Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Size: px
Start display at page:

Download "Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,"

Transcription

1 R Pe Towe, Rod No, otctos Ae, Bistupu, Jmshedpu 800, Tel (067)89, IIT JEE 0 Mthemtics Ppe I PART III MATHEMATIS SETION I (Totl Mks : ) (Sigle oect Aswe Type) This sectio cotis 7 multiple choice questios. Ech questio hs fou choices (A), (B), () d (D) out of which ONLY ONE is coect. 7. Let P {θ : si θ cos θ cos θ} d Q {θ : si θ cos θ si θ} be two sets. The (A) P Q d Q P (B) Q P () P Q (D) P Q 7. (D) P : si θ cos θ cos θ t θ Q : si θ cos θ si θ t θ P Q. 8. Let the stight lie x b divide the e eclsoed by y ( x), y 0, d x 0 ito two pts R (0 x b) d R (0 x ) such tht R R. The b equls (A) (B) () (D) 8. (B) R R b ( x ) dx ( x ) dx 0 b ( b ) ( b ) b Let α d β be the oots of x 6x 0, with α > β. If α β fo, the the vlue of 0 8 is 9 (A) (B) () (D) 9. () Sice α 6α 0 α 6α d β 6β 0 β 6β ( α β ) ( α β ) α ( α ) β ( β ) α. 6 α β. 6 β ( α β ) ( α β ) ( α β ) IIT JEE 0 (0 Ap ) Questio & Solutios Ppe I www. peclsses.com

2 0. A stight lie L though the poit (, ) is iclied t gle 60 to the lie x y. If L lso itesects the x xis, the the equtio of L is (A) y x 0 (B) y x 0 () y x 0 (D) y x 0 0. (B) If equied lie hs slope m m t 60 m m 0, Sice, the lie itesects the x xis equtio is, (y ) (x ) y x 0.. Let (x 0, y 0 ) be the solutio of the followig equtios (x) l (y) l l x l y The x 0 is (A) / 6 (B) / () / (D) 6. () Sice (l ) (l l x) (l ) (l l y) d l x. l l y. l 0 (l ). (l x) l y. l (l ) (l )... (i) d l x. l l y. l 0... (ii) Usig (i) l (ii) l, we get l x. {(l ) (l ) } (l ) {(l ) (l ) } l x l x /. l x si x. The vlue of dx is si x si(l 6 x ) l (A) ( / ) l ( / ) (B) ( / ) l ( / ) () l ( / ) (D) ( / 6) l ( / ) l. (A) I x si x dx si x si(l 6 x ) l x t x dx dt I l si t dt si t si(l 6 t ) l b b Usig f ( x ) dx ( f ( x ) f ( b x )) dx IIT JEE 0 (0 Ap ) Questio & Solutios Ppe I www. peclsses.com

3 l si t si(l 6 t ) I dt [sice l l l 6] si t si(l 6 t ) si(l 6 t ) si t l l l I dt [ t ] l l. l. Let i ˆ j ˆ k ˆ, b i ˆ j ˆ k ˆ, d c i ˆ j ˆ k ˆ be thee vectos. Avecto v i the ple of d b, whose pojectio o c is / is give by (A) i ˆ j ˆ k ˆ (B) i ˆ j ˆ k ˆ () i ˆ j ˆ k ˆ (D). () v λ( i ˆ j ˆ k ˆ ) µ ( i ˆ j ˆ k ˆ ) v. c (λ µ) (λ µ) (λ µ) µ λ c v i ˆ (λ ) j ˆ k ˆ (λ ) Oly optio () stisfies this oe. i ˆ j ˆ k ˆ IIT JEE 0 (0 Ap ) Questio & Solutios Ppe I www. peclsses.com

