x 0,x H E x α β+δ+1 (1 + x ) +m α+δ+ U 1(x)=0. (3.1) For U (x), by Lemma 1 we have U (x) y Mx G x y α+ Mx α 1 x +m α+δ+ 1 G y δ Mx α 1 x +m α+ G +m α+δ+ +m α+δ+. (3.) Note that C0 ω x y (t) 1. By (3) ad (4) i Lemma,wetaet = x y, t = x y x y i Lemma (4) ad obtai U 3 (x) G 3 m =1 Mx x m x α+ ( α)c y α+ 1 (1) x y x y m =1 α+ y C 1 1 (1) G3 δ y +m α+δ+ +m α+δ+ +m α+δ+ Mx x m. (3.3) Similarly, we have by (3) ad (4) i Lemma U4 (x) G 4 =m+1 Mx x m x y α+ ( α)c α+ 1 (1) x y x y =m+1 α+ y C 1 1 (1) G4 δ+1 1 y +m α+δ+ +m α+δ+ +m α+δ+ Mx x m. (3.4) Fially, by Lemma 1,wehave U 5 (x) Mx α 1 G5. (3.5) +m α+δ+
6 Zhag ad Pisarev Boudary Value Problems (015) 015:114 Page 6 of 7 Combiig (3.1), (3.), (3.3), (3.4) ad(3.5), by Lebesgue s domiated covergece theorem, we prove Case 1. Case. α = =. I this case, U 1 (x), U (x) adu 5 (x) cabeprovedsimilarlyasicase1.hereweomit the details ad state the followig facts: lim x 0,x H E x δ β+1 (1 + x ) m+δ+ U 1(x)=0, (3.6) where E = i=1 E i ad i=1 i(β+δ) C α,β,δ (E i )<, lim x 0,x H x δ β+1 (1 + x ) m+δ+ [ U (x)+u 5 (x) ] =0. (3.7) ByLemma 3(3), we obtai U 3 (x) G 3 m x y x 1 =1 Mx x m y +1 m =1 4 1 y m+δ+ G3 m+δ+ m+δ+ Mx x m. (3.8) ByLemma 3(4), we have U4 (x) G 4 =m+1 Mx x m x y x 1 =m+1 y +1 1 y m+δ+ G4 m+δ+ m+δ+ Mx x m. (3.9) Combiig (3.6), (3.7), (3.8)ad(3.9), we provecase. Hece the proof of the theorem is completed. Competig iterests The authors declare that they have o competig iterests. Authors cotributios All authors cotributed equally to the writig of this paper. All authors read ad approved the fial mauscript. Author details 1 College of Mathematics ad Statistics, Hea Istitute of Educatio, Zhegzhou, , Chia. Faculty of Sciece ad Techology, Uiversity of Wollogog, Wollogog, NSW 5, Australia. Acowledgemets The authors are highly grateful for the referees careful readig ad commets o this paper. This wor was completed while the authors were visitig the Departmet of Mathematical Scieces at the Uiversity of Wollogog, ad they are grateful for the id hospitality of the Departmet. Received: 13 April 015 Accepted: 8 May 015
7 Zhag ad Pisarev Boudary Value Problems (015) 015:114 Page 7 of 7 Refereces 1. Szegö, G: Orthogoal Polyomials. America Mathematical Society Colloquium Publicatios, vol. 3. Am. Math. Soc., Providece (1975). Re, YD, Yag, P: Growth estimates for modified Neuma itegrals i a half space. J. Iequal. Appl. 013, 57 (013) 3. Xu, G, Yag, P, Zhao, T: Dirichlet problems of harmoic fuctios. Boud. Value Probl. 013, 6 (013) 4. Yag, DW, Re, YD: Dirichlet problem o the upper half space. Proc. Idia Acad. Sci. Math. Sci. 14(), (014) 5. Qiao, L: Itegral represetatios for harmoic fuctios of ifiite order i a coe. Results Math. 61, 674 (01) 6. Qiao, L, Pa, GS: Geeralizatio of the PhragméLidelöf theorems for subfuctios. It. J. Math. 4(8), (013) 7. Liao, Y, Su, BY: Solutios of the Dirichlet problem i a tube domai. Acta Math. Si. 57(6), (014) 8. Su, BY: Dirichlet problem for the Schrödiger operator i a half space. Abstr. Appl. Aal. 01, Article ID (01) 9. Polidoro, S, Ragusa, MA: Harac iequality for hypoelliptic ultraparabolic equatios with a sigular lower order term. Rev. Mat. Iberoam. 4(3), (008) 10. Armitage, H: Tagetial behavior of Gree potetials ad cotractive properties of L p potetials. Toyo J. Math. 9, 345 (1986) 11. Fuglede, B: Le théorèm du miimax et la théorie fie du potetiel. A. Ist. Fourier 15, (1965)
Asymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationA Note on Sums of Greatest (Least) Prime Factors
It. J. Cotemp. Math. Scieces, Vol. 8, 203, o. 9, 423432 HIKARI Ltd, www.mhikari.com A Note o Sums of Greatest (Least Prime Factors Rafael Jakimczuk Divisio Matemática, Uiversidad Nacioal de Luá Bueos
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationORDERS OF GROWTH KEITH CONRAD
ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus
More informationClass Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES  CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
More informationOn the L p conjecture for locally compact groups
Arch. Math. 89 (2007), 237 242 c 2007 Birkhäuser Verlag Basel/Switzerlad 0003/889X/0302376, ublished olie 2007080 DOI 0.007/s0003007993x Archiv der Mathematik O the L cojecture for locally comact
More informationTHIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK
THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E MCCARTHY, SANDRA POTT, AND BRETT D WICK Abstract We provide a ew proof of Volberg s Theorem characterizig thi iterpolatig sequeces as those for
More informationDegree of Approximation of Continuous Functions by (E, q) (C, δ) Means
Ge. Math. Notes, Vol. 11, No. 2, August 2012, pp. 1219 ISSN 22197184; Copyright ICSRS Publicatio, 2012 www.icsrs.org Available free olie at http://www.gema.i Degree of Approximatio of Cotiuous Fuctios
More informationOur aim is to show that under reasonable assumptions a given 2πperiodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
More informationA Study for the (μ,s) n Relation for Tent Map
Applied Mathematical Scieces, Vol. 8, 04, o. 60, 3009305 HIKARI Ltd, www.mhikari.com http://dx.doi.org/0.988/ams.04.4437 A Study for the (μ,s) Relatio for Tet Map Saba Noori Majeed Departmet of Mathematics
More informationIrreducible polynomials with consecutive zero coefficients
Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem
More informationarxiv: v2 [math.nt] 5 Nov 2013
arxiv:29.64v2 [math.nt] 5 Nov 23 EULER SUMS OF HYPERHARMONIC NUMBERS Ayha Dil Departmet of Mathematics, Adeiz Uiversity, 758 Atalya Turey email: adil@adeiz.edu.tr Khristo N. Boyadzhiev Departmet of Mathematics
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More informationON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE
Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau
More informationTHE HEIGHT OF qbinary SEARCH TREES
THE HEIGHT OF qbinary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average
More information8.5 Alternating infinite series
65 8.5 Alteratig ifiite series I the previous two sectios we cosidered oly series with positive terms. I this sectio we cosider series with both positive ad egative terms which alterate: positive, egative,
More informationFactors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More informationResearch Article Sign Data Derivative Recovery
Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov
More informationModule 4: Mathematical Induction
Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationif A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S,
Lecture 5: Borel Sets Topologically, the Borel sets i a topological space are the σalgebra geerated by the ope sets. Oe ca build up the Borel sets from the ope sets by iteratig the operatios of complemetatio
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationSUMS OF GENERALIZED HARMONIC SERIES. Michael E. Ho man Department of Mathematics, U. S. Naval Academy, Annapolis, Maryland
#A46 INTEGERS 4 (204) SUMS OF GENERALIZED HARMONIC SERIES Michael E. Ho ma Departmet of Mathematics, U. S. Naval Academy, Aapolis, Marylad meh@usa.edu Courtey Moe Departmet of Mathematics, U. S. Naval
More informationA sharp TrudingerMoser type inequality for unbounded domains in R n
A sharp TrudigerMoser type iequality for ubouded domais i R Yuxiag Li ad Berhard Ruf Abstract The TrudigerMoser iequality states that for fuctios u H, 0 (Ω) (Ω R a bouded domai) with Ω u dx oe has Ω
More informationDistributions of Order Statistics
