A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ

Size: px
Start display at page:

Download "A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ"

Transcription

1 Phyic 100 Homewor 5 Chapter 6 Contact Force Introduced ) When two object lide againt one another, the magnitude of the frictional force i alway equal to μ B) When two object are in contact with no relative motion, the magnitude of the frictional force may be either le or equal to μ C) When a board with a bo on it i lowly tilted to a larger and larger angle, common eperience how that the bo will at ome point "brea looe" and tart to accelerate down the board. he bo begin to lide once the component of it weight parallel to the board, W, equal the maimum force of tatic friction. he bo accelerate down the board after it begin to lide becaue the coefficient of inetic friction i le than the coefficient of tatic friction. Comparing Friction Force with Gravity )he crate i at ret on the incline becaue the frictional force point up the incline. B) When the phyicit attempt to move the create by puhing up the incline, he find that the force of tatic friction point down the incline. Contant velocity C) When the two phyicit puh the crate up the incline with contant velocity, their combined force i the ame a the um of the force of gravity parallel to the incline plu the force of inetic friction. Both force pointing down the incline. Kinetic Friction in a Bloc-and-Pullet Sytem. f B W W B Conider the ytem hown in the figure. Bloc ha weight 4.91 and bloc B ha weight.94. Once bloc B i et into downward motion, it decend at a contant peed. ume that the ma and friction of the pulley are negligible. Copyright 010 Pearon Education, Inc. ll right reerved. hi material i protected under all copyright law a they currently eit. o 6 1

2 Chapter 6: pplication of ewton Law Jame S. Waler, Phyic, 4 th Edition Bloc (no acceleration) f f W = μ = μ W > = μ W Bloc B (no acceleration) = M B g Combining both epreion for μ W = W B WB.94 μ = =.6 W 4.91 Puhing a Chair long the Floor chair of weight 80.0 lie atop a horizontal floor; the floor i not frictionle. You puh on the chair with a force of F= 4.0 directed at an angle of 41.0 below the horizontal and the chair lide along the floor. F in 41 F co f W Vertical direction F in( 41) W = W + F in( 41) = in(41) = baeball player lide into third bae with an initial peed of 4.0 m/. If the coefficient of inetic friction between the player and the ground i 0.46, how far doe the player lide before coming to ret? a f Horizontal direction. he only force i that of friction. f μmg f = ma a = = = μ g m m Copyright 010 Pearon Education, Inc. ll right reerved. hi material i protected under all copyright law a they currently eit. o 6

3 Chapter 6: pplication of ewton Law Jame S. Waler, Phyic, 4 th Edition 3. Picture the Problem: baeball player lide in a traight line and come to ret due to the frictional force. Strategy: Find the acceleration of the player uing ewton Second Law, and inert the reult into equation -1 to find the lide ditance. Let the initial velocity v r 0 point in the poitive direction. Solution: 1. Find the acceleration of the player uing ewton Second Law:. Ue equation -1 to find the lide ditance: v v 0 v ( 4.0 m/) 0 0 Δ = = = = 1.8 m a μ g m/ Inight: If the player were running fater, ay, 8.0 m/, a µ of 0.46 would reult in a lide ditance of 7.1 m, a quarter of the 7 m between the bae! He might very well overhoot the bae and be tagged out g crate i placed on an inclined ramp. When the angle the ramp mae with the horizontal i increaed to 6, the crate begin to lide downward. 1. Picture the Problem: he crate lide down the incline when the angle i jut 6. free-body diagram of the ituation i depicted at right. Strategy: Chooe the -ai to be parallel to the ramp, pointing uphill, and the y ai to point perpendicular to the ramp. Write ewton Second Law in the y direction to find the normal force. hen write ewton Second Law in the direction with a (the bo jut begin to lide) to find the coefficient of tatic friction μ. Solution: 1. (a) Write ewton Second Law in the y direction: F = mgcoθ y = mgcoθ. Write ewton Second Law in the F = μ mg inθ = ma direction, etting a (the bo jut μ ( mg coθ) mg inθ begin to lide) and olving for μ : μ = tanθ = tan 6 = (b) Since θ only depend upon μ, changing the ma will not change θ and the angle remain 6. Inight: Increaing the ma doe increae the normal force and hence the friction force, but the component of the crate weight that pull it down the ramp i alo increaed. he two effect cancel and θ depend upon μ only. Lifting a Bucet 6-g bucet of water i being pulled traight up by a tring at a contant peed. ) he tenion in the rope W = mg = ( 6)(9.8) = 59, about 60 a=0 contant peed W Copyright 010 Pearon Education, Inc. ll right reerved. hi material i protected under all copyright law a they currently eit. o 6 3

