# 6. Friction, Experiment and Theory

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 6. Friction, Experiment and Theory The lab thi wee invetigate the rictional orce and the phyical interpretation o the coeicient o riction. We will mae ue o the concept o the orce o gravity, the normal orce, the rictional orce, tenion, ree-body diagram, and object liding on an inclined plane. The equipment ued will be bloc with a variety o bacing, an adjutable inclined plane and a motion enor with GLX data collecting interace. It i uually ound experimentally that the orce required to lide one object over another i proportional to the normal orce preing the urace together a expreed by F = µ N where µ i called the coeicient o riction and repreent the roughne o the urace in contact. One intuitively eel that the orce hould alo depend upon uch thing a the area o contact and the peed o motion. Let u tudy the quetion experimentally and theoretically. In order to expre the reality that it i harder to mae an object tart moving than to eep the object moving, we can dicu the coeicient o tatic (not moving) riction µ (to get it moving) veru the coeicient o inetic (in motion) riction moving). In general, µ µ. µ (to eep it To tudy the quetion theoretically conider the online imulation at It repreent two bloc connected by a tring, where one bloc i located on the table and another bloc i hanging rom the table. The imulation allow changing ma o each o the bloc a well a the coeicient o riction between the bloc and the table. Try variou value or mae and riction coeicient, ee what happen. Notice how acceleration o the ytem change a you change thee variable. Determine the unnown value or mae and coeicient o inetic riction. 41

2 1. The experimental deign or the irt part o the lab will be very imilar to what you aw in the online demontration. You will be uing a bloc connected by a tring with an additional ma hanging rom the table. You hould alo et up the motion enor in uch a way that it allow you to meaure the peed o the bloc. Thi way you can determine whether or not the bloc i accelerating a it move along the board. Uing thi experimental etup with a horizontal urace, igure out which quantitie you hould plot on the graph in order to determine the coeicient o riction or the bloc liding on the board. Hint 1 and 2 may help to igure thi out. Doe thi graph give µ or µ? Doe µ depend on the value o either F or N? The provided bloc o wood have hoo or pulling and have variou material attached to them to vary the urace in contact. Figure out how to meaure the normal orce and the rictional orce while the bloc i liding acro the board. See Hint 3 and 4 or help iguring out how to do thi. Vary and meaure the correponding calculate the coeicient o riction, µ, rom the graph. N (or ive value) F or a given bloc. Mae a plot and have Excel Repeat or two more bloc. Include all three plot on the ame graph (put a legend on the graph). Which urace ha the highet µ? Doe that mae ene? 2. Set the urace at an angle θ rom the horizontal. Place the object on the urace and increae the angle until it lide. The angle at which the object jut begin to move i deined a the angle o repoe. Figure 1 illutrate thi ituation. From the diagram, it can be hown that there exit a relationhip between the angle o repoe,θ, and the coeicient o riction, µ. Determine thi relationhip and olve or µ in each cae. Doe thi relationhip give µ or µ? (It may help to reread the third paragraph o thi lab and then ee Hint 5.) 42

3 Uing the ame bloc a beore, compare your reult with thoe determined in Step 1. Figure 1. Finding the angle o repoe. 3. Select a bloc and an angle. Compute the orce required to lide (pull) the object up the inclined plane (See Fig. 2) uing the value o µ determined in Step 1 and 2. Carry out the experiment and compare (via %-dierence) the experimental value with the theoretical value or that type o material. Once again you can ue the motion enor to control whether or not the bloc i accelerating. See Hint 6 or help. Figure 2. Sliding up an incline. 4. I you till have ome time let, determine experimentally the eect o urace area and velocity upon the coeicient o riction o wood-on-wood. Dicu your reult. 43

