ucleic Acids, Proteins, and Enzymes

Size: px
Start display at page:

Download "ucleic Acids, Proteins, and Enzymes"

Transcription

1 ucleic Acids, Proteins, and Enzymes

2 Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

3 Chapter 3 Opening Question How does an understanding of proteins and enzymes help to explain how aspirin works?

4 Concept 3.1 Nucleic Acids Are Informational Macromolecules Nucleic acids are polymers specialized for storage, transmission, and use of genetic information. DNA = deoxyribonucleic acid RNA = ribonucleic acid Monomers: Nucleotides

5 Concept 3.1 Nucleic Acids Are Informational Macromolecules Nucleotide: Pentose sugar + N-containing base + phosphate group Nucleosides: Pentose sugar + N-containing base

6 Concept 3.1 Nucleic Acids Are Informational Macromolecules Bases: Pyrimidines single rings Purines double rings Sugars: DNA contains deoxyribose RNA contains ribose

7 Figure 3.1 Nucleotides Have Three Components

8 Concept 3.1 Nucleic Acids Are Informational Macromolecules Nucleotides bond in condensation reactions to form phosphodiester linkages. Nucleic acids grow in the 5 to 3 direction.

9 Figure 3.2 Linking Nucleotides Together

10 Concept 3.1 Nucleic Acids Are Informational Macromolecules Oligonucleotides have about 20 monomers, and include small RNA molecules important for DNA replication and gene expression. DNA and RNA are polynucleotides, the longest polymers in the living world.

11 Table 3.1 Distinguishing RNA from DNA

12 Concept 3.1 Nucleic Acids Are Informational Macromolecules Complementary base pairing: adenine and thymine always pair (A-T) cytosine and guanine always pair (C-G)

13 Concept 3.1 Nucleic Acids Are Informational Macromolecules Base pairs are linked by hydrogen bonds. There are so many hydrogen bonds in DNA and RNA that they form a fairly strong attraction, but not as strong as covalent bonds. Thus, base pairs can be separated with only a small amount of energy.

14 Concept 3.1 Nucleic Acids Are Informational Macromolecules RNA is usually single-stranded, but may be folded into 3-D structures, by hydrogen bonding. Folding occurs by complementary base pairing, so structure is determined by the order of bases.

15 Figure 3.3 RNA (Part 1)

16 Figure 3.3 RNA (Part 2)

17 Concept 3.1 Nucleic Acids Are Informational Macromolecules DNA two polynucleotide strands form a ladder that twists into a double helix. Sugar-phosphate groups form the sides of the ladder, the hydrogen-bonded bases form the rungs.

18 Figure 3.4 DNA (Part 1)

19 Figure 3.4 DNA (Part 2)

20 Concept 3.1 Nucleic Acids Are Informational Macromolecules DNA is an informational molecule: genetic information is in the sequence of base pairs. DNA has two functions: Replication Gene expression base sequences are copied to RNA, and specify amino acids sequences in proteins.

21 Concept 3.1 Nucleic Acids Are Informational Macromolecules DNA replication and transcription depend on the base pairing: 5 -TCAGCA-3 3 -AGTCGT-5 3 -AGTCGT-5 transcribes to RNA with the sequence 5 -UCAGCA-3.

22 Concept 3.1 Nucleic Acids Are Informational Macromolecules Genome complete set of DNA in a living organism Genes DNA sequences that encode specific proteins and are transcribed into RNA Not all genes are transcribed in all cells of an organism.

23 Figure 3.5 DNA Replication and Transcription

24 Concept 3.1 Nucleic Acids Are Informational Macromolecules DNA base sequences reveal evolutionary relationships. Closely related living species should have more similar base sequences than species that are more distantly related. Scientists are now able to determine and compare entire genomes of organisms to study evolutionary relationships.

