Linear Operators / Functions as Vectors

Size: px
Start display at page:

Download "Linear Operators / Functions as Vectors"

Transcription

1 ecture 4 Phys 3750 iear Operators / Fuctios as Vectors Overview ad otivatio: We first itroduce the cocept of liear operators o a vector space. We the look at some more vector-space examples, icludig a space where the vectors are fuctios. Key athematics: ore vector-space math! I. iear Operators. Defiitio ad Examples The essetial ature of a liear operator is cotaied i its ame. The operator part of the ame meas that a liear operator operates o ay vector u (i the space of iterest) ad produces aother vector v i the space. That is, if u is a vector, the v = u () is also vector. The liear part of liear operator meas that ( a u + b v) = a u b v () + is satisfied for all scalars a ad b ad all vectors u ad v i the space. iear operators come i may differet forms. The oes of iterest for ay give vector space deped upo the problem beig solved. Whe dealig with a vector space of fiite dimesio, we ca always use stadard liear-algebra otatio to represet the vectors as colum matrices of legth ad the liear operators as square matrices of size. For = 3, for example, Eq. () ca be writte as v v v 3 = u u u 3, (3) where v i, u i, ad ij are the (scalar) compoets of v, u, ad, respectively, i some particular orthoormal basis. s we shall see below, sometimes we are iterested i a vector space where the vectors are fuctios. I that case the liear operators of iterest may be liear For example, if dealig with vectors i real space, the elemets i a colum vector are ofte the scalar compoets (also kow as Cartesia coordiates) of that vector i the xˆ, ŷ, ẑ basis. D Riffe -- /8/03

2 ecture 4 Phys 3750 differetial operators. example of a liear differetial operator o a vector space of fuctios of x is d dx. I this case Eq. () looks like d dx g ( x) = f ( x), (4) where f ( x) ad g ( x) are vectors i the space ad d dx is the liear operator. B. Eigevalue Problems importat vector-space problem is the eigevalue problem. We already have some experiece with this problem as part of the process of fidig the ormal modes of the coupled oscillators. Simply stated, the eigevalue problem is this: for a give liear operator, what are the vectors u ad scalars λ such that u = λu (5) is satisfied? These vectors u ad scalars λ are obviously special to the operator: whe operated o by, these vectors oly chage by the scale factor λ. These special vectors u are kow as eigevectors ad the values of λ are kow as eigevalues. Each eigevector u has associated with it a particular eigevalue λ. For a vector space of dimesios (where we are usig stadard liear algebra otatio) the eigevalues are solutios of the characteristic equatio ( λ I ) 0, (8) det = where I is the idetity matrix. s we did whe solvig the = ad = 3 (homework) coupled oscillator problems, substitutig the eigevalues (oe at a time!) back ito Eq. (5) allows us to fid the eigevectors u. If the (fiite dimesio) vector space is complex the Eq. (8) always has solutios. ow here is the cool thig. If the operator is self-adjoit (also kow as Hermitia), which meas that its matrix elemets satisfy ji = ij, the (i) its eigevalues are real, (ii) its eigevectors spa the space, ad (iii) the eigevectors with distict eigevalues are orthogoal. Thus, if the operator is self-adjoit ad all eigevalues are distict, the those eigevectors form a orthogoal basis for the space. If the eigevalues are ot This result is kow as the fudametal theorem of algebra. D Riffe -- /8/03

3 ecture 4 Phys 3750 distict, a orthogoal basis ca still be formed from the eigevectors. (it just takes a little bit of work.) Ofte, however, the eigevalue problem of iterest is o a real vector space. I this case, if is symmetric (that is, the matrix elemets of satisfy ij = ji ), the Eq. (8) will have real solutios ad, agai, the associated eigevectors u ca be used to form a basis for the vector space. famous eigevalue problem from quatum mechaics is oe other tha the timeidepedet Schrödiger equatio H ψ = Eψ, (6) which is a eigevalue problem o a vector space of fuctios. Here the vectors are the fuctios ψ ( x, y, z) ; the operator is the differetial operator H h = V m x y z, ( x, y z) ; (7) ad the eigevalues are specific values of E. 3 This is perhaps the most importat equatio i quatum mechaics because the (ormalized) eigevectors describe the (spatial part of the) states of the system with a defiite value of eergy, ad the eigevalues E are the eergies of those states. II. The Coupled Oscillator Problem Redux et's revisit the coupled oscillator problem to see how that problem fits ito our discussio of vector spaces. We first review the associated eigevalue problem that we solved whe fidig the ormal modes, ad the we make some remarks about the iitial-value problem.. The Eigevalue Problem Recall, i that problem we started with equatios of motio (oe for each object) ( q q + q ) = 0 ~ q& ω, (9) j j j j+ ( j =, K, ), where q j () t is the time-depedet displacemet of the j th oscillator. We the looked for ormal-mode solutios 3 The fuctio V ( x y, z), is the classical potetial eergy a particle of mass m. D Riffe -3- /8/03