4 SETION II (Totl Mks : 6) (Multiple oect hoice Type) This sectio cotis multiple choice questios. Ech questio hs fou choices (A), (B), () d (D) out of which ONE OR MORE my be coect.. Let f : R R be fuctio such tht f (x y) f (x) f (y), x, y R. If f (x) is diffeetible t x 0, the (A) f (x) is diffeetible oly i fiite itevl cotiig zeo (B) f (x) is cotiuous x R () f ' (x) is costt x R (D) f (x) is diffeetible except t fiitely my poits. (B)() f ( x h ) f ( x ) f ( x ) f ( h ) f ( x ) f ( h ) f ( 0 ) f ( x ) Lim Lim Lim h 0 h h 0 h h 0 h Put x y 0, f (0) 0 f ' (x) f ' (0) f (x) f ' (0) x c f (x) kx c, c 0 s f (0) 0 Fuctio is cotiuous. f ' (x) is costt. x y. Let the ecceticity of the hypebol be ecipocl to tht of the ellipse x b y. If the hypebol psses though focus of the ellipse, the (A) the equtio of the hypebol is y (B) focus of the hypebol is (, 0) () the ecceticity of the hypebol is (D) the equtio of the hypebol is x y. (B)(D) x y,, b, e (b / ) e / ecceticity of hypebol /. Focus of ellipse (± e, 0) (±, 0) x y psses though focus (±, 0) b b (e ) x y Equtio of hypebol : b x y Focus of hypebol (± e, 0) (±, 0). x y IIT JEE 0 (0 Ap ) Questio & Solutios Ppe I www. peclsses.com

5 6. Let M d N be two o sigul skew symmetic mtices such tht MN NM. If P T deotes the tspose of P, the M N (M T N) (MN ) T is equl to (A) M (B) N () M (D) MN 6. () Sice M T M, N T N M N (M T N) (MN ) T M N ( MN) (MN ) T M N (N. ( M) ). (N T ). ( M) M N ( M). ( N). ( M) M (MN) (MN) ( M) M. Note tht the sttemet which is give i the poblem is icoect, s skew mtix of odd ode c t be ivetible. 7. The vecto(s) which is/e copl with vectos i ˆ j ˆ k ˆ d i ˆ j ˆ k ˆ, d pepedicul to the vecto i ˆ j ˆ k ˆ is / e (A) j ˆ k ˆ (B) i ˆ j ˆ () i ˆ j ˆ (D) j ˆ k ˆ 7. (A)(D) Let λ (i ˆ j ˆ k ˆ ) µ (i ˆ j ˆ k ˆ ) (λ µ)i ˆ (λ µ) j ˆ (λ µ) k ˆ. (i ˆ j ˆ k ˆ ) 0 λ µ λ ( j ˆ k ˆ ) Tkig λ, j ˆ k ˆ λ, j ˆ k ˆ. IIT JEE 0 (0 Ap ) Questio & Solutios Ppe I www. peclsses.com

6 IIT JEE 0 (0 Ap ) Questio & Solutios Ppe I 6 www. peclsses.com SETION III ( Totl Mks : ) (Pgph Type) This Sectio cotis pgphs. Bsed upo oe of the pgphs multiple choice questios d bsed o othe pgph multiple choice questios hve to be sweed. Ech of these hs fou choices (A), (B), () d (D) out of which ONLY ONE is coect. Pgph fo questio Nos 8 d 9 Let U d U be two us such tht U cotis white d ed blls, d U cotis oly white bll. A fi coi is tossed. If hed ppes the bll is dw t dom fom U d put ito U. Howeve, if til ppes the blls e dw t dom fom U d put ito U. Now bll is dw t dom fom U. 8. The pobbility of the dw bll fom U beig white is (A) / 0 (B) / 0 () 9 / 0 (D) / 0 8. (B) Fo ppeig til Fo ppeig hed P / Give tht the dw bll fom U is white, the pobbility tht hed ppeed o the coi is (A) 7 / (B) / () / (D) / 9. (D) Usig Byes theoem, P /.