25 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Major functions of proteins: Enzymes catalytic proteins Defensive proteins (e.g., antibodies) Hormonal and regulatory proteins control physiological processes Receptor proteins receive and respond to molecular signals Storage proteins store amino acids

26 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Structural proteins physical stability and movement Transport proteins carry substances (e.g., hemoglobin) Genetic regulatory proteins regulate when, how, and to what extent a gene is expressed

27 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Protein monomers are amino acids. Amino and carboxylic acid functional groups allow them to act as both acid and base. The R group differs in each amino acid.

28 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Only 20 amino acids occur extensively in the proteins of all organisms. They are grouped according to properties conferred by the R groups.

29 Table 3.2 The Twenty Amino Acids in Proteins (Part 1)

30 Table 3.2 The Twenty Amino Acids in Proteins (Part 2)

31 Table 3.2 The Twenty Amino Acids in Proteins (Part 3)

32 Table 3.2 The Twenty Amino Acids in Proteins (Part 4)

33 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Cysteine side chains can form covalent bonds a disulfide bridge, or disulfide bond.

34 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Oligopeptides or peptides short polymers of 20 or fewer amino acids (some hormones and signaling molecules) Polypeptides or proteins range in size from insulin, which has 51 amino acids, to huge molecules such as the muscle protein titin, with 34,350 amino acids.

35 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Amino acids are linked in condensation reactions to form peptide linkages or bonds. Polymerization takes place in the amino to carboxyl direction.

36 Figure 3.6 Formation of a Peptide Linkage

37 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Primary structure of a protein the sequence of amino acids

38 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Secondary structure regular, repeated spatial patterns in different regions, resulting from hydrogen bonding α (alpha) helix right-handed coil β (beta) pleated sheet two or more polypeptide chains are extended and aligned

39 Figure 3.7 B, C The Four Levels of Protein Structure

40 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Tertiary structure polypeptide chain is bent and folded; results in the definitive 3-D shape The outer surfaces present functional groups that can interact with other molecules.

41 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Interactions between R groups determine tertiary structure. Disulfide bridges hold a folded polypeptide together Hydrogen bonds stabilize folds Hydrophobic side chains can aggregate van der Waals interactions between hydrophobic side chains Ionic interactions form salt bridges

42 Figure 3.8 Noncovalent Interactions between Proteins and Other Molecules

43 Figure 3.9 The Structure of a Protein

44 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Secondary and tertiary protein structure derive from primary structure. Denaturing heat or chemicals are used to disrupt weaker interactions in a protein, destroying secondary and tertiary structure. The protein can return to normal when cooled all the information needed to specify the unique shape is contained in the primary structure.

45 Figure 3.10 Primary Structure Specifies Tertiary Structure (Part 1)

46 Figure 3.10 Primary Structure Specifies Tertiary Structure (Part 2)

47 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Quaternary structure two or more polypeptide chains (subunits) bind together by hydrophobic and ionic interactions, and hydrogen bonds. These weak interactions allow small changes that aid in the protein s function.

48 Figure 3.7 E The Four Levels of Protein Structure

49 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Factors that can disrupt the interactions that determine protein structure (denaturing): Temperature Concentration of H + High concentrations of polar substances Nonpolar substances

50 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Living systems depend on reactions that occur spontaneously, but at very slow rates. Catalysts are substances that speed up reactions without being permanently altered. No catalyst makes a reaction occur that cannot otherwise occur. Most biological catalysts are proteins (enzymes); a few are RNA molecules (ribozymes).

51 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions In some exergonic reactions there is an energy barrier between reactants and products. An input of energy (the activation energy or E a ) will put reactants into a transition state.

52 Figure 3.11 Activation Energy Initiates Reactions (Part 1)

53 Figure 3.11 Activation Energy Initiates Reactions (Part 2)

54 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Enzymes lower the activation energy they allow reactants to come together and react more easily. Example: A molecule of sucrose in solution may hydrolyze in about 15 days; with sucrase present, the same reaction occurs in 1 second!

