Chapter 6 Force and Motion II

Size: px
Start display at page:

Download "Chapter 6 Force and Motion II"

Transcription

1 hapte 6 Foce and Motion II In thi chapte we will cove the ollowing topic: Decibe the ictional oce between two object. Dieentiate between tatic and kinetic iction, tudy the popetie o iction, and intoduce the coeicient o tatic and kinetic iction. Study the dag oce exeted by a luid on an object moving though the luid and calculate the teminal peed o the object. Reviit uniom cicula motion and uing the concept o centipetal oce apply Newton econd law to decibe the motion. (6-1)

2 Fiction: We can exploe the baic popetie o iction (6-) by analyzing the ollowing expeiment baed on ou evey day expeience. We have a heavy cate eting on the loo. We puh the cate to the let (ame b) but the cate doe not move. We puh hade (ame c) and hade (ame d) and the cate till doe not move. Finally we puh with all ou tength and the cate move (ame e). The ee body diagam o ame a-e how the exitence o a new oce which balance the oce F with which we puh the cate. Thi oce i called the tatic ictional oce. A we inceae F, alo inceae and the cate emain at et. When F eache a cetain limit the cate "beak away" and acceleate to the let. Once the cate tat moving the oce oppoing it motion i called the kinetic ictional oce. <. Thu i we wih the k k cate to move with contant peed we mut deceae F o that it balance (ame ). In ame (g) we plot veu time t k

3 F N F mg Popetie o iction: The ictional oce i acting between two dy unlubicated uace in contact Popety 1. I the two uace do not move with epect to each othe, then the tatic ictional oce balance the applied oce F. Popety. The magnitude o the tatic iction i not contant but vaie om 0 to a maximum value = µ F The contant µ i known a,max N the coeicient o tatic iction. I F exceed,m ax the cate tat to lide Popety 3. Once the cate tat to move the ictional oce i known a kinetic iction. It magnitude i contant and i given by the equation: µ i known a the coeicient o kinetic iction. We note that: k Note 1: The tatic and kinetic iction act paallel to the uece in contact The diection oppoe the diection o motion (o kinetic iction) o o attempted motion (in the cae o tatic iction) k k < = µ F k k N,max Note : The coeicient µ doe not depend on the peed o the liding object k,max = µ FN 0 < µ FN k k N = µ F (6-3)

4 Dag oce and teminal Speed (6-4) When an object move though a luid (ga o liquid) it expeience an oppoing oce known a dag. Unde cetain condition (the moving object mut be blunt and mut move at o a the low o the liquid i tubulent) the magnitude o the dag oce i given by the expeion: 1 D Av = ρ Hee i a contant, A i the eective co ectional aea o the moving object, ρ i the denity o the uounding luid, and v i the object peed. onide an object (a cat o ma m in thi cae) tat moving in ai. Initially D = 0. A the cat acceleate D inceae and at a cetain peed v t D = mg At thi point the net oce and thu the acceleation become zeo and the cat move with contant peed v t known the the teminal peed 1 D= ρ Avt = mg v t = mg ρ A

5 (6-5) Uniom icula Motion, entipetal oce In chapte 4 we aw that an object that move on a cicula path o adiu with contant peed v ha an acceleation a. The diection o the acceleation vecto alway point towad the cente o otation (thu the name centipetal) It magnitude i contant and i given by the equation: v a = I we apply Newton law to analyze uniom cicula motion we conclude that the net oce in the diection that point towad mut have F = mv magnitude: Thi oce i known a centipetal oce The notion o centipetal oce may be conuing ometime. A common mitake i to invent thi oce out o thin ai. entipetal oce i not a new kind o oce. It i imply the net oce that point om the otating body to the otation cente. Depending on the ituation the centipetal oce can be iction, the nomal oce o gavity. We will ty to claiy thi point by analyzing a numbe o example

6 . Recipe o poblem that involve uniom cicula motion o an object o ma m on a cicula obit o adiu with peed v y m v x Daw the oce diagam o the object hooe one o the coodinate axe (the y-axi in thi diagam) to point towad the obit cente Detemine Set F ynet F ynet = mv (6-6)

7 A hockey puck move aound a cicle at contant peed v on a hoizontal ice uace. The puck i tied to a ting looped aound a peg at point. In thi cae the net oce along the y-axi i the tenion T o the ting. Tenion T i the centipetal oce. Thu: F ynet = T = mv y (6-7)

8 Sample poblem 6-9: A ace ca o ma m tavel on a lat cicula ace tack o adiu R with peed v. Becaue o the hape o the ca the paing ai exet a downwad oce F L on the ca x I we daw the ee body diagam o the ca we ee that the net oce along the x-axi i the tatic iction. The ictional oce i the centipetal oce. Thu: F xnet = = mv R (6-8)