4 ecture 4 Phys 3750 q j iωt () t = q 0, e, (0) j where all objects oscillate at the same frequecy Ω. By assumig that the solutios had the form of Eq. (0), the coupled ordiary differetial equatios became the coupled algebraic equatios ( q q + q ) 0 ~ q + ω, () Ω = 0, j 0, j 0, j 0, j+ which we rewrote as ~ ω 0 0 ~ ω 0 0 ~ ω ~ ω 0 0 ~ ω q q q q0, 0, 0, 0,3 = Ω q q q q 0, 0, 0,3 0, () otice that this is exactly of the form of Eq. (5) (the eigevalue problem) where the vectors are row colum matrices, the liear operator is a matrix, ad the eigevalues λ are the squared frequecies Ω. s we previously discovered i solvig that problem there are eigevectors, q q q q0, 0, 0, 0,3 si si = si si π ( ) + π ( ) + π ( 3) + ( ) π + (3) ( =, K, ), ad the th eigevector has the eigevalue Ω = ~ ω si ( + ). (4) 4 π otice that the eigevalues are real, as they should be for a symmetric operator. lso, because the eigevalues are distict, the eigevectors from a orthogoal basis for the space. D Riffe -4- /8/03

5 ecture 4 Phys 3750 B. The Iitial Value Problem s part of solvig the iitial-value problem for this system, we eded up with the equatio 4 q q q q 3 ( 0) ( 0) ( 0) ( 0) = = Re ( a ) si si si si π ( ) + π ( ) + π ( 3) + π ( ) +, (5) which we eeded to solve for the coefficiets Re ( a ). et's ow place the previous solutio of Eq. (5) for the coefficiets Re ( a ) withi the cotext of the curret discussio of vector spaces. 5 s we talked about i the last lecture, if we write a vector v as a liear combiatio of orthogoal vectors u v = v = u, (6) the the coefficiets v i are give by v ( u, v) =. (7) ( u, u ) For the example at had, Eq. (5) is equivalet to Eq. (6), but i order apply Eq. (7) to fid the coefficiets Re ( a ) i Eq. (5), we eed the defiitio of the ier product of two vectors for this vector space. For ay dimesioal vector space the ier product betwee two vectors w ad v ca be writte as (See Exercise 4.5) v v w, (8) v (, v) = ( w w K w ) where w ad v are the compoets of the vectors w ad v i the same basis. otice that the elemets of the row matrix i Eq. (8) are the complex cojugates of 4 This is Eq. (0) of the ecture 0 otes. 5 ote that Eq. (5) says, at its most basic level, that the eigevectors [Eq. (3)] form a basis for the space of iitial displacemets of the objects (which ca be ay set of real umbers). D Riffe -5- /8/03

6 ecture 4 Phys 3750 the elemets of u. Of course, if we are dealig with real vector, the the complex cojugate is simply the elemet itself. ote that Eq. (8) ca be writte i more compact form as ( ) = w w, v j v j. (9) j= Usig the form of the ier product i Eq. (9), the applicatio of Eq. (7) to the coupled oscillator problem is thus 6 Re ( a ) j= = si j= ( π j) q ( 0) si + j π ( j) +. (0) III. Vectors Spaces ad Fourier Series The last vector-space example is Fourier Series. Recall, the complex Fourier-series represetatio of a fuctio f ( x) defied o the iterval to is iπ x f ( x) = c e, (a) = where the coefficiets c are give by c = f ( x) e iπx dx. (b) If you have bee payig attetio to this poit (i.e, if you are still awake), the you should be thikig "h ha! Equatio () says that we ca write the fuctio f ( x) as i x a liear combiatio of the (basis!) fuctios e π with coefficiets c. ooks like a vector space to me! d ah ha, agai! It seems that somehow Eq. (b) is the equivalet of Eq. (7), where the coefficiets are expressed i terms of ier products o this space." But likely you are ow asleep ad thikig about other thigs. But if you were awake, you would be etirely correct. et's see that this is the case. The vectors i this space are ideed fuctios o the iterval to, ad oe set of 6 Equatio (0) is Eq. (8) of the ecture 0 otes. D Riffe -6- /8/03