55 Figure 3.12 Enzymes Lower the Energy Barrier

56 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Enzymes are highly specific each one catalyzes only one chemical reaction. Reactants are substrates: they bind to a specific site on the enzyme the active site. Specificity results from the exact 3-D shape and chemical properties of the active site.

57 Figure 3.13 Enzyme Action

58 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions The enzyme substrate complex (ES) is held together by hydrogen bonding, electrical attraction, or temporary covalent bonding. E + S ES E+ P The enzyme is not changed at the end of the reaction.

59 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Enzymes may use one or more mechanisms to catalyze a reaction: Inducing strain bonds in the substrate are stretched, putting it in an unstable transition state.

60 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Substrate orientation substrates are brought together so that bonds can form. Adding chemical groups R groups may be directly involved in the reaction.

61 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Binding of substrate to enzyme is like a baseball in a catcher s mitt. The enzyme changes shape to make the binding tight induced fit.

62 Figure 3.14 Some Enzymes Change Shape When Substrate Binds to Them

63 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Some enzymes require ions or other molecules in order to function: Cofactors inorganic ions Coenzymes add or remove chemical groups from the substrate. They can participate in many different reactions. Prosthetic groups (non-amino acid groups) permanently bound to their enzymes.

64 Table 3.3 Some Examples of Nonprotein Partners of Enzymes

65 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Rates of catalyzed reactions: There is usually less enzyme than substrate present, so reaction rate levels off when the enzyme becomes saturated. Saturated all enzyme molecules are bound to substrate molecules.

66 Figure 3.15 Catalyzed Reactions Reach a Maximum Rate

67 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Maximum rate is used to calculate enzyme efficiency molecules of substrate converted to product per unit time (turnover). It ranges from 1 to 40 million molecules per second!

68 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Enzyme-catalyzed reactions are part of metabolic pathways the product of one reaction is a substrate for the next.

69 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Homeostasis the maintenance of stable internal conditions Cells can regulate metabolism by controlling the amount of an enzyme. Cells often have the ability to turn synthesis of enzymes off or on.

70 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Chemical inhibitors can bind to enzymes and slow reaction rates. Natural inhibitors regulate metabolism; artificial inhibitors are used to treat diseases, kill pests, and study enzyme function.

71 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Irreversible inhibition inhibitor covalently binds to a side chain in the active site. The enzyme is permanently inactivated.

72 Figure 3.16 Irreversible Inhibition

73 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Reversible inhibition (more common in cells): A competitive inhibitor competes with natural substrate for active site. A noncompetitive inhibitor binds at a site distinct from the active site this causes change in enzyme shape and function.

74 Figure 3.17 Reversible Inhibition (Part 1)

75 Figure 3.17 Reversible Inhibition (Part 2)

76 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Allosteric regulation non-substrate molecule binds a site other than the active site (the allosteric site) The enzyme changes shape, which alters the chemical attraction (affinity) of the active site for the substrate. Allosteric regulation can activate or inactivate enzymes.

77 Figure 3.18 Allosteric Regulation of Enzyme Activity

78 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Protein kinases are enzymes that regulate responses to the environment by organisms. They are subject to allosteric regulation. The active form regulates the activity of other enzymes, by phosphorylating allosteric or active sites on the other enzymes.

79 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Metabolic pathways: The first reaction is the commitment step other reactions then happen in sequence. Feedback inhibition (end-product inhibition) the final product acts as a noncompetitive inhibitor of the first enzyme, which shuts down the pathway.

80 Figure 3.19 Feedback Inhibition of Metabolic Pathways

81 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes ph affects enzyme activity: Acidic side chains generate H + and become anions. Basic side chains attract H + and become cations.

82 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Example: glutamic acid COOH glutamic acid COO + H + The law of mass action the higher the H + concentration, the more reaction is driven to the left to the less hydrophilic form. This can affect enzyme shape and function.

83 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Protein tertiary structure (and thus function) is very sensitive to the concentration of H + (ph) in the environment. All enzymes have an optimal ph for activity.