4 Hinting Quetion or the Friction Lab Thee quetion hould guide you through the lab i you are having trouble iguring out what to do. Thi i the ixth lab; you will be expected to come up with quetion lie thee on your own next wee. Pay attention to the type o quetion you mut a yourel. 1. Calculating F µ = or each individual value i a reaonable approximation or N µ but thi i one meaurement which ha random error (error which can be reduced by increaing the tatitic, i.e., by repeating the meaurement many time). In the Acceleration due to Gravity -lab, did you get a better reult or the acceleration due to gravity rom the lope o v v. t or rom averaging the individual a value? 2. Compare F = µ N + 0 to y = mx+ b. What hould you plot a the ordinate (vertical axi) and a the abcia (horizontal axi)? What property o the graph give the coeicient o riction, µ? 3. The normal orce i not conceptually equal to the orce o gravity, although in ome cae thee are numerically equal. (Recall that a bathroom cale doe not read your weight, it explicitly read the normal orce you are exerting on the cale.) I you are uing ome bloc, how can you vary (i.e., pic and ue a peciic value o) the normal orce which i exerted on the bloc? 4. I an object i being lowed by a rictional orce, you can indirectly meaure that bacward orce by introducing an additional, meaurable orce which bring the net orce to zero, i.e., which bring the bloc into equilibrium. Remember that equilibrium i a tate in which the acceleration i zero. Can an object move when it i in equilibrium? (What i the dierence between tatic equilibrium and inetic equilibrium?) How can you pull an object acro a board with a peciic, nown orce? 44

5 5. Are we conidering the bloc during it motion or are we conidering it a it begin to move? 6. Once you now the gravitational orce acting on the bloc, the applied orce i the only variable that i not predetermined (becaue you have already determined µ ). Solve or the applied orce. See Hint 7 i you need more help. 7. I you now the gravitational orce, then you can brea it into it component: along the incline and into the incline. From thi we can ind the normal orce. From that, with µ nown, we can ind the rictional orce. The only unnown r r let i the applied orce. Solve F net = ma or the applied orce. How much weight mut be placed on the hanger? 45

### Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

Newton Law Newton firt law: An object will tay at ret or in a tate of uniform motion with contant velocity, in a traight line, unle acted upon by an external force. In other word, the bodie reit any change

### A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ

Phyic 100 Homewor 5 Chapter 6 Contact Force Introduced ) When two object lide againt one another, the magnitude of the frictional force i alway equal to μ B) When two object are in contact with no relative

### Unit 11 Using Linear Regression to Describe Relationships

Unit 11 Uing Linear Regreion to Decribe Relationhip Objective: To obtain and interpret the lope and intercept of the leat quare line for predicting a quantitative repone variable from a quantitative explanatory

### Figure 2.1. a. Block diagram representation of a system; b. block diagram representation of an interconnection of subsystems

Figure. a. Block diagram repreentation o a ytem; b. block diagram repreentation o an interconnection o ubytem REVIEW OF THE LAPLACE TRANSFORM Table. Laplace tranorm table Table. Laplace tranorm theorem

### MECH 2110 - Statics & Dynamics

Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight

### Incline and Friction Examples

Incline and riction Eample Phic 6A Prepared b Vince Zaccone riction i a force that oppoe the motion of urface that are in contact with each other. We will conider 2 tpe of friction in thi cla: KINETIC

### Harmonic Oscillations / Complex Numbers

Harmonic Ocillation / Complex Number Overview and Motivation: Probably the ingle mot important problem in all of phyic i the imple harmonic ocillator. It can be tudied claically or uantum mechanically,

### v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement

### Linear Momentum and Collisions

Chapter 7 Linear Momentum and Colliion 7.1 The Important Stuff 7.1.1 Linear Momentum The linear momentum of a particle with ma m moving with velocity v i defined a p = mv (7.1) Linear momentum i a vector.

### Chapter 10 Velocity, Acceleration, and Calculus

Chapter 10 Velocity, Acceleration, and Calculu The firt derivative of poition i velocity, and the econd derivative i acceleration. Thee derivative can be viewed in four way: phyically, numerically, ymbolically,

### Description: Conceptual questions about projectile motion and some easy calculations. (uses applets)

Week 3: Chapter 3 [ Edit ] Overview Suary View Diagnotic View Print View with Anwer Week 3: Chapter 3 Due: 11:59p on Sunday, February 8, 2015 To undertand how point are awarded, read the Grading Policy

### Rotation of an Object About a Fixed Axis

Chapter 1 Rotation of an Object About a Fixed Axi 1.1 The Important Stuff 1.1.1 Rigid Bodie; Rotation So far in our tudy of phyic we have (with few exception) dealt with particle, object whoe patial dimenion

### Ohm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power

Ohm Law Ohmic relationhip V=IR Ohm law tate that current through the conductor i directly proportional to the voltage acro it if temperature and other phyical condition do not change. In many material,