Chapter 2 Distributios of Order Statistics We give some importat formulae for distributios of order statistics. For example, where F k: (x)=p{x k, x} = I F(x) (k, k + 1), I x (a,b)= 1 x t a 1 (1 t) b 1
More information8.3 POLAR FORM AND DEMOIVRE S THEOREM
SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 48 8. POLAR FORM AND DEMOIVRE S THEOREM Figure 8.6 (a, b) b r a 0 θ Complex Number: a + bi Rectagular Form: (a, b) Polar Form: (r, θ) At this poit you ca add,
More informationWHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
More informationA NEW PROOF FOR A CLASSICAL QUADRATIC HARMONIC SERIES. 1. Introduction and the main result
Joural of Classical Aalysis Volume 8, Number (6, 55 6 doi:.753/jca84 A NEW PROOF FOR A CLASSICAL QUADRATIC HARMONIC SERIES CORNEL IOAN VĂLEAN To my parets, Ileaa ad Ioel Abstract. I the followig paper
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationReview of Fourier Series and Its Applications in Mechanical Engineering Analysis
ME 3 Applied Egieerig Aalysis Chapter 6 Review of Fourier Series ad Its Applicatios i Mechaical Egieerig Aalysis TaiRa Hsu, Professor Departmet of Mechaical ad Aerospace Egieerig Sa Jose State Uiversity
More informationA Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationAn example of nonquenched convergence in the conditional central limit theorem for partial sums of a linear process
A example of oqueched covergece i the coditioal cetral limit theorem for partial sums of a liear process Dalibor Volý ad Michael Woodroofe Abstract A causal liear processes X,X 0,X is costructed for which
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationThe Field Q of Rational Numbers
Chapter 3 The Field Q of Ratioal Numbers I this chapter we are goig to costruct the ratioal umber from the itegers. Historically, the positive ratioal umbers came first: the Babyloias, Egyptias ad Grees
More informationActa Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) 77 87. ALMOST SURE FUNCTIONAL LIMIT THEOREMS IN L p( ]0, 1[ ), WHERE 1 p <
Acta Acad. Paed. Agriesis, Sectio Mathematicae 29 22) 77 87 ALMOST SUR FUNCTIONAL LIMIT THORMS IN L ], [ ), WHR < József Túri Nyíregyháza, Hugary) Dedicated to the memory of Professor Péter Kiss Abstract.
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationx(x 1)(x 2)... (x k + 1) = [x] k n+m 1
1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,
More informationLecture 7: Borel Sets and Lebesgue Measure
EE50: Probability Foudatios for Electrical Egieers JulyNovember 205 Lecture 7: Borel Sets ad Lebesgue Measure Lecturer: Dr. Krisha Jagaatha Scribes: Ravi Kolla, Aseem Sharma, Vishakh Hegde I this lecture,
More informationReview for College Algebra Final Exam
Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 14. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More informationON THE DENSE TRAJECTORY OF LASOTA EQUATION
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLIII 2005 ON THE DENSE TRAJECTORY OF LASOTA EQUATION by Atoi Leo Dawidowicz ad Najemedi Haribash Abstract. I preseted paper the dese trajectory
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationrepresented by 4! different arrangements of boxes, divide by 4! to get ways
Problem Set #6 solutios A juggler colors idetical jugglig balls red, white, ad blue (a I how may ways ca this be doe if each color is used at least oce? Let us preemptively color oe ball i each color,
More information23 The Remainder and Factor Theorems
 The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
More information1 n. n > dt. t < n 1 + n=1
Math 05 otes C. Pomerace The harmoic sum The harmoic sum is the sum of recirocals of the ositive itegers. We kow from calculus that it diverges, this is usually doe by the itegral test. There s a more