84 Figure 3.20 A Enzyme Activity Is Affected by the Environment

85 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Temperature affects enzyme activity: Warming increases rates of chemical reactions, but if temperature is too high, non-covalent bonds can break and inactivate enzymes. All enzymes have an optimal temperature for activity.

86 Figure 3.20 B Enzyme Activity Is Affected by the Environment

87 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Isozymes catalyze the same reaction but have different composition and physical properties. Isozymes may have different optimal temperatures or ph, allowing an organism to adapt to changes in its environment.

88 Answer to Opening Question Aspirin binds to and inhibits the enzyme cyclooxygenase. Cyclooxygenase catalyzes the commitment step for metabolic pathways that produce: Prostaglandins involved in inflammation and pain Thromboxanes stimulate blood clotting and constriction of blood vessels

89 Figure 3.21 Aspirin: An Enzyme Inhibitor

90 Answer to Opening Question Aspirin binds at the active site of cyclooxygenase and transfers an acetyl group to a serine residue. Serine becomes more hydrophobic, which changes the shape of the active site and makes it inaccessible to the substrate.

91 Figure 3.22 Inhibition by Covalent Modification (Part 1)

92 Figure 3.22 Inhibition by Covalent Modification (Part 2)

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage. CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic

More information

Proteins and Nucleic Acids

Proteins and Nucleic Acids Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

How To Understand The Chemistry Of Organic Molecules

How To Understand The Chemistry Of Organic Molecules CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which

More information

8/20/2012 H C OH H R. Proteins

8/20/2012 H C OH H R. Proteins Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids

More information

Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d)

Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d) Proteins Proteins Most diverse and most important molecule in living i organisms Functions: 1. Structural (keratin in hair, collagen in ligaments) 2. Storage (casein in mother s milk) 3. Transport (HAEMOGLOBIN!)

More information

Chapter 3 Molecules of Cells

Chapter 3 Molecules of Cells Bio 100 Molecules of cells 1 Chapter 3 Molecules of Cells Compounds containing carbon are called organic compounds Molecules such as methane that are only composed of carbon and hydrogen are called hydrocarbons

More information

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes CHAPTER 6 AN INTRODUCTION TO METABOLISM Section B: Enzymes 1. Enzymes speed up metabolic reactions by lowering energy barriers 2. Enzymes are substrate specific 3. The active site in an enzyme s catalytic

More information

Chapter 5. The Structure and Function of Macromolecule s

Chapter 5. The Structure and Function of Macromolecule s Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.

More information

The Molecules of Cells

The Molecules of Cells The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates

More information

AP BIOLOGY 2008 SCORING GUIDELINES

AP BIOLOGY 2008 SCORING GUIDELINES AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.

More information

Chemical Basis of Life Module A Anchor 2

Chemical Basis of Life Module A Anchor 2 Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity

More information

Enzymes and Metabolism

Enzymes and Metabolism Enzymes and Metabolism Enzymes and Metabolism Metabolism: Exergonic and Endergonic Reactions Chemical Reactions: Activation Every chemical reaction involves bond breaking and bond forming A chemical reaction

More information

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism

More information

Biological molecules:

Biological molecules: Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy Module 2D - Energy and Metabolism Objective # 19 All living organisms require energy for survival. In this module we will examine some general principles about chemical reactions and energy usage within

More information

http://faculty.sau.edu.sa/h.alshehri

http://faculty.sau.edu.sa/h.alshehri http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They

More information

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins

More information

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose 1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen

More information

Built from 20 kinds of amino acids

Built from 20 kinds of amino acids Built from 20 kinds of amino acids Each Protein has a three dimensional structure. Majority of proteins are compact. Highly convoluted molecules. Proteins are folded polypeptides. There are four levels

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport. 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. 1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. Solar energy A. Answer a is incorrect. Kinetic energy is the energy of

More information

BIOLOGICAL MOLECULES OF LIFE

BIOLOGICAL MOLECULES OF LIFE BIOLOGICAL MOLECULES OF LIFE C A R B O H Y D R A T E S, L I P I D S, P R O T E I N S, A N D N U C L E I C A C I D S The Academic Support Center @ Daytona State College (Science 115, Page 1 of 29) Carbon

More information

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Questions- Proteins & Enzymes A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Reaction of the intact peptide

More information

NO CALCULATORS OR CELL PHONES ALLOWED

NO CALCULATORS OR CELL PHONES ALLOWED Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.