7 ecture 4 Phys 3750 iπx basis vectors u is ideed the set of fuctios u( x) = e, < <. So what is the ier product o this space that makes these basis vectors orthogoal? You actually saw the ier product back i ecture before you kew it was a ier product, so let me remid you. Deotig, for example, a fuctio f ( x) as the vector f, we defie the ier product ( g, f ) i this space as ( g,f ) = g ( x) f ( x)dx. () gai, ote the complex cojugate i the defiitio. lso otice the similarity of Eqs. (9) ad (). Usig Eq. (), Eq. () ca be writte i vector-space otatio as = f = c u, (3a) c ( u, f ) =. (3b) ( u, u ) astly, let's revisit the idea of a orthoormal basis withi the cotext of Fourier series. Recall, a ormalized (or uit) vector û is defied by u ˆ = ( uˆ, uˆ ) =, ad we ca ormalize ay vector u via u uˆ =. (5) ( u, u) iπx et's fid the ormalized versio of the basis fuctios u( x) = e. Calculatig ( u, u ) we have iπx iπx ( u, u ) e e dx =. (6) = We ca thus tur our orthogoal basis ito a orthoormal basis by usig the ormalized vectors iπx e u ˆ =. (7) D Riffe -7- /8/03

8 ecture 4 Phys 3750 If we ow write a vector i this space as a liear combiatio of these ormalized basis vectors, = f = c uˆ, (8a) c = ( u,f ) (8b) ˆ the the fuctioal expressio of Eq. (8) results i the Fourier series beig writte as f ( ) x = = c e iπx, (9a) c = f ( x) e iπx dx. (9b) To some, the Fourier Series writte as Eq. (9) is more appealig because it has a certai symmetry that Eq. () lacks. Exercises i j 4. Cosider the operator = o a two dimesioal vector space. Show k l u v that for ay two scalars a ad b ad ay two vectors = v = that this operator is liear, i.e., that it satisfies Eq. (). u u ad v 4. Show that for ay two scalars a ad b ad ay two fuctios f ( x) ad ( x) that the differetial operator d i is liear, i.e., that it satisfies Eq. (). dx 4.3 I solvig the = 3 coupled oscillator problem, we foud the three eigevectors to the associated eigevalue problem, which ca be writte as g, D Riffe -8- /8/03

9 ecture 4 Phys u =, u = 0, ad û of each of these vectors. = u. Fid the ormalized versios û, û, ad 4.4 Cosider the time idepedet Schrödiger equatio eigevalue problem H ψ = Eψ, where H is the operator h + kx. This is the (D) quatum m x mechaical harmoic-oscillator problem. The solutios (eigevectors ad eigevalues) of this problem ca be writte as ( = 0,,, K) ax ψ ( x) = ax e, where a = mk h ad d dx h E h ~ = + ω, where = k m (a) For = 0 (the groud state), show that ψ 0 ( x) is a solutio to H ψ = Eψ with the appropriate eigevalue. (b) For this vector space, the ier product of two vectors ψ ad φ is defied as ( φ,ψ) = ( x) ψ ( x)dx. Show that the = 0 ad = states are orthogoal. ϕ (c) Fid the orm of the = 0 state. Thus costruct the ormalized eigevector correspodig to this state. (d) Give that H ψ 0 = E0ψ 0 ad H ψ = Eψ, fid H ϕ, where ϕ = C 0ψ 0 + Cψ (Here C 0 0 ad C 0 are two costats.) Thus argue that the wave fuctio ϕ is ot a eigevector of H (for ay value of E ). 4.5 Ier product. Cosider two vectors writte i terms of some orthoormal basis, v = v u, = w m = = m w u. (a) Usig Eq. (0) of the ecture 3 otes, show that the ier product ( w, v) ca be expressed i terms of the compoets of the two vectors as ( w, v) = w v. = (b) What is the orm of the vector v expressed i terms of its compoets? m D Riffe -9- /8/03

10 ecture 4 Phys Ier Product ad Fourier Series. Cosider two fuctios expressed as their ormalized Fourier Series represetatios, f ( ) x = = c e iπx, ( ) g x = = m d e imπx (a) Startig with these expressios, show that the ier product ( g,f ) = g ( x) f ( x)dx ca be expressed i terms of the Fourier coefficiets c ad d as ( ) g,f = d c. = (b) What is the orm of f ( x) i terms of its Fourier coefficiets? otice the similarity of these results ad those of Exercise 4.5. Cool, eh?. D Riffe -0- /8/03

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Partial Di erential Equations

Partial Di erential Equations Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

, a Wishart distribution with n -1 degrees of freedom and scale matrix.