7 Pgph fo questio Nos 60 d 6 Let, b d c be thee el umbes stisfyig 9 7 [ b c ] [ ]... (E) 60. If the poit P(, b, c), with efeece to (E), lies o the ple x y z, the the vlue of 7 b c is (A) 0 (B) () 7 (D) (D) D system hs o tivil solutio. If c k, b 6 / 7 k, k / 7 Q b c (k / 7) (6k / 7) k k 7 P (, b, c) (, 6, 7) 7 b c Let be solutio of x 0 with Im() > 0. If with b d c stisfyig (E), the the vlue of is equl to b c (A) (B) () (D) 6. (A), k c, b, ( ) ( ) ( ) 6. Let b 6, with d c stisfyig (E). If α d β e the oots of the qudtic equtio x bx c 0, the is 0 α β (A) 6 (B) 7 () 6 / 7 (D) 6. (B) b 6, k 7, c 7, Q.E. becomes x 6x 7 0 ; b 6, b 7 α 0 αβ β IIT JEE 0 (0 Ap ) Questio & Solutios Ppe I 7 www. peclsses.com

8 SETION IV (Totl Mks : 8) (Itege Aswe Type) This sectio cotis 7 questios. The swe to ech of the questios is sigle digit itege, gig fom 0 to 9. The bubble coespodig to the coect swe is to be dkeed i the ORS. 6. Let f : [, ) [(, ) be diffeetible fuctio such tht f (), if 6 X f ( t ) dt x f ( x ) x fo ll x, the the vlue of f () is Diffeetitig the give eltio, f ( x ) 6 f(x) f(x) x f ' (x) x f ' (x) x, which is i lie fom with I.F x x Hece, f(x) x cx with c. f (x) x x. f () 6. Note tht f () is / fom the give eltio, which is cotdictio. 6. If z is y complex umbe stisfyig z i, the the miimum vlue of z 6 i is 6.. Expessio Z i which is equivlet to double the distce betwee complex umbe z d (, / ) which lies o oe the dimete x of cicle give. Hece miimum vlue of expessio. 6. Let,, be ithmetic pogessio with d S p i, p 00. p i Fo y itege with 0, let m. If S S m does ot deped o, the is S S m {. ( ) d } {. ( ) d } ; ( 6 d d ) S m λ [ λ ] ( 6 d d ) S λ idepedet of whe d 6 d 9. IIT JEE 0 (0 Ap ) Questio & Solutios Ppe I 8 www. peclsses.com

9 66. oside the pbol y 8x. Let be the e of the tigle fomed by the ed poits of its ltus ectum d the poit P, o the pbol, d be the e of the tigle fomed by dwig tgets t P d t the ed poits of the ltus ectum. The 66.. Extemities of L.R. e (, ) & (, ) 6 Poits of itesectio of tgets t these poits e (, 0), (, ) & (, ). is 67. Let ( θ ) is. si si θ π π d f t, whee < θ < cos. The the vlue of ( f ( θ )) θ d (t θ ) 67.. Put k si θ t t k cos θ si θ cos θ t k sec k si θ si cos ec θ cos ec θ sec k θ si k cos ec cot θ θ t θ d ( f ( θ )) si k t θ f(θ) si k t θ Hece. d (t θ ) 68. The miimum vlue of the sum of el umbes,,,, 8 d 0 with > 0 is Usig A.M. G.M., Miimum vlue of equied expessio 8 (fo ). 69. The positive itege vlue of > stisfyig the equtio is π π π si si si {whee x (π / )} si x si x si x o si x si x si x. si x si x o si x. cos x si x. si x si si x si x [ Q si x 0] x x (ot possible, Q x 0) o x π x 7x π 7. (π / ) π 7. x IIT JEE 0 (0 Ap ) Questio & Solutios Ppe I 9 www. peclsses.com

PROBLEMS 05 - ELLIPSE Page 1

PROBLEMS 05 - ELLIPSE Page 1 PROBLEMS 0 ELLIPSE Pge 1 ( 1 ) The edpoits A d B of AB re o the X d Yis respectivel If AB > 0 > 0 d P divides AB from A i the rtio : the show tht P lies o the ellipse 1 ( ) If the feet of the perpediculrs

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Chapter 04.05 System of Equations

Chapter 04.05 System of Equations hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Intro to Circle Geometry By Raymond Cheong

Intro to Circle Geometry By Raymond Cheong Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Released Assessment Questions, 2015 QUESTIONS