More informationTHE UNLIKELY UNION OF PARTITIONS AND DIVISORS
THE UNLIKELY UNION OF PARTITIONS AND DIVISORS Abdulkadir Hasse, Thomas J. Osler, Mathematics Departmet ad Tirupathi R. Chadrupatla, Mechaical Egieerig Rowa Uiversity Glassboro, NJ 828 I the multiplicative
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationLecture Notes CMSC 251
We have this messy summatio to solve though First observe that the value remais costat throughout the sum, ad so we ca pull it out frot Also ote that we ca write 3 i / i ad (3/) i T () = log 3 (log ) 1
More informationIntroductory Explorations of the Fourier Series by
page Itroductory Exploratios of the Fourier Series by Theresa Julia Zieliski Departmet of Chemistry, Medical Techology, ad Physics Momouth Uiversity West Log Brach, NJ 7764898 tzielis@momouth.edu Copyright
More informationThe integrals in Gradshteyn and Ryzhik. Part 13: Trigonometric forms of the beta function
SCIENTIA Series A: Mathematical Scieces, Vol 19 (1, 91 96 Uiversidad Técica Federico Sata María Valparaíso, Chile ISSN 7168446 c Uiversidad Técica Federico Sata María 1 The itegrals i Gradshtey ad Ryzhik
More informationEntropy of bicapacities
Etropy of bicapacities Iva Kojadiovic LINA CNRS FRE 2729 Site école polytechique de l uiv. de Nates Rue Christia Pauc 44306 Nates, Frace iva.kojadiovic@uivates.fr JeaLuc Marichal Applied Mathematics
More informationNUMBERS COMMON TO TWO POLYGONAL SEQUENCES
NUMBERS COMMON TO TWO POLYGONAL SEQUENCES DIANNE SMITH LUCAS Chia Lake, Califoria a iteger, The polygoal sequece (or sequeces of polygoal umbers) of order r (where r is r > 3) may be defied recursively
More informationApproximating the Sum of a Convergent Series
Approximatig the Sum of a Coverget Series Larry Riddle Ages Scott College Decatur, GA 30030 lriddle@agesscott.edu The BC Calculus Course Descriptio metios how techology ca be used to explore covergece
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More informationThe Gompertz Makeham coupling as a Dynamic Life Table. Abraham Zaks. Technion I.I.T. Haifa ISRAEL. Abstract
The Gompertz Makeham couplig as a Dyamic Life Table By Abraham Zaks Techio I.I.T. Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 32000, Haifa, Israel Abstract A very famous
More informationTHE COMPLETENESS OF CONVERGENT SEQUENCES SPACE OF FUZZY NUMBERS. Hee Chan Choi
KagweoKyugki Math. Jour. 4 (1996), No. 2, pp. 117 124 THE COMPLETENESS OF CONVERGENT SEQUENCES SPACE OF FUZZY NUMBERS Hee Cha Choi Abstract. I this paper we defie a ew fuzzy metric θ of fuzzy umber sequeces,
More informationA Gentle Introduction to Algorithms: Part II
A Getle Itroductio to Algorithms: Part II Cotets of Part I:. Merge: (to merge two sorted lists ito a sigle sorted list.) 2. Bubble Sort 3. Merge Sort: 4. The BigO, BigΘ, BigΩ otatios: asymptotic bouds
More informationFourier Series and the Wave Equation Part 2
Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries
More informationSection IV.5: Recurrence Relations from Algorithms
Sectio IV.5: Recurrece Relatios from Algorithms Give a recursive algorithm with iput size, we wish to fid a Θ (best big O) estimate for its ru time T() either by obtaiig a explicit formula for T() or by
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationINFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
More informationTHE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
More informationChapter 16. Fourier Series Analysis
Chapter 6 Fourier Series alysis 6 Itroductio May electrical waveforms are period but ot siusoidal For aalysis purposes, such waveform ca be represeted i series form based o the origial work of Jea Baptise
More informationf(x + T ) = f(x), for all x. The period of the function f(t) is the interval between two successive repetitions.