, a Wishart distribution with n -1 degrees of freedom and scale matrix. UMEÅ UNIVERSITET Matematisk-statistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Notes on exponential generating functions and structures.

Notes on exponential generating functions and structures. Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

Overview on S-Box Design Principles

Overview on S-Box Design Principles Overview o S-Box Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA -721302 What is a S-Box? S-Boxes are Boolea

More information

Lecture 7: Stationary Perturbation Theory

Lecture 7: Stationary Perturbation Theory Lecture 7: Statioary Perturbatio Theory I most practical applicatios the time idepedet Schrödiger equatio Hψ = Eψ (1) caot be solved exactly ad oe has to resort to some scheme of fidig approximate solutios,

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

How To Solve The Homewor Problem Beautifully

How To Solve The Homewor Problem Beautifully Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

Math 113 HW #11 Solutions

Math 113 HW #11 Solutions Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

More information

7.1 Finding Rational Solutions of Polynomial Equations

7.1 Finding Rational Solutions of Polynomial Equations 4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Finding the circle that best fits a set of points

Finding the circle that best fits a set of points Fidig the circle that best fits a set of poits L. MAISONOBE October 5 th 007 Cotets 1 Itroductio Solvig the problem.1 Priciples............................... Iitializatio.............................

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Elements of Dirac Notation

Elements of Dirac Notation Elemets of Dirac Notatio Frak Rioux I the early days of quatum theory, P. A. M. (Paul Adria Maurice) Dirac created a powerful ad cocise formalism for it which is ow referred to as Dirac otatio or bra-ket

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

Multiple Representations for Pattern Exploration with the Graphing Calculator and Manipulatives

Multiple Representations for Pattern Exploration with the Graphing Calculator and Manipulatives Douglas A. Lapp Multiple Represetatios for Patter Exploratio with the Graphig Calculator ad Maipulatives To teach mathematics as a coected system of cocepts, we must have a shift i emphasis from a curriculum

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

MARTINGALES AND A BASIC APPLICATION

MARTINGALES AND A BASIC APPLICATION MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

Permutations, the Parity Theorem, and Determinants

Permutations, the Parity Theorem, and Determinants 1 Permutatios, the Parity Theorem, ad Determiats Joh A. Guber Departmet of Electrical ad Computer Egieerig Uiversity of Wiscosi Madiso Cotets 1 What is a Permutatio 1 2 Cycles 2 2.1 Traspositios 4 3 Orbits

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

Heat (or Diffusion) equation in 1D*

Heat (or Diffusion) equation in 1D* Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

The Fundamental Forces of Nature

The Fundamental Forces of Nature Gravity The Fudametal Forces of Nature There exist oly four fudametal forces Electromagetism Strog force Weak force Gravity Gravity 2 The Hierarchy Problem Gravity is far weaker tha ay of the forces! Why?!?

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k. 18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: Courat-Fischer formula ad Rayleigh quotiets The

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

Time Value of Money. First some technical stuff. HP10B II users

Time Value of Money. First some technical stuff. HP10B II users Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

A Theoretical and Experimental Analysis of the Acoustic Guitar. Eric Battenberg ME 173 5-18-09

A Theoretical and Experimental Analysis of the Acoustic Guitar. Eric Battenberg ME 173 5-18-09 A Theoretical ad Experimetal Aalysis of the Acoustic Guitar Eric Batteberg ME 173 5-18-09 1 Itroductio ad Methods The acoustic guitar is a striged musical istrumet frequetly used i popular music. Because

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts

More information

Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have

Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have Comple Numbers I spite of Calvi s discomfiture, imagiar umbers (a subset of the set of comple umbers) eist ad are ivaluable i mathematics, egieerig, ad sciece. I fact, i certai fields, such as electrical

More information

The Binomial Multi- Section Transformer

The Binomial Multi- Section Transformer 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 1/17 The Bioial Multi- Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where: Γ ( ω

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

More information