Released Assessment Questions, 2015 QUESTIONS Relesed Assessmet Questios, 15 QUESTIONS Grde 9 Assessmet of Mthemtis Ademi Red the istrutios elow. Alog with this ooklet, mke sure you hve the Aswer Booklet d the Formul Sheet. You my use y spe i this

More information

SOME IMPORTANT MATHEMATICAL FORMULAE

SOME IMPORTANT MATHEMATICAL FORMULAE SOME IMPORTANT MATHEMATICAL FORMULAE Circle : Are = π r ; Circuferece = π r Squre : Are = ; Perieter = 4 Rectgle: Are = y ; Perieter = (+y) Trigle : Are = (bse)(height) ; Perieter = +b+c Are of equilterl

More information

Two degree of freedom systems. Equations of motion for forced vibration Free vibration analysis of an undamped system

Two degree of freedom systems. Equations of motion for forced vibration Free vibration analysis of an undamped system wo degee of feedom systems Equatios of motio fo foced vibatio Fee vibatio aalysis of a udamped system Itoductio Systems that equie two idepedet d coodiates to descibe thei motio ae called two degee of

More information

Application: Volume. 6.1 Overture. Cylinders

Application: Volume. 6.1 Overture. Cylinders Applictio: Volume 61 Overture I this chpter we preset other pplictio of the defiite itegrl, this time to fid volumes of certi solids As importt s this prticulr pplictio is, more importt is to recogize

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.

More information

MATHEMATICS SYLLABUS SECONDARY 7th YEAR

MATHEMATICS SYLLABUS SECONDARY 7th YEAR Europe Schools Office of the Secretry-Geerl Pedgogicl developmet Uit Ref.: 2011-01-D-41-e-2 Orig.: DE MATHEMATICS SYLLABUS SECONDARY 7th YEAR Stdrd level 5 period/week course Approved y the Joit Techig

More information

Repeated multiplication is represented using exponential notation, for example:

Repeated multiplication is represented using exponential notation, for example: Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Orbits and Kepler s Laws

Orbits and Kepler s Laws Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how

More information

16. Mean Square Estimation

16. Mean Square Estimation 6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble

More information

The Casino Experience. Let us entertain you

The Casino Experience. Let us entertain you The Csio Expeiee Let us eteti you The Csio Expeiee If you e lookig fo get ight out, Csio Expeiee is just fo you. 10 The Stight Flush Expeiee 25 pe peso This is get itodutio to gmig tht sves you moey Kik

More information

Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions

Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isk-etu tadeoff ad time value of

More information

The dinner table problem: the rectangular case

The dinner table problem: the rectangular case The ie table poblem: the ectagula case axiv:math/009v [mathco] Jul 00 Itouctio Robeto Tauaso Dipatimeto i Matematica Uivesità i Roma To Vegata 00 Roma, Italy tauaso@matuiomait Decembe, 0 Assume that people

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation

Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation Lesso 0.: Sequeces d Summtio Nottio Def. of Sequece A ifiite sequece is fuctio whose domi is the set of positive rel itegers (turl umers). The fuctio vlues or terms of the sequece re represeted y, 2, 3,...,....

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

Periodic Review Probabilistic Multi-Item Inventory System with Zero Lead Time under Constraints and Varying Order Cost

Periodic Review Probabilistic Multi-Item Inventory System with Zero Lead Time under Constraints and Varying Order Cost Ameica Joual of Applied Scieces (8: 3-7, 005 ISS 546-939 005 Sciece Publicatios Peiodic Review Pobabilistic Multi-Item Ivetoy System with Zeo Lead Time ude Costaits ad Vayig Ode Cost Hala A. Fegay Lectue

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of

A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig

More information

Money Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version

Money Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version Moey Math fo Tees Itoductio to Eaig Iteest: 11th ad 12th Gades Vesio This Moey Math fo Tees lesso is pat of a seies ceated by Geeatio Moey, a multimedia fiacial liteacy iitiative of the FINRA Ivesto Educatio

More information

The Handbook of Essential Mathematics

The Handbook of Essential Mathematics Fo Puic Relese: Distiutio Ulimited The Ai Foce Resech Lotoy The Hdook of Essetil Mthemtics Fomuls, Pocesses, d Tles Plus Applictios i Pesol Fice X Y Y XY Y X X XY X Y X XY Y Compiltio d Epltios: Joh C.