More information

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!! DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other

More information

Chapter 2 Chemical Principles

Chapter 2 Chemical Principles Chapter 2 Chemical Principles I. Chemistry. [Students should read this section on their own]. a. Chemistry is the study of the interactions between atoms and molecules. b. The atom is the smallest unit

More information

Preliminary MFM Quiz

Preliminary MFM Quiz Preliminary MFM Quiz 1. The major carrier of chemical energy in all cells is: A) adenosine monophosphate B) adenosine diphosphate C) adenosine trisphosphate D) guanosine trisphosphate E) carbamoyl phosphate

More information

DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3

DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3 DNA, RNA, Protein synthesis, and Mutations Chapters 12-13.3 1A)Identify the components of DNA and explain its role in heredity. DNA s Role in heredity: Contains the genetic information of a cell that can

More information

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon A. Acid/Base properties 1. carboxyl group is proton donor! weak acid 2. amino group is proton acceptor! weak base 3. At physiological ph: H

More information

CHAPTER 4: Enzyme Structure ENZYMES

CHAPTER 4: Enzyme Structure ENZYMES CHAPTER 4: ENZYMES Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor

More information

Nucleotides and Nucleic Acids

Nucleotides and Nucleic Acids Nucleotides and Nucleic Acids Brief History 1 1869 - Miescher Isolated nuclein from soiled bandages 1902 - Garrod Studied rare genetic disorder: Alkaptonuria; concluded that specific gene is associated

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

Biochemistry of Cells

Biochemistry of Cells Biochemistry of Cells 1 Carbon-based Molecules Although a cell is mostly water, the rest of the cell consists mostly of carbon-based molecules Organic chemistry is the study of carbon compounds Carbon

More information

Catalysis by Enzymes. Enzyme A protein that acts as a catalyst for a biochemical reaction.

Catalysis by Enzymes. Enzyme A protein that acts as a catalyst for a biochemical reaction. Catalysis by Enzymes Enzyme A protein that acts as a catalyst for a biochemical reaction. Enzymatic Reaction Specificity Enzyme Cofactors Many enzymes are conjugated proteins that require nonprotein portions

More information

2007 7.013 Problem Set 1 KEY

2007 7.013 Problem Set 1 KEY 2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you

More information

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group

More information

Chemistry 20 Chapters 15 Enzymes

Chemistry 20 Chapters 15 Enzymes Chemistry 20 Chapters 15 Enzymes Enzymes: as a catalyst, an enzyme increases the rate of a reaction by changing the way a reaction takes place, but is itself not changed at the end of the reaction. An

More information

Enzymes. Enzyme Structure. Enzyme Classification. CHEM464/Medh, J.D. Reaction Rate and Enzyme Activity

Enzymes. Enzyme Structure. Enzyme Classification. CHEM464/Medh, J.D. Reaction Rate and Enzyme Activity Enzymes Enzymes are biological catalysts They are not consumed or altered during the reaction They do not change the equilibrium, just reduce the time required to reach equilibrium. They increase the rate

More information

Chapter 11: Molecular Structure of DNA and RNA

Chapter 11: Molecular Structure of DNA and RNA Chapter 11: Molecular Structure of DNA and RNA Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand the major experiments that led to the discovery of DNA as

More information

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is:

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is: Lecture 4 Catalytic proteins Are a type of protein that acts as a catalyst-speeding up chemical reactions A catalyst is defined as a chemical agent that changes the rate of a reaction without being consumed