4 Chapter 6: pplication of ewton Law Jame S. Waler, Phyic, 4 th Edition B) t a certain point the peed of the bucet begin to change. he bucet now ha an upward contant acceleration of magnitude 3m/. What i the tenion in the rope now? W = ma = mg + ma = m( g + a) = (6)( ) = 76. 8, about 76 C) If the acceleration i downward. W = ma = mg ma = m( g a) = (6)(9.8 3) = 40. 8, about ) picture hang on the wall upended by two tring, a hown in the figure. he tenion in tring 1 i Picture the Problem: he free-body diagram for the contact point between the two tring i depicted at right. Strategy: he horizontal component of the tring tenion mut be equal becaue the picture i not accelerating. he ame i true of the vertical component of the force. Ue ewton Second Law in the horizontal direction to find the tenion in tring, and in the vertical direction to find the weight of the picture. Solution: 1. (a) he tenion in tring i le than the tenion in tring 1, becaue it provide motly a ideway component of force that i balanced by the horizontal component of tring 1. hat mean tring 1 mut upport mot of the weight of the picture plu balance tring horizontal component, giving it a larger tenion than tring.. (b) Write ewton Second Law in the horizontal direction in order to find the tenion in tring : 3. (c) Write ewton Second Law in the vertical direction in order to find the picture weight: F = 1coθ1+ coθ coθ co = 1 = = coθ co 3 F = inθ + inθ W y 1 1 W = 1.7 in in 3 =.0 Inight: the angle of tring 1 approache 90 and the angle of tring approache 0, the tenion in tring drop to zero and the entire.0 weight of the picture i upported by tring ) wo bloc are connected by a tring, a hown in the figure. he mooth inclined urface mae an angle of 4 with the horizontal, and the bloc on the incline ha a ma of 6.7g. 37. Picture the Problem: he force eerted on the left and right bloc are depicted at right. Strategy: Becaue the pulley i ideal, the tenion in the tring i equal to the weight of the hanging bloc. hi can be verified by ewton Second Law in the vertical direction for the hanging bloc: Fy = mg. Write ewton Second Law along the direction parallel to the incline for the 6.7 g bloc and ubtitute = mginto the reulting equation to find m. Solution: 1. Write ewton Second Law along the direction parallel to the incline:. Subtitute = mginto the reulting equation to find m. F = Mginθ = mg = Mginθ m= M inθ = 6.7 g in 4 = 4.5 g Copyright 010 Pearon Education, Inc. ll right reerved. hi material i protected under all copyright law a they currently eit. o 6 4

5 Chapter 6: pplication of ewton Law Jame S. Waler, Phyic, 4 th Edition Inight: larger m i required if the angle θ i increaed. If it i increaed all the way to θ =90, the large ma will be hanging traight down and the ma m required to maintain equilibrium would be 6.7 g.. (b) he tenion in the tring wa determined in Eample 6-6 to be m m g ( m m ) doubled the tenion would be = m g ( m + m ) =. tenion would increae. new 1 1 = + If both mae were 1 1. m We conclude that if both mae were doubled the Inight: he tenion mut increae in the econd cae becaue there i twice a much ma that mut be accelerated at the ame rate a before. 6.44) Find the acceleration of the mae hown in the figure, given that m1 = 1.0g, m =. 0g, and m3 = 3. 0g. ume the table i frictionle and the mae move freely. 44. Picture the Problem: he phyical apparatu i hown at right. Strategy: Write ewton Second Law for each of the three bloc and add the equation to eliminate the unnown 1 and. Solve the reulting equation for the acceleration a. Let be poitive in the direction of each ma motion. Solution: 1. Write ewton Second Law for each of the three bloc and add the equation:. Solve the reulting bloc 1 bloc bloc 3 F = = ma 1 1 F = + = m a 1 F = + m g = m a 3 3 mg= m+ m + m a m 3.0 g = = 9.81 m/ = 4.9 m/ m1+ m + m3 6.0 g 3 equation for a: a g Inight: ote that the bloc move a if they were a ingle bloc of ma 6.0 g under the influence of a force equal to mg= 3 9. Inight: comet that travel along an elliptical path eperience the larget gravitational force when it i cloet to the Sun. In uch a cae the required centripetal force i larget both becaue v i greatet and r i leat at that point. In orbit terminology the point cloet to the Sun i called perihelion. Ma in a urntable mall metal cylinder ret on a circular turntable that i rotating at a contant rate, a illutrated in the diagram. Copyright 010 Pearon Education, Inc. ll right reerved. hi material i protected under all copyright law a they currently eit. o 6 5