### Forced Convection Heat Transfer

Forced onvection Heat raner onvection i the mechanim o heat traner through a luid in the preence o bul luid motion. onvection i claiied a natural (or ree) and orced convection depending on how the luid

### Pipe Flow Calculations

Pipe Flow Calculation R. Shankar Subramanian epartment o Chemical and Biomolecular Engineering Clarkon Univerity We begin with ome reult that we hall ue when making riction lo calculation or teady, ully

### FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

### MSc Financial Economics: International Finance. Bubbles in the Foreign Exchange Market. Anne Sibert. Revised Spring 2013. Contents

MSc Financial Economic: International Finance Bubble in the Foreign Exchange Market Anne Sibert Revied Spring 203 Content Introduction................................................. 2 The Mone Market.............................................

### The quartz crystal model and its frequencies 4,000 3,000 2,000. Reactance X [ohms] 1,000 -1,000 -2,000

TEHNIA NOTE 3 The quartz crytal model and it frequencie. Introduction The region between and i a region of poitive In thi note, we preent ome of the baic electrical propertie of quartz crytal. In particular,

### PHYSICS 151 Notes for Online Lecture #11

PHYSICS 151 ote for Online Lecture #11 A free-bod diagra i a wa to repreent all of the force that act on a bod. A free-bod diagra ake olving ewton econd law for a given ituation eaier, becaue ou re odeling

### Finite Automata. a) Reading a symbol, b) Transferring to a new instruction, and c) Advancing the tape head one square to the right.

Finite Automata Let u begin by removing almot all of the Turing machine' power! Maybe then we hall have olvable deciion problem and till be able to accomplih ome computational tak. Alo, we might be able

### Lab 4: Motor Control

2.017 Deign of Electromechanical Robotic Sytem, Fall 2009 Lab 4: Motor Control Aigned: 10/5/09 1 Overview So far we have learnt how to ue the Arduino to acquire variou type of ignal from enor uch a the

### Heat transfer to or from a fluid flowing through a tube

Heat tranfer to or from a fluid flowing through a tube R. Shankar Subramanian A common ituation encountered by the chemical engineer i heat tranfer to fluid flowing through a tube. Thi can occur in heat

### 2. METHOD DATA COLLECTION

Key to learning in pecific ubject area of engineering education an example from electrical engineering Anna-Karin Cartenen,, and Jonte Bernhard, School of Engineering, Jönköping Univerity, S- Jönköping,

### Progress 8 and Attainment 8 measure in 2016, 2017, and 2018. Guide for maintained secondary schools, academies and free schools

Progre 8 and Attainment 8 meaure in 2016, 2017, and 2018 Guide for maintained econdary chool, academie and free chool September 2016 Content Table of figure 4 Summary 5 A ummary of Attainment 8 and Progre

### Physics 111. Exam #1. January 24, 2014

Phyic 111 Exam #1 January 24, 2014 Name Pleae read and follow thee intruction carefully: Read all problem carefully before attempting to olve them. Your work mut be legible, and the organization clear.

### Progress 8 measure in 2016, 2017, and 2018. Guide for maintained secondary schools, academies and free schools

Progre 8 meaure in 2016, 2017, and 2018 Guide for maintained econdary chool, academie and free chool July 2016 Content Table of figure 4 Summary 5 A ummary of Attainment 8 and Progre 8 5 Expiry or review

### Discussion Session 4 Projectile Motion Week 05. The Plan

PHYS Dicuion Seion 4 Projectile Motion Week 5 The Plan Thi week your group will practice analyzing projectile otion ituation. Why do we pend a whole eion on thi topic? The anwer i that projectile otion

### MATLAB/Simulink Based Modelling of Solar Photovoltaic Cell

MATLAB/Simulink Baed Modelling of Solar Photovoltaic Cell Tarak Salmi *, Mounir Bouzguenda **, Adel Gatli **, Ahmed Mamoudi * *Reearch Unit on Renewable Energie and Electric Vehicle, National Engineering

### Queueing systems with scheduled arrivals, i.e., appointment systems, are typical for frontal service systems,

MANAGEMENT SCIENCE Vol. 54, No. 3, March 28, pp. 565 572 in 25-199 ein 1526-551 8 543 565 inform doi 1.1287/mnc.17.82 28 INFORMS Scheduling Arrival to Queue: A Single-Server Model with No-Show INFORMS