9 (6-9) Sample poblem 6-8: The Roto i a lage hollow y cylinde o adiu R that i otated apidly aound it cental axi with a peed v. A ide o ma m tand on the Roto loo with hi/he back againt x the Roto wall. ylinde and ide begin to tun. When the peed v eache ome pedetemined value, the Roto loo abuptly all away. The ide doe not all but intead emain pinned againt the Roto wall. The coeicient o tatic iction µ between the Roto wall and the ide i given. We daw a ee body diagam o the ide uing the axe hown in the igue. The nomal eaction F N i the centipetal oce. mv Fxnet, = FN = ma = (eq.1), R F = mg = 0, = µ F mg = µ F (eq.) y, net N N I we combine eq.1 and eq. we get: mv Rg Rg min R µ µ mg = µ v = v =

10 y Sample poblem 6-7: In a 1901 cicu peomance Allo Diavolo intoduced the tunt o iding a bicycle in a looping-the-loop. The loop i a cicle o adiu R. We ae aked to calculate the minimum peed v that Diavolo hould have at the top o the loop and not all We daw a ee body diagam o Diavolo when he i at the top o the loop. Two oce ae acting along the y-axi: Gavitational oce F g and the nomal eaction F N om the loop. When Diavolo ha the minimum peed v he ha jut lot contact with the loop and thu F N = 0. The only oce acting on Diavolo i F g The gavitational oce F g i the centipetal oce. Thu: mvmin Fynet = mg = vmin = Rg R (6-10)

Worked Examples. v max =?

Worked Examples. v max =? Exaple iction + Unifo Cicula Motion Cicula Hill A ca i diing oe a ei-cicula hill of adiu. What i the fatet the ca can die oe the top of the hill without it tie lifting off of the gound? ax? (1) Copehend

More information

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

Solutions for Physics 1301 Course Review (Problems 10 through 18)

Solutions for Physics 1301 Course Review (Problems 10 through 18) Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal

More information

Incline and Friction Examples

Incline and Friction Examples Incline and riction Eample Phic 6A Prepared b Vince Zaccone riction i a force that oppoe the motion of urface that are in contact with each other. We will conider 2 tpe of friction in thi cla: KINETIC

More information

1D STEADY STATE HEAT

1D STEADY STATE HEAT D SEADY SAE HEA CONDUCION () Pabal alukda Aociate Pofeo Depatment of Mecanical Engineeing II Deli E-mail: pabal@mec.iitd.ac.in Palukda/Mec-IID emal Contact eitance empeatue ditibution and eat flow line

More information

Phys 2101 Gabriela González. cos. sin. sin

Phys 2101 Gabriela González. cos. sin. sin 1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Solutions to Problems: Chapter 7

Solutions to Problems: Chapter 7 Solution to Poblem: Chapte 7 P7-1. P7-2. P7-3. P7-4. Authoized and available hae LG 2; Baic a. Maximum hae available fo ale Authoized hae 2,000,000 Le: Shae outtanding 1,400,000 Available hae 600,000 b.

More information

6. Friction, Experiment and Theory

6. Friction, Experiment and Theory 6. Friction, Experiment and Theory The lab thi wee invetigate the rictional orce and the phyical interpretation o the coeicient o riction. We will mae ue o the concept o the orce o gravity, the normal

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ

A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ Phyic 100 Homewor 5 Chapter 6 Contact Force Introduced ) When two object lide againt one another, the magnitude of the frictional force i alway equal to μ B) When two object are in contact with no relative

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Experiment MF Magnetic Force

Experiment MF Magnetic Force Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating

More information

Chapter 13 Fluids. Use the definition of density to express the mass of the gold sphere: The mass of the copper sphere is given by:

Chapter 13 Fluids. Use the definition of density to express the mass of the gold sphere: The mass of the copper sphere is given by: Chapte Fluid 5 One phee i ade of gold and ha a adiu and anothe phee i ade of coppe and ha a adiu. f the phee have equal a, hat i the atio of the adii, /? ictue the oble We can ue the definition of denity

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Effect of Unemployment Insurance Tax On Wages and Employment: A Partial Equilibrium Analysis

Effect of Unemployment Insurance Tax On Wages and Employment: A Partial Equilibrium Analysis Effect of Unemployment nuance Tax On Wage and Employment: atial Equilibium nalyi Deegha Raj dhikai, Oklahoma Employment Secuity Commiion ynn Gay, Oklahoma Employment Secuity Commiion Jackie Bun, Texa &

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

AP Physics B 2012 Free-Response Questions

AP Physics B 2012 Free-Response Questions AP Phyic B 01 Fee-Repone Quetion About the College Boad The College Boad i a miion-diven not-fo-pofit oganization that connect tudent to college ucce and oppotunity. Founded in 1900, the College Boad wa