6 Chapter 6: pplication of ewton Law Jame S. Waler, Phyic, 4 th Edition ) In circular motion with contant peed the acceleration and force point radially inward and the velocity i tangential. (e) B) he tangential peed i v = rω, and the centripetal acceleration i a cp = rω, where the angular velocity ω i contant. If the radiu i halved, the peed and the acceleration are halved. 6.56) Find the linear peed of the bottom of a tet tube in a centrifuge if the centripetal acceleration there i time the acceleration of gravity. he ditance from the ai of rotation to the bottom of the tet tube i 7.5 cm. 56. Picture the Problem: he tet tube travel along a circular path at contant peed. Strategy: Solve equation 6-15 for the peed required to attain the deired acceleration. Solution: Solve equation 6-15 for the peed: v = racp = r( 5,000g) = ( m)( 5,000)( 9.81 m/ ) 0 m/.0 m/ Inight: hi peed correpond to 5,000 revolution per minute for the centrifuge, or 415 revolution per econd. Inight: he tenion doe not quadruple in part (a) becaue the acceleration i the um of gravitational and centripetal acceleration. he centripetal acceleration quadruple, but the um doe not becaue gravity remain contant. o calculate the number of revolution above: v 00 ω,666 ω = = =,666 rad/ ω = πf f = = = 44 rev/ r Driving in your car with a contant peed of 1m/, you encounter a bump in the road that ha a circular cro-ection, a indicated in the figure. If the radiu of curvature of the bump i 35m, find the apparent weight of a 67-g peron in your car a you pa over the top of the bump. π π 6. Picture the Problem: he car follow a circular path at contant peed a it pae over the bump. Strategy: he centripetal acceleration i downward, toward the center of the circle, a the car pae over the bump. Write ewton Second Law in the vertical direction and olve for the normal force, which i alo the apparent weight of the paenger. Solution: 1. Write ewton y Second Law for the paenger and olve for = m( g v r) :. Inert numerical value: F = mg = macp = mv r 1 m/ = 67 g 9.81 m/ = m Inight: hi apparent weight i 4% le than the normal weight of the paenger. Copyright 010 Pearon Education, Inc. ll right reerved. hi material i protected under all copyright law a they currently eit. o 6 6

Incline and Friction Examples

Incline and Friction Examples Incline and riction Eample Phic 6A Prepared b Vince Zaccone riction i a force that oppoe the motion of urface that are in contact with each other. We will conider 2 tpe of friction in thi cla: KINETIC

More information

6. Friction, Experiment and Theory

6. Friction, Experiment and Theory 6. Friction, Experiment and Theory The lab thi wee invetigate the rictional orce and the phyical interpretation o the coeicient o riction. We will mae ue o the concept o the orce o gravity, the normal

More information

Rotation of an Object About a Fixed Axis

Rotation of an Object About a Fixed Axis Chapter 1 Rotation of an Object About a Fixed Axi 1.1 The Important Stuff 1.1.1 Rigid Bodie; Rotation So far in our tudy of phyic we have (with few exception) dealt with particle, object whoe patial dimenion

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Chapter 7 Linear Momentum and Colliion 7.1 The Important Stuff 7.1.1 Linear Momentum The linear momentum of a particle with ma m moving with velocity v i defined a p = mv (7.1) Linear momentum i a vector.