### Morningstar Fixed Income Style Box TM Methodology

Morningtar Fixed Income Style Box TM Methodology Morningtar Methodology Paper Augut 3, 00 00 Morningtar, Inc. All right reerved. The information in thi document i the property of Morningtar, Inc. Reproduction

### STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

### Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

aachuett Intitute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric achinery Cla Note 10: Induction achine Control and Simulation c 2003 Jame L. Kirtley Jr. 1 Introduction

### Senior Thesis. Horse Play. Optimal Wagers and the Kelly Criterion. Author: Courtney Kempton. Supervisor: Professor Jim Morrow

Senior Thei Hore Play Optimal Wager and the Kelly Criterion Author: Courtney Kempton Supervior: Profeor Jim Morrow June 7, 20 Introduction The fundamental problem in gambling i to find betting opportunitie

### ECE 320 Energy Conversion and Power Electronics Dr. Tim Hogan. Chapter 7: Synchronous Machines and Drives (Textbook Chapter 5)

ECE 30 Energy Converion and Power Electronic Dr. Tim Hogan Chapter 7: ynchronou Machine and Drive (Textbook Chapter 5) Chapter Objective For induction machine, a the rotor approache ynchronou peed, the

### THE SPRING CONSTANT. Apparatus: A spiral spring, a set of weights, a weight hanger, a balance, a stop watch, and a twometer

THE SPRING CONSTANT Objective: To determine the spring constant of a spiral spring by Hooe s law and by its period of oscillatory motion in response to a weight. Apparatus: A spiral spring, a set of weights,

### Force. Net Force Mass. Acceleration = Section 1: Weight. Equipment Needed Qty Equipment Needed Qty Force Sensor 1 Mass and Hanger Set 1 Balance 1

Department of Physics and Geology Background orce Physical Science 1421 A force is a vector quantity capable of producing motion or a change in motion. In the SI unit system, the unit of force is the Newton

### Experiment 3. Filters II Filter Design with MATLAB

Experiment 3 Filter II Filter Deign with MATLAB The objective o thi experiment i to gain ome experience in deigning ilter with deired peciication. You will work with a number o tool helping you in deigning

### 12.4 Problems. Excerpt from "Introduction to Geometry" 2014 AoPS Inc. Copyrighted Material CHAPTER 12. CIRCLES AND ANGLES

HTER 1. IRLES N NGLES Excerpt from "Introduction to Geometry" 014 os Inc. onider the circle with diameter O. all thi circle. Why mut hit O in at leat two di erent point? (b) Why i it impoible for to hit

### Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

Excerpt from the Proceeding of the COMSO Conference 0 India Two Dimenional FEM Simulation of Ultraonic Wave Propagation in Iotropic Solid Media uing COMSO Bikah Ghoe *, Krihnan Balaubramaniam *, C V Krihnamurthy

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### Progress 8 and Attainment 8 measure in 2016, 2017, and Guide for maintained secondary schools, academies and free schools

Progre 8 and Attainment 8 meaure in 2016, 2017, and 2018 Guide for maintained econdary chool, academie and free chool October 2016 Content Table of figure 4 Summary 5 A ummary of Attainment 8 and Progre

### DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS Chritopher V. Kopek Department of Computer Science Wake Foret Univerity Winton-Salem, NC, 2709 Email: kopekcv@gmail.com

### A technical guide to 2014 key stage 2 to key stage 4 value added measures

A technical guide to 2014 key tage 2 to key tage 4 value added meaure CONTENTS Introduction: PAGE NO. What i value added? 2 Change to value added methodology in 2014 4 Interpretation: Interpreting chool

### Thus far. Inferences When Comparing Two Means. Testing differences between two means or proportions

Inference When Comparing Two Mean Dr. Tom Ilvento FREC 48 Thu far We have made an inference from a ingle ample mean and proportion to a population, uing The ample mean (or proportion) The ample tandard

### A Review of Vector Addition

Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine

### Assessing the Discriminatory Power of Credit Scores

Aeing the Dicriminatory Power of Credit Score Holger Kraft 1, Gerald Kroiandt 1, Marlene Müller 1,2 1 Fraunhofer Intitut für Techno- und Wirtchaftmathematik (ITWM) Gottlieb-Daimler-Str. 49, 67663 Kaierlautern,