More information

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results

More information

Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure

Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure Nucleic acids play an important role in the storage and expression of genetic information. They are divided into

More information

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential

More information

Elements in Biological Molecules

Elements in Biological Molecules Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)

More information

18.2 Protein Structure and Function: An Overview

18.2 Protein Structure and Function: An Overview 18.2 Protein Structure and Function: An Overview Protein: A large biological molecule made of many amino acids linked together through peptide bonds. Alpha-amino acid: Compound with an amino group bonded

More information

Introduction to Proteins and Enzymes

Introduction to Proteins and Enzymes Introduction to Proteins and Enzymes Basics of protein structure and composition The life of a protein Enzymes Theory of enzyme function Not all enzymes are proteins / not all proteins are enzymes Enzyme

More information

I. Chapter 5 Summary. II. Nucleotides & Nucleic Acids. III. Lipids

I. Chapter 5 Summary. II. Nucleotides & Nucleic Acids. III. Lipids I. Chapter 5 Summary A. Simple Sugars (CH 2 O) n : 1. One C contains a carbonyl (C=O) rest contain - 2. Classification by functional group: aldoses & ketoses 3. Classification by number of C's: trioses,

More information

Worksheet 13.1. Chapter 13: Human biochemistry glossary

Worksheet 13.1. Chapter 13: Human biochemistry glossary Worksheet 13.1 Chapter 13: Human biochemistry glossary α-helix Refers to a secondary structure of a protein where the chain is twisted to form a regular helix, held by hydrogen bonds between peptide bonds

More information

Transcription and Translation of DNA

Transcription and Translation of DNA Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes

More information

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99. 1. True or False? A typical chromosome can contain several hundred to several thousand genes, arranged in linear order along the DNA molecule present in the chromosome. True 2. True or False? The sequence

More information

Replication Study Guide

Replication Study Guide Replication Study Guide This study guide is a written version of the material you have seen presented in the replication unit. Self-reproduction is a function of life that human-engineered systems have

More information

Name: Hour: Elements & Macromolecules in Organisms

Name: Hour: Elements & Macromolecules in Organisms Name: Hour: Elements & Macromolecules in Organisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight. All compounds

More information

What happens to the food we eat? It gets broken down!

What happens to the food we eat? It gets broken down! Enzymes Essential Questions: What is an enzyme? How do enzymes work? What are the properties of enzymes? How do they maintain homeostasis for the body? What happens to the food we eat? It gets broken down!

More information

Biological Molecules

Biological Molecules Biological Molecules I won t lie. This is probably the most boring topic you have ever done in any science. It s pretty much as simple as this: learn the material deal with it. Enjoy don t say I didn t

More information

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

Enzymes and Metabolic Pathways

Enzymes and Metabolic Pathways Enzymes and Metabolic Pathways Enzyme characteristics Made of protein Catalysts: reactions occur 1,000,000 times faster with enzymes Not part of reaction Not changed or affected by reaction Used over and

More information

Translation Study Guide

Translation Study Guide Translation Study Guide This study guide is a written version of the material you have seen presented in the replication unit. In translation, the cell uses the genetic information contained in mrna to

More information

PRACTICE TEST QUESTIONS

PRACTICE TEST QUESTIONS PART A: MULTIPLE CHOICE QUESTIONS PRACTICE TEST QUESTIONS DNA & PROTEIN SYNTHESIS B 1. One of the functions of DNA is to A. secrete vacuoles. B. make copies of itself. C. join amino acids to each other.

More information

DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms!

DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms! Biological Sciences Initiative HHMI DNA omponents and Structure Introduction Nucleic acids are molecules that are essential to, and characteristic of, life on Earth. There are two basic types of nucleic

More information

Helices From Readily in Biological Structures

Helices From Readily in Biological Structures The α Helix and the β Sheet Are Common Folding Patterns Although the overall conformation each protein is unique, there are only two different folding patterns are present in all proteins, which are α

More information

Molecular Genetics. RNA, Transcription, & Protein Synthesis

Molecular Genetics. RNA, Transcription, & Protein Synthesis Molecular Genetics RNA, Transcription, & Protein Synthesis Section 1 RNA AND TRANSCRIPTION Objectives Describe the primary functions of RNA Identify how RNA differs from DNA Describe the structure and

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell? Pipe Cleaner Proteins GPS: SB1 Students will analyze the nature of the relationships between structures and functions in living cells. Essential question: How does the structure of proteins relate to their

More information

STRUCTURES OF NUCLEIC ACIDS

STRUCTURES OF NUCLEIC ACIDS CHAPTER 2 STRUCTURES OF NUCLEIC ACIDS What is the chemical structure of a deoxyribonucleic acid (DNA) molecule? DNA is a polymer of deoxyribonucleotides. All nucleic acids consist of nucleotides as building

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

Molecular Cell Biology

Molecular Cell Biology Harvey Lodish Arnold Berk Paul Matsudaira Chris A. Kaiser Monty Krieger Matthew P. Scott Lawrence Zipursky James Darnell Molecular Cell Biology Fifth Edition Chapter 2: Chemical Foundations Copyright 2004

More information

Chapter 16 Amino Acids, Proteins, and Enzymes

Chapter 16 Amino Acids, Proteins, and Enzymes Chapter 16 Amino Acids, Proteins, and Enzymes 1 Functions of Proteins Proteins in the body are polymers made from 20 different amino acids differ in characteristics and functions that depend on the order

More information

Chapter 3. Protein Structure and Function

Chapter 3. Protein Structure and Function Chapter 3 Protein Structure and Function Broad functional classes So Proteins have structure and function... Fine! -Why do we care to know more???? Understanding functional architechture gives us POWER

More information

Structure and Function of DNA

Structure and Function of DNA Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four

More information

Lab 3 Organic Molecules of Biological Importance

Lab 3 Organic Molecules of Biological Importance Name Biology 3 ID Number Lab 3 Organic Molecules of Biological Importance Section 1 - Organic Molecules Section 2 - Functional Groups Section 3 - From Building Blocks to Macromolecules Section 4 - Carbohydrates

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Chapter 5: The Structure and Function of Large Biological Molecules Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four

More information

Basic Concepts of DNA, Proteins, Genes and Genomes

Basic Concepts of DNA, Proteins, Genes and Genomes Basic Concepts of DNA, Proteins, Genes and Genomes Kun-Mao Chao 1,2,3 1 Graduate Institute of Biomedical Electronics and Bioinformatics 2 Department of Computer Science and Information Engineering 3 Graduate

More information

Carbon-organic Compounds

Carbon-organic Compounds Elements in Cells The living substance of cells is made up of cytoplasm and the structures within it. About 96% of cytoplasm and its included structures are composed of the elements carbon, hydrogen, oxygen,

More information

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Dai Lu, Ph.D. dlu@tamhsc.edu Tel: 361-221-0745 Office: RCOP, Room 307 Drug Discovery and Development Drug Molecules Medicinal

More information

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell Lecture 2 Protein conformation ecap Proteins.. > 50% dry weight of a cell ell s building blocks and molecular tools. More important than genes A large variety of functions http://www.tcd.ie/biochemistry/courses/jf_lectures.php

More information

Elements & Macromolecules in Organisms

Elements & Macromolecules in Organisms Name: Date: Per: Table # Elements & Macromolecules in rganisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight.