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

PHYSICS 151 Notes for Online Lecture #11

PHYSICS 151 Notes for Online Lecture #11 PHYSICS 151 ote for Online Lecture #11 A free-bod diagra i a wa to repreent all of the force that act on a bod. A free-bod diagra ake olving ewton econd law for a given ituation eaier, becaue ou re odeling

More information

MECH 2110 - Statics & Dynamics

MECH 2110 - Statics & Dynamics Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight

More information

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad. Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Answer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Hoework 7 David McIntyre 453 Mar 5, 004 This print-out should have 4 questions. Multiple-choice questions ay continue on the next colun or page find all choices before aking your selection.

More information

Chapter H - Problems

Chapter H - Problems Chapter H - Problem Blinn College - Phyic 45 - Terry Honan Problem H.1 A wheel rotate from ret to 1 ê in 3. Aume the angular acceleration i contant. (a) What i the magnitude of the wheel' angular acceleration?

More information

Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

More information

B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B.

B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B. CTA-1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass

More information

Angular acceleration α

Angular acceleration α Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

More information

Description: Conceptual questions about projectile motion and some easy calculations. (uses applets)

Description: Conceptual questions about projectile motion and some easy calculations. (uses applets) Week 3: Chapter 3 [ Edit ] Overview Suary View Diagnotic View Print View with Anwer Week 3: Chapter 3 Due: 11:59p on Sunday, February 8, 2015 To undertand how point are awarded, read the Grading Policy

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Hand Held Centripetal Force Kit

Hand Held Centripetal Force Kit Hand Held Centripetal Force Kit PH110152 Experiment Guide Hand Held Centripetal Force Kit INTRODUCTION: This elegantly simple kit provides the necessary tools to discover properties of rotational dynamics.

More information

CHAPTER 15 FORCE, MASS AND ACCELERATION

CHAPTER 15 FORCE, MASS AND ACCELERATION CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Physics 111. Exam #1. January 24, 2014

Physics 111. Exam #1. January 24, 2014 Phyic 111 Exam #1 January 24, 2014 Name Pleae read and follow thee intruction carefully: Read all problem carefully before attempting to olve them. Your work mut be legible, and the organization clear.

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

Chapter 9 Circular Motion Dynamics

Chapter 9 Circular Motion Dynamics Chapter 9 Circular Motion Dynamics 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon... 9.. Universal Law of Gravitation... 3

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

3 Work, Power and Energy

3 Work, Power and Energy 3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Centripetal force, rotary motion, angular velocity, apparent force.

Centripetal force, rotary motion, angular velocity, apparent force. Related Topics Centripetal force, rotary motion, angular velocity, apparent force. Principle and Task A body with variable mass moves on a circular path with ad-justable radius and variable angular velocity.

More information

Chapter 11 Relative Velocity

Chapter 11 Relative Velocity Chapter 11 Relatie Velocity 11 Relatie Velocity Vector add like ector, not like nuber. Except in that ery pecial cae in which the ector you are adding lie along one and the ae line, you can t jut add the

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

More information

Chapter 19 Magnetic Forces and Fields

Chapter 19 Magnetic Forces and Fields Chapter 19 Magnetic Forces and Fields Student: 3. The magnetism of the Earth acts approximately as if it originates from a huge bar magnet within the Earth. Which of the following statements are true?

More information

University Physics 226N/231N Old Dominion University. Getting Loopy and Friction

University Physics 226N/231N Old Dominion University. Getting Loopy and Friction University Physics 226N/231N Old Dominion University Getting Loopy and Friction Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-odu Friday, September 28 2012 Happy

More information

FLUID MECHANICS. TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES

FLUID MECHANICS. TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES FLUID MECHANICS TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES In thi tutorial you will continue the work on laminar flow and develop Poieuille' equation to the form known a the Carman - Kozeny equation. Thi

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

Lecture-IV. Contact forces & Newton s laws of motion

Lecture-IV. Contact forces & Newton s laws of motion Lecture-IV Contact forces & Newton s laws of motion Contact forces: Force arises from interaction between two bodies. By contact forces we mean the forces which are transmitted between bodies by short-range