### FLUID MECHANICS. TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES

FLUID MECHANICS TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES In thi tutorial you will continue the work on laminar flow and develop Poieuille' equation to the form known a the Carman - Kozeny equation. Thi

### DUE to the small size and low cost of a sensor node, a

1992 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015 A Networ Coding Baed Energy Efficient Data Bacup in Survivability-Heterogeneou Senor Networ Jie Tian, Tan Yan, and Guiling Wang

### Newton s Law of Motion

chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

### T-test for dependent Samples. Difference Scores. The t Test for Dependent Samples. The t Test for Dependent Samples. s D

The t Tet for ependent Sample T-tet for dependent Sample (ak.a., Paired ample t-tet, Correlated Group eign, Within- Subject eign, Repeated Meaure,.. Repeated-Meaure eign When you have two et of core from

### On Rayleigh Optical Depth Calculations

1854 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 16 On Rayleigh Optical Depth Calculation BARRY A. BODHAINE NOAA/Climate Monitoring and Diagnotic Laboratory, Boulder, Colorado NORMAN B. WOOD Cooperative

### Report 4668-1b 30.10.2010. Measurement report. Sylomer - field test

Report 4668-1b Meaurement report Sylomer - field tet Report 4668-1b 2(16) Contet 1 Introduction... 3 1.1 Cutomer... 3 1.2 The ite and purpoe of the meaurement... 3 2 Meaurement... 6 2.1 Attenuation of

### Heuristic Approach to Dynamic Data Allocation in Distributed Database Systems

Pakitan Journal of Information and Technology 2 (3): 231-239, 2003 ISSN 1682-6027 2003 Aian Network for Scientific Information Heuritic Approach to Dynamic Data Allocation in Ditributed Databae Sytem 1

### Name: SID: Instructions

CS168 Fall 2014 Homework 1 Aigned: Wedneday, 10 September 2014 Due: Monday, 22 September 2014 Name: SID: Dicuion Section (Day/Time): Intruction - Submit thi homework uing Pandagrader/GradeScope(http://www.gradecope.com/

### Acceleration-Displacement Crash Pulse Optimisation A New Methodology to Optimise Vehicle Response for Multiple Impact Speeds

Acceleration-Diplacement Crah Pule Optimiation A New Methodology to Optimie Vehicle Repone for Multiple Impact Speed D. Gildfind 1 and D. Ree 2 1 RMIT Univerity, Department of Aeropace Engineering 2 Holden

### 4.1 Radian and Degree Measure

4. Radian and Degree Meaure An angle AOB (notation: AOB ) conit of two ray R and R with a common vertex O (ee Figure below). We often interpret an angle a a rotation of the ray R onto R. In thi cae, R

### Laws of lenses and optical instruments TEP

aw o lene and optical intrument TEP Related Topic aw o lene, maniication, ocal lenth, object ditance, telecope, microcope, path o a ray, convex len, concave len, real imae, virtual imae. Principle The

### Solving Newton s Second Law Problems

Solving ewton s Second Law Problems Michael Fowler, Phys 142E Lec 8 Feb 5, 2009 Zero Acceleration Problems: Forces Add to Zero he Law is F ma : the acceleration o a given body is given by the net orce

### DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS. G. Chapman J. Cleese E. Idle

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS G. Chapman J. Cleee E. Idle ABSTRACT Content matching i a neceary component of any ignature-baed network Intruion Detection

### Optimization Model of Higher Education Resources Allocation Based on Genetic Algorithm

Management cience and ngineering Vol. 7, No. 3, 203, pp. 76-80 DOI:0.3968/j.me.93035X2030703.2622 IN 93-034 [Print] IN 93-035X [Online] www.ccanada.net www.ccanada.org Optimization Model of Higher ducation

### A note on profit maximization and monotonicity for inbound call centers

A note on profit maximization and monotonicity for inbound call center Ger Koole & Aue Pot Department of Mathematic, Vrije Univeriteit Amterdam, The Netherland 23rd December 2005 Abtract We conider an

### 1 Safe Drivers versus Reckless Drunk Drivers

ECON 301: General Equilibrium IV (Externalitie) 1 Intermediate Microeconomic II, ECON 301 General Equilibrium IV: Externalitie In our dicuion thu far, we have implicitly aumed that all good can be traded

### If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

### Optical Illusion. Sara Bolouki, Roger Grosse, Honglak Lee, Andrew Ng

Optical Illuion Sara Bolouki, Roger Groe, Honglak Lee, Andrew Ng. Introduction The goal of thi proect i to explain ome of the illuory phenomena uing pare coding and whitening model. Intead of the pare

### Exposure Metering Relating Subject Lighting to Film Exposure

Expoure Metering Relating Subject Lighting to Film Expoure By Jeff Conrad A photographic expoure meter meaure ubject lighting and indicate camera etting that nominally reult in the bet expoure of the film.