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Charges, Coulomb s Law, and Electric Fields

Charges, Coulomb s Law, and Electric Fields Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded

More information

Doppler Effect. wavelength

Doppler Effect. wavelength Dopple Eet The Dopple Eet i the hange in the obeed equeny o a oue due to the elatie motion between the oue and the eeie. The elatie motion that aet the obeed equeny i only the motion in the Line-O-Sight

More information

MECH 2110 - Statics & Dynamics

MECH 2110 - Statics & Dynamics Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight

More information

4.4 VOLUME AND SURFACE AREA

4.4 VOLUME AND SURFACE AREA 160 CHAPTER 4 Geomety 4.4 VOLUME AND SURFACE AREA Textbook Refeence Section 8.4 CLAST OBJECTIVES Calculate volume and uface aea Infe fomula fo meauing geometic figue Select applicable fomula fo computing

More information

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3 Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

Parameter Identification of DC Motors

Parameter Identification of DC Motors Paamete dentification of DC Moto utho: Dipl.-ng. ngo öllmecke dvantage of the Paamete dentification Method Saving time and money in the teting poce: no anical coupling neceay Full infomation: Entie chaacteitic

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Chapter 7 Linear Momentum and Colliion 7.1 The Important Stuff 7.1.1 Linear Momentum The linear momentum of a particle with ma m moving with velocity v i defined a p = mv (7.1) Linear momentum i a vector.

More information

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita

More information

How To Change V1 Programming

How To Change V1 Programming REPORT # HOW TO REPROGRAM V1 RADAR DETECTORS IF YOU REALLY WANT TO How To ange V1 Pogamming WARNING: Impotant ada alets may be blocked by changes in factoy settings es that ae Essential To Full Potection

More information

The Essence of the Electromagnetic Wave is Not Energy

The Essence of the Electromagnetic Wave is Not Energy The Eence of the Electomagnetic Wave i Not Enegy Zeng Qingping Ai Foce Rada Academy Pofeo cienceum@yahoocn Abtact The cutomay opinion i: electic ave o light ave i enegy, TYang expeiment i the intefeence

More information

AP Physics C: Mechanics 2005 Free-Response Questions

AP Physics C: Mechanics 2005 Free-Response Questions AP Phyic C: Mechanic 00 ee-repone Quetion he College Boa: Connecting Stuent to College Succe he College Boa i a not-fo-pofit membehip aociation whoe miion i to connect tuent to college ucce an oppotunity.

More information

Problem Set # 9 Solutions

Problem Set # 9 Solutions Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new high-speed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease

More information

Rotation of an Object About a Fixed Axis

Rotation of an Object About a Fixed Axis Chapter 1 Rotation of an Object About a Fixed Axi 1.1 The Important Stuff 1.1.1 Rigid Bodie; Rotation So far in our tudy of phyic we have (with few exception) dealt with particle, object whoe patial dimenion

More information

A r. (Can you see that this just gives the formula we had above?)

A r. (Can you see that this just gives the formula we had above?) 24-1 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down - you can pedict (o contol) motion

More information

Solved Problems Chapter 3: Mechanical Systems

Solved Problems Chapter 3: Mechanical Systems ME 43: Sytem Dynamic and Contro Probem A-3-8- Soved Probem Chapter 3: Mechanica Sytem In Figure 3-3, the impe penduum hown conit of a phere of ma m upended by a tring of negigibe ma. Negecting the eongation

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian

More information

Impulse and Linear Momentum 5

Impulse and Linear Momentum 5 Implse and Linea Momentm 5 How does jet poplsion wok? How can yo mease the speed of a bllet? Wold a meteoite collision significantly change Eath s obit? In pevios chaptes we discoveed that the pshing inteaction

More information

PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary

PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary PCE SEMINIUM Z PODSTW ELEKTOTECHNIKI I TEOII OBWODÓW 8 - TH SEMIN ON FUNDMENTLS OF ELECTOTECHNICS ND CICUIT THEOY ZDENĚK BIOLEK SPŠE OŽNO P.., CZECH EPUBLIC DLIBO BIOLEK MILITY CDEMY, BNO, CZECH EPUBLIC

More information

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C. Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law

More information

4.1 - Trigonometric Functions of Acute Angles

4.1 - Trigonometric Functions of Acute Angles 4.1 - Tigonometic Functions of cute ngles a is a half-line that begins at a point and etends indefinitel in some diection. Two as that shae a common endpoint (o vete) fom an angle. If we designate one

More information

Uniform Rectilinear Motion

Uniform Rectilinear Motion Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning Gavitational Mechanics of the Mas-Phobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This