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

Chapter 6 Circular Motion

Chapter 6 Circular Motion Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

More information

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Uniform Circular Motion III. Homework: Assignment (1-35) Read 5.4, Do CONCEPT QUEST #(8), Do PROBS (20, 21) Ch. 5 + AP 1997 #2 (handout)

Uniform Circular Motion III. Homework: Assignment (1-35) Read 5.4, Do CONCEPT QUEST #(8), Do PROBS (20, 21) Ch. 5 + AP 1997 #2 (handout) Double Date: Objective: Uniform Circular Motion II Uniform Circular Motion III Homework: Assignment (1-35) Read 5.4, Do CONCEPT QUEST #(8), Do PROBS (20, 21) Ch. 5 + AP 1997 #2 (handout) AP Physics B

More information

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity. 5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

HW Set II page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set II page 1 of 9 PHYSICS 1401 (1) homework solutions HW Set II page 1 of 9 4-50 When a large star becomes a supernova, its core may be compressed so tightly that it becomes a neutron star, with a radius of about 20 km (about the size of the San Francisco

More information

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

Chapter 5: Applying Newton s Laws

Chapter 5: Applying Newton s Laws Chapter 5: Appling Newton s Laws Newton s 1 st Law he 1 st law defines what the natural states of motion: rest and constant velocit. Natural states of motion are and those states are when a = 0. In essence,

More information

Ohm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power

Ohm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power Ohm Law Ohmic relationhip V=IR Ohm law tate that current through the conductor i directly proportional to the voltage acro it if temperature and other phyical condition do not change. In many material,

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy

More information

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

More information

Classical Physics I. PHY131 Lecture 7 Friction Forces and Newton s Laws. Lecture 7 1

Classical Physics I. PHY131 Lecture 7 Friction Forces and Newton s Laws. Lecture 7 1 Classical Phsics I PHY131 Lecture 7 Friction Forces and Newton s Laws Lecture 7 1 Newton s Laws: 1 & 2: F Net = ma Recap LHS: All the forces acting ON the object of mass m RHS: the resulting acceleration,

More information

Solved Problems Chapter 3: Mechanical Systems

Solved Problems Chapter 3: Mechanical Systems ME 43: Sytem Dynamic and Contro Probem A-3-8- Soved Probem Chapter 3: Mechanica Sytem In Figure 3-3, the impe penduum hown conit of a phere of ma m upended by a tring of negigibe ma. Negecting the eongation

More information

Newton s Laws of Motion

Newton s Laws of Motion Chapter 1. Newton s Laws of Motion Notes: Most of the material in this chapter is taken from Young and Freedman, Chapters 4 and 5 1.1 Forces and Interactions It was Isaac Newton who first introduced the

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

AP Physics 1 Midterm Exam Review

AP Physics 1 Midterm Exam Review AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement

More information

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the

More information

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length

More information

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

Rotational Inertia Demonstrator

Rotational Inertia Demonstrator WWW.ARBORSCI.COM Rotational Inertia Demonstrator P3-3545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended

More information

Pendulum Force and Centripetal Acceleration

Pendulum Force and Centripetal Acceleration Pendulum Force and Centripetal Acceleration 1 Objectives 1. To calibrate and use a force probe and motion detector. 2. To understand centripetal acceleration. 3. To solve force problems involving centripetal

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa. Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

More information

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7 Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

More information

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013 PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

More information

Kinetic Friction. Experiment #13

Kinetic Friction. Experiment #13 Kinetic Friction Experiment #13 Joe Solution E00123456 Partner - Jane Answers PHY 221 Lab Instructor Chuck Borener Thursday, 11 AM 1 PM Lecture Instructor Dr. Jacobs Abstract In this experiment, we test

More information

σ m using Equation 8.1 given that σ

σ m using Equation 8.1 given that σ 8. Etimate the theoretical fracture trength of a brittle material if it i known that fracture occur by the propagation of an elliptically haped urface crack of length 0.8 mm and having a tip radiu of curvature

More information

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6 Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

More information