### Delft. Matlab and Simulink for Modeling and Control. Robert Babuška and Stefano Stramigioli. November 1999

Matlab and Simulink for Modeling and Control Robert Babuška and Stefano Stramigioli November 999 Delft Delft Univerity of Technology Control Laboratory Faculty of Information Technology and Sytem Delft

### Engineering Bernoulli Equation

Engineering Bernoulli Equation R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkon Univerity The Engineering Bernoulli equation can be derived from the principle of conervation

### = Ps cos 0 = (150 N)(7.0 m) = J F N. s cos 180 = µ k

Week 5 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions o these problems, various details have been changed, so that the answers will come out dierently. The method to ind the solution

### Morningstar Fixed-Income Style Box TM Methodology

Morningtar Fixed-Income Style Box TM Methodology Morningtar Methodology Paper April 30, 01 01 Morningtar, Inc. All right reerved. The information in thi document i the property of Morningtar, Inc. Reproduction

### Brand Equity Net Promoter Scores Versus Mean Scores. Which Presents a Clearer Picture For Action? A Non-Elite Branded University Example.

Brand Equity Net Promoter Score Veru Mean Score. Which Preent a Clearer Picture For Action? A Non-Elite Branded Univerity Example Ann Miti, Swinburne Univerity of Technology Patrick Foley, Victoria Univerity

### Mobile Network Configuration for Large-scale Multimedia Delivery on a Single WLAN

Mobile Network Configuration for Large-cale Multimedia Delivery on a Single WLAN Huigwang Je, Dongwoo Kwon, Hyeonwoo Kim, and Hongtaek Ju Dept. of Computer Engineering Keimyung Univerity Daegu, Republic

### Chapter 4: Mean-Variance Analysis

Chapter 4: Mean-Variance Analyi Modern portfolio theory identifie two apect of the invetment problem. Firt, an invetor will want to maximize the expected rate of return on the portfolio. Second, an invetor

### Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur

Module 8 Three-phae Induction Motor Verion EE IIT, Kharagpur Leon 33 Different Type of Starter for Induction Motor (IM Verion EE IIT, Kharagpur Inructional Objective Need of uing arter for Induction motor

### Simulation on Stern-Rudder Independent Control for Submarine Motion in a Vertical Plane

BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 15, No 6 Special Iue on Logitic, Informatic and Service Science Sofia 2015 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI:

### Bi-Objective Optimization for the Clinical Trial Supply Chain Management

Ian David Lockhart Bogle and Michael Fairweather (Editor), Proceeding of the 22nd European Sympoium on Computer Aided Proce Engineering, 17-20 June 2012, London. 2012 Elevier B.V. All right reerved. Bi-Objective

### Turbulent Mixing and Chemical Reaction in Stirred Tanks

Turbulent Mixing and Chemical Reaction in Stirred Tank André Bakker Julian B. Faano Blend time and chemical product ditribution in turbulent agitated veel can be predicted with the aid of Computational

### Performance of a Browser-Based JavaScript Bandwidth Test

Performance of a Brower-Baed JavaScript Bandwidth Tet David A. Cohen II May 7, 2013 CP SC 491/H495 Abtract An exiting brower-baed bandwidth tet written in JavaScript wa modified for the purpoe of further

### Review of Multiple Regression Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015

Review of Multiple Regreion Richard William, Univerity of Notre Dame, http://www3.nd.edu/~rwilliam/ Lat revied January 13, 015 Aumption about prior nowledge. Thi handout attempt to ummarize and yntheize

### Initial & Final Value Theorems. Lecture 7. More on Laplace Transform (Lathi ) Example. Laplace Transform for Solving Differential Equations

Initial & Final Value Theorem ecture 7 More on aplace Tranform (athi 4.3 4.4) How to find the initial and final value of a function x(t) if we now it aplace Tranform? (t 0 +, and t ) Initial Value Theorem

Section 3.4 Pre-Activity Preparation Quadrilateral Intereting geometric hape and pattern are all around u when we tart looking for them. Examine a row of fencing or the tiling deign at the wimming pool.