More information

Learning Objectives. Chapter 2 Pricing of Bonds. Future Value (FV)

Learning Objectives. Chapter 2 Pricing of Bonds. Future Value (FV) Leaig Objectives Chapte 2 Picig of Bods time value of moey Calculate the pice of a bod estimate the expected cash flows detemie the yield to discout Bod pice chages evesely with the yield 2-1 2-2 Leaig

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

I. Supplementary and Relevant Information

I. Supplementary and Relevant Information hte 9 Bod d Note Vlutio d Relted Iteest Rte Fouls witte fo Ecooics 04 Ficil Ecooics by Pofesso Gy R. Evs Fist editio 2008, this editio Octobe 28, 203 Gy R. Evs The iy uose of this docuet is to show d justify

More information

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity) Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of

More information

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015 Cuvtue Com S 477/577 Notes Yn-Bin Ji Oct 8, 205 We wnt to find mesue of how cuved cuve is. Since this cuvtue should depend only on the shpe of the cuve, it should not be chnged when the cuve is epmetized.

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

AP Calculus BC 2003 Scoring Guidelines Form B

AP Calculus BC 2003 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

More information

Partial Di erential Equations

Partial Di erential Equations Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen

THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen THE PRINCIPLE OF THE ACTIVE JC SCATTERER Seppo Uoukaie VTT Buildig ad Tapot Ai Hadlig Techology ad Acoutic P. O. Bo 1803, FIN 02044 VTT, Filad Seppo.Uoukaie@vtt.fi ABSTRACT The piciple of fomulatig the

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2 icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:

More information

How To Solve An Old Japanese Geometry Problem

How To Solve An Old Japanese Geometry Problem 116 Taget circles i the ratio 2 : 1 Hiroshi Okumura ad Masayuki Wataabe I this article we cosider the followig old Japaese geometry problem (see Figure 1), whose statemet i [1, p. 39] is missig the coditio

More information

Heat (or Diffusion) equation in 1D*

Heat (or Diffusion) equation in 1D* Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire

More information

MATHEMATICAL INDUCTION

MATHEMATICAL INDUCTION MATHEMATICAL INDUCTION. Itroductio Mthemtics distiguishes itself from the other scieces i tht it is built upo set of xioms d defiitios, o which ll subsequet theorems rely. All theorems c be derived, or

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

MATHEMATICS P1 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE GRADE 12

MATHEMATICS P1 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE GRADE 12 Mathematics/P1 1 Jue 014 Commo Test MATHEMATICS P1 COMMON TEST JUNE 014 NATIONAL SENIOR CERTIFICATE GRADE 1 Marks: 15 Time: ½ hours N.B: This questio paper cosists of 7 pages ad 1 iformatio sheet. Please

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

INVESTIGATION OF PARAMETERS OF ACCUMULATOR TRANSMISSION OF SELF- MOVING MACHINE

INVESTIGATION OF PARAMETERS OF ACCUMULATOR TRANSMISSION OF SELF- MOVING MACHINE ENGINEEING FO UL DEVELOENT Jelgv, 28.-29.05.2009. INVESTIGTION OF ETES OF CCUULTO TNSISSION OF SELF- OVING CHINE leksdrs Kirk Lithui Uiversity of griculture, Kus leksdrs.kirk@lzuu.lt.lt bstrct. Uder the

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Annuities and loan. repayments. Syllabus reference Financial mathematics 5 Annuities and loan. repayments

Annuities and loan. repayments. Syllabus reference Financial mathematics 5 Annuities and loan. repayments 8 8A Futue value of a auity 8B Peset value of a auity 8C Futue ad peset value tables 8D Loa epaymets Auities ad loa epaymets Syllabus efeece Fiacial mathematics 5 Auities ad loa epaymets Supeauatio (othewise

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Gray level image enhancement using the Bernstein polynomials