More information

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation Amino Acids, Proteins, and Enzymes Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation 1 Primary Structure of Proteins H 3 N The particular sequence of

More information

Regulation of enzyme activity

Regulation of enzyme activity 1 Regulation of enzyme activity Regulation of enzyme activity is important to coordinate the different metabolic processes. It is also important for homeostasis i.e. to maintain the internal environment

More information

Myoglobin and Hemoglobin

Myoglobin and Hemoglobin Myoglobin and Hemoglobin Myoglobin and hemoglobin are hemeproteins whose physiological importance is principally related to their ability to bind molecular oxygen. Myoglobin (Mb) The oxygen storage protein

More information

Enzymes. Enzymes are characterized by: Specificity - highly specific for substrates

Enzymes. Enzymes are characterized by: Specificity - highly specific for substrates Enzymes Enzymes are characterized by: Catalytic Power - rates are 10 6-10 12 greater than corresponding uncatalyzed reactions Specificity - highly specific for substrates Regulation - acheived in many

More information

Non-Covalent Bonds (Weak Bond)

Non-Covalent Bonds (Weak Bond) Non-Covalent Bonds (Weak Bond) Weak bonds are those forces of attraction that, in biological situations, do not take a large amount of energy to break. For example, hydrogen bonds are broken by energies

More information

Enzymes reduce the activation energy

Enzymes reduce the activation energy Enzymes reduce the activation energy Transition state is an unstable transitory combination of reactant molecules which occurs at the potential energy maximum (free energy maximum). Note - the ΔG of the

More information

Structures of Proteins. Primary structure - amino acid sequence

Structures of Proteins. Primary structure - amino acid sequence Structures of Proteins Primary structure - amino acid sequence Secondary structure chain of covalently linked amino acids folds into regularly repeating structures. Secondary structure is the result of

More information

10.1 The function of Digestion pg. 402

10.1 The function of Digestion pg. 402 10.1 The function of Digestion pg. 402 Macromolecules and Living Systems The body is made up of more than 60 % water. The water is found in the cells cytoplasm, the interstitial fluid and the blood (5

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

Organic Compounds. Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for?

Organic Compounds. Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for? Organic Compounds Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for? Aristotle: Francesco Redi: What do we already know? Spontaneous

More information

The Molecules of Life - Overview. The Molecules of Life. The Molecules of Life. The Molecules of Life

The Molecules of Life - Overview. The Molecules of Life. The Molecules of Life. The Molecules of Life The Molecules of Life - Overview The Molecules of Life The Importance of Carbon Organic Polymers / Monomers Functions of Organic Molecules Origin of Organic Molecules The Molecules of Life Water is the

More information

Macromolecules 1 Carbohydrates, Lipids & Nucleic Acids

Macromolecules 1 Carbohydrates, Lipids & Nucleic Acids VEA Bringing Learning to Life Program Support Notes Macromolecules 1 Carbohydrates, Lipids & Nucleic Acids Grades 10 - College 25mins Teacher Notes by Sue Wright, B. Sc., Dip. Ed. Produced by VEA Pty Ltd

More information

Exam 4 Outline CH 105 Spring 2012

Exam 4 Outline CH 105 Spring 2012 Exam 4 Outline CH 105 Spring 2012 You need to bring a pencil and your ACT card. Chapter 24: Lipids 1. Describe the properties and types of lipids a. All are hydrophobic b. Fatty acid-based typically contain

More information

Disulfide Bonds at the Hair Salon

Disulfide Bonds at the Hair Salon Disulfide Bonds at the Hair Salon Three Alpha Helices Stabilized By Disulfide Bonds! In order for hair to grow 6 inches in one year, 9 1/2 turns of α helix must be produced every second!!! In some proteins,

More information

Chapter 12 - Proteins

Chapter 12 - Proteins Roles of Biomolecules Carbohydrates Lipids Proteins 1) Catalytic 2) Transport 3) Regulatory 4) Structural 5) Contractile 6) Protective 7) Storage Nucleic Acids 12.1 -Amino Acids Chapter 12 - Proteins Amino

More information

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group. Protein Structure Amino Acids Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain Alpha Carbon Amino Group Carboxyl Group Amino Acid Properties There are

More information

Enzymes. OpenStax College

Enzymes. OpenStax College OpenStax-CNX module: m44429 1 Enzymes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will be able

More information