### Solution of the Heat Equation for transient conduction by LaPlace Transform

Solution of the Heat Equation for tranient conduction by LaPlace Tranform Thi notebook ha been written in Mathematica by Mark J. McCready Profeor and Chair of Chemical Engineering Univerity of Notre Dame

### CHAPTER 5 BROADBAND CLASS-E AMPLIFIER

CHAPTER 5 BROADBAND CLASS-E AMPLIFIER 5.0 Introduction Cla-E amplifier wa firt preented by Sokal in 1975. The application of cla- E amplifier were limited to the VHF band. At thi range of frequency, cla-e

### LAB1 2D and 3D step-index waveguides. TE and TM modes.

LAB1 2D and 3D tep-index waveguide. T and TM mode. 1. Getting tarted 1.1. The purpoe o thi laboratory are: - T/TM mode propagation in 2D (lab waveguide) tep-index waveguide a a unction o guide peciic parameter

### TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

### Drill Bit Hydraulics

Drill it Hyraulic Aumtion ) Change o reure ue to eleation i negligible. ) Velocity utream i negligible comare to nozzle. 3) reure ue to riction i negligible. Δ Δ 8.075E 4ρ n reure ro acro bit, 0 n nozzle

### Physical Properties of Soils and Compaction

Soil Mechanic Phyical Propertie of Soil and Compaction page 1 Content of thi chapter : CHAPITRE 2. PHYSICAL PROPERTIES OF SOILS AND COMPACTION...1 2.1 UNITS...1 2.2 BASIC DEFINITIONS AND TERMINOLOGY...2

DIHEDRAL GROUPS KEITH CONRAD 1. Introduction For n 3, the dihedral group D n i defined a the rigid motion 1 of the plane preerving a regular n-gon, with the operation being compoition. Thee polygon for

### Auction Theory. Jonathan Levin. October 2004

Auction Theory Jonathan Levin October 2004 Our next topic i auction. Our objective will be to cover a few of the main idea and highlight. Auction theory can be approached from different angle from the

### COEFFICIENT OF KINETIC FRICTION

COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

### A Note on Profit Maximization and Monotonicity for Inbound Call Centers

OPERATIONS RESEARCH Vol. 59, No. 5, September October 2011, pp. 1304 1308 in 0030-364X ein 1526-5463 11 5905 1304 http://dx.doi.org/10.1287/opre.1110.0990 2011 INFORMS TECHNICAL NOTE INFORMS hold copyright

### Work, Energy & Power. AP Physics B

ork, Energy & Power AP Physics B There are many dierent TYPES o Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed more speciically by using the term ORK() ork = The Scalar

### Simple Harmonic Motion. AP Physics B

Simple Harmonic Motion AP Phyic B Simple Harmonic Motion Back and forth motion that i caued by a force that i directly proportional to the diplacement. The diplacement center around an equilibrium poition.

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Block Diagrams, State-Variable Models, and Simulation Methods

5 C H A P T E R Block Diagram, State-Variable Model, and Simulation Method CHAPTER OUTLINE CHAPTER OBJECTIVES Part I. Model Form 25 5. Tranfer Function and Block Diagram Model 25 5.2 State-Variable Model

### Scheduling of Jobs and Maintenance Activities on Parallel Machines

Scheduling of Job and Maintenance Activitie on Parallel Machine Chung-Yee Lee* Department of Indutrial Engineering Texa A&M Univerity College Station, TX 77843-3131 cylee@ac.tamu.edu Zhi-Long Chen** Department

### σ m using Equation 8.1 given that σ

8. Etimate the theoretical fracture trength of a brittle material if it i known that fracture occur by the propagation of an elliptically haped urface crack of length 0.8 mm and having a tip radiu of curvature

### Experiment 5: Newton s Second Law

Name Section Date Introduction Experiment : Newton s Second Law In this laboratory experiment you will consider Newton s second law of motion, which states that an object will accelerate if an unbalanced

### Chapter 10 Stocks and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter Stoc and Their Valuation ANSWERS TO EN-OF-CHAPTER QUESTIONS - a. A proxy i a document giving one peron the authority to act for another, typically the power to vote hare of common toc. If earning