Gray level image enhancement using the Bernstein polynomials Buletiul Ştiiţiic l Uiersităţii "Politehic" di Timişor Seri ELECTRONICĂ şi TELECOMUNICAŢII TRANSACTIONS o ELECTRONICS d COMMUNICATIONS Tom 47(6), Fscicol -, 00 Gry leel imge ehcemet usig the Berstei polyomils

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Find the inverse Laplace transform of the function F (p) = Evaluating the residues at the four simple poles, we find. residue at z = 1 is 4te t

Find the inverse Laplace transform of the function F (p) = Evaluating the residues at the four simple poles, we find. residue at z = 1 is 4te t Homework Solutios. Chater, Sectio 7, Problem 56. Fid the iverse Lalace trasform of the fuctio F () (7.6). À Chater, Sectio 7, Problem 6. Fid the iverse Lalace trasform of the fuctio F () usig (7.6). Solutio:

More information

Domain 1: Designing a SQL Server Instance and a Database Solution

Domain 1: Designing a SQL Server Instance and a Database Solution Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

More information

Math 113 HW #11 Solutions

Math 113 HW #11 Solutions Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

More information

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k. 18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: Courat-Fischer formula ad Rayleigh quotiets The

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Harold s Calculus Notes Cheat Sheet 26 April 2016

Harold s Calculus Notes Cheat Sheet 26 April 2016 Hrol s Clculus Notes Chet Sheet 26 April 206 AP Clculus Limits Defiitio of Limit Let f e fuctio efie o ope itervl cotiig c let L e rel umer. The sttemet: lim x f(x) = L mes tht for ech ε > 0 there exists

More information

Multiplexers and Demultiplexers

Multiplexers and Demultiplexers I this lesso, you will lear about: Multiplexers ad Demultiplexers 1. Multiplexers 2. Combiatioal circuit implemetatio with multiplexers 3. Demultiplexers 4. Some examples Multiplexer A Multiplexer (see

More information

MATHEMATICAL ANALYSIS

MATHEMATICAL ANALYSIS Mri Predoi Trdfir Băl MATHEMATICAL ANALYSIS VOL II INTEGRAL CALCULUS Criov, 5 CONTENTS VOL II INTEGRAL CALCULUS Chpter V EXTENING THE EFINITE INTEGRAL V efiite itegrls with prmeters Problems V 5 V Improper

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

THE ABRACADABRA PROBLEM

THE ABRACADABRA PROBLEM THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Random Variables and Distribution Functions

Random Variables and Distribution Functions Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

SOLUTIONS TO CONCEPTS CHAPTER 5

SOLUTIONS TO CONCEPTS CHAPTER 5 1. m k S 10m Let, ccelertion, Initil velocity u 0. S ut + 1/ t 10 ½ ( ) 10 5 m/s orce: m 5 10N (ns) 40000. u 40 km/hr 11.11 m/s. 3600 m 000 k ; v 0 ; s 4m v u ccelertion s SOLUIONS O CONCEPS CHPE 5 0 11.11

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

Finance Practice Problems

Finance Practice Problems Iteest Fiace Pactice Poblems Iteest is the cost of boowig moey. A iteest ate is the cost stated as a pecet of the amout boowed pe peiod of time, usually oe yea. The pevailig maket ate is composed of: 1.

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

Solutions to Exercises Chapter 4: Recurrence relations and generating functions

Solutions to Exercises Chapter 4: Recurrence relations and generating functions Solutios to Exercises Chapter 4: Recurrece relatios ad geeratig fuctios 1 (a) There are seatig positios arraged i a lie. Prove that the umber of ways of choosig a subset of these positios, with o two chose

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

Chapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

N V V L. R a L I. Transformer Equation Notes

N V V L. R a L I. Transformer Equation Notes Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 wite-up. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

Authorized licensed use limited to: University of Illinois. Downloaded on July 27,2010 at 06:52:39 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Illinois. Downloaded on July 27,2010 at 06:52:39 UTC from IEEE Xplore. Restrictions apply. Uiversl Dt Compressio d Lier Predictio Meir Feder d Adrew C. Siger y Jury, 998 The reltioship betwee predictio d dt compressio c be exteded to uiversl predictio schemes d uiversl dt compressio. Recet work

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information