Fourier Series. Itroductio Whe the Frech mathematicia Joseph Fourier (76883) was tryig to study the flow of heat i a metal plate, he had the idea of expressig the heat source as a ifiite series of sie
More informationSecond Order Linear Partial Differential Equations. Part III
Secod Order iear Partial Differetial Equatios Part III Oedimesioal Heat oductio Equatio revisited; temperature distributio of a bar with isulated eds; ohomogeeous boudary coditios; temperature distributio
More informationπ d i (b i z) (n 1)π )... sin(θ + )
SOME TRIGONOMETRIC IDENTITIES RELATED TO EXACT COVERS Joh Beebee Uiversity of Alaska, Achorage Jauary 18, 1990 Sherma K Stei proves that if si π = k si π b where i the b i are itegers, the are positive
More informationMARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationAn Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function
A Efficiet Polyomial Approximatio of the Normal Distributio Fuctio & Its Iverse Fuctio Wisto A. Richards, 1 Robi Atoie, * 1 Asho Sahai, ad 3 M. Raghuadh Acharya 1 Departmet of Mathematics & Computer Sciece;
More informationarxiv: v1 [math.co] 31 Oct 2008
SUMMATION OF HYPERHARMONIC SERIES ISTVÁN MEZŐ arxiv:08.004v [math.co] 3 Oct 008 Abstract. We shall show that the sum of the series formed by the socalled hyperharmoic umbers ca be expressed i terms of
More informationwhen n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.
Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have
More information+ 1= x + 1. These 4 elements form a field.
Itroductio to fiite fields II Fiite field of p elemets F Because we are iterested i doig computer thigs it would be useful for us to costruct fields havig elemets. Let s costruct a field of elemets; we
More informationSolving DivideandConquer Recurrences
Solvig DivideadCoquer Recurreces Victor Adamchik A divideadcoquer algorithm cosists of three steps: dividig a problem ito smaller subproblems solvig (recursively) each subproblem the combiig solutios
More informationThe Euler Totient, the Möbius and the Divisor Functions
The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship
More informationApplication and research of fuzzy clustering analysis algorithm under microlecture English teaching mode
SHS Web of Cofereces 25, shscof/20162501018 Applicatio ad research of fuzzy clusterig aalysis algorithm uder microlecture Eglish teachig mode Yig Shi, Wei Dog, Chuyi Lou & Ya Dig Qihuagdao Istitute of
More information1 The Binomial Theorem: Another Approach
The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationOverview on SBox Design Principles
Overview o SBox Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA 721302 What is a SBox? SBoxes are Boolea
More informationDefinition. Definition. 72 Estimating a Population Proportion. Definition. Definition
7 stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More information{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers
. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,
More informationData Structures. Outline
Data Structures Solvig Recurreces Tzachi (Isaac) Rose 1 Outlie Recurrece The Substitutio Method The Iteratio Method The Master Method Tzachi (Isaac) Rose 2 1 Recurrece A recurrece is a fuctio defied i
More information4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then
SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or pseries (the Compariso Test), but of
More informationThe analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
More informationTopics in Probability Theory and Stochastic Processes Steven R. Dunbar. The Weak Law of Large Numbers
Steve R. Dubar Departmet o Mathematics 203 Avery Hall Uiversity o NebrasaLicol Licol, NE 685880130 http://www.math.ul.edu Voice: 4024723731 Fax: 4024728466 Topics i Probability Theory ad Stochastic
More informationMeasure Theory, MA 359 Handout 1
Measure Theory, M 359 Hadout 1 Valeriy Slastikov utum, 2005 1 Measure theory 1.1 Geeral costructio of Lebesgue measure I this sectio we will do the geeral costructio of σadditive complete measure by extedig
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationMath 475, Problem Set #6: Solutions
Math 475, Problem Set #6: Solutios A (a) For each poit (a, b) with a, b oegative itegers satisfyig ab 8, cout the paths from (0,0) to (a, b) where the legal steps from (i, j) are to (i 2, j), (i, j 2),
More informationLecture 5: Span, linear independence, bases, and dimension
Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More information