More information

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The

More information

Tech 03: Spring spacing, Roll Stiffness and Transverse Weight Transfer

Tech 03: Spring spacing, Roll Stiffness and Transverse Weight Transfer Tech 03: Sping pacing, Ro Stine and Tanvee Weight Tane 1 P age By Doc Hathaway, H&S Pototype and Deign, LLC. Undetanding how you choice o ping type, ping tine, ping pacement and ping ange inuence the ont

More information

Modelling and simulation of a signal injection self-sensored drive

Modelling and simulation of a signal injection self-sensored drive Modelling and imulation o a ignal injection el-enoed dive Alen Poljugan Faculty o Electical Engineeing and Computing, Depatment o electic machine, dive and automation, Univeity o Zageb Unka, Zageb, Coatia,

More information

Problems of the 2 nd and 9 th International Physics Olympiads (Budapest, Hungary, 1968 and 1976)

Problems of the 2 nd and 9 th International Physics Olympiads (Budapest, Hungary, 1968 and 1976) Poblems of the nd and 9 th Intenational Physics Olympiads (Budapest Hungay 968 and 976) Péte Vankó Institute of Physics Budapest Univesity of Technology and Economics Budapest Hungay Abstact Afte a shot

More information

A discus thrower spins around in a circle one and a half times, then releases the discus. The discus forms a path tangent to the circle.

A discus thrower spins around in a circle one and a half times, then releases the discus. The discus forms a path tangent to the circle. Page 1 of 6 11.2 Popeties of Tangents Goal Use popeties of a tangent to a cicle. Key Wods point of tangency p. 589 pependicula p. 108 tangent segment discus thowe spins aound in a cicle one and a half

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

12.4 Problems. Excerpt from "Introduction to Geometry" 2014 AoPS Inc. Copyrighted Material CHAPTER 12. CIRCLES AND ANGLES

12.4 Problems. Excerpt from Introduction to Geometry 2014 AoPS Inc.  Copyrighted Material CHAPTER 12. CIRCLES AND ANGLES HTER 1. IRLES N NGLES Excerpt from "Introduction to Geometry" 014 os Inc. onider the circle with diameter O. all thi circle. Why mut hit O in at leat two di erent point? (b) Why i it impoible for to hit

More information

Unit 11 Using Linear Regression to Describe Relationships

Unit 11 Using Linear Regression to Describe Relationships Unit 11 Uing Linear Regreion to Decribe Relationhip Objective: To obtain and interpret the lope and intercept of the leat quare line for predicting a quantitative repone variable from a quantitative explanatory

More information

Analytical Proof of Newton's Force Laws

Analytical Proof of Newton's Force Laws Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue

More information

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

PHYSICS 151 Notes for Online Lecture #11

PHYSICS 151 Notes for Online Lecture #11 PHYSICS 151 ote for Online Lecture #11 A free-bod diagra i a wa to repreent all of the force that act on a bod. A free-bod diagra ake olving ewton econd law for a given ituation eaier, becaue ou re odeling

More information

Chapter H - Problems

Chapter H - Problems Chapter H - Problem Blinn College - Phyic 45 - Terry Honan Problem H.1 A wheel rotate from ret to 1 ê in 3. Aume the angular acceleration i contant. (a) What i the magnitude of the wheel' angular acceleration?

More information

10. Collisions. Before During After

10. Collisions. Before During After 10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t)

More information

MSc Financial Economics: International Finance. Bubbles in the Foreign Exchange Market. Anne Sibert. Revised Spring 2013. Contents

MSc Financial Economics: International Finance. Bubbles in the Foreign Exchange Market. Anne Sibert. Revised Spring 2013. Contents MSc Financial Economic: International Finance Bubble in the Foreign Exchange Market Anne Sibert Revied Spring 203 Content Introduction................................................. 2 The Mone Market.............................................

More information

Standardized Coefficients

Standardized Coefficients Standadized Coefficient Ta. How do ou decide which of the X ae mot impotant fo detemining? In thi handout, we dicu one poile (and contoveial) anwe to thi quetion - the tandadized egeion coefficient. Fomula.

More information

Chapter 2. Electrostatics

Chapter 2. Electrostatics Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.

More information

Chapter 10 Velocity, Acceleration, and Calculus

Chapter 10 Velocity, Acceleration, and Calculus Chapter 10 Velocity, Acceleration, and Calculu The firt derivative of poition i velocity, and the econd derivative i acceleration. Thee derivative can be viewed in four way: phyically, numerically, ymbolically,

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

Thank you for participating in Teach It First!

Thank you for participating in Teach It First! Thank you fo paticipating in Teach It Fist! This Teach It Fist Kit contains a Common Coe Suppot Coach, Foundational Mathematics teache lesson followed by the coesponding student lesson. We ae confident

More information