Chapter 11: Molecular Structure of DNA and RNA

Size: px
Start display at page:

Download "Chapter 11: Molecular Structure of DNA and RNA"

Transcription

1 Chapter 11: Molecular Structure of DNA and RNA Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand the major experiments that led to the discovery of DNA as the genetic material, the experimental methods, and the investigators involved. 2. Understand the components of DNA and RNA. 3. Know the major contributors to the discovery of the structure of DNA. 4. Know the features of the DNA double helix. 5. Distinguish between the various forms of DNA and RNA Identification of DNA as the Genetic Material While today it is common knowledge that DNA is the genetic material for all living organisms, that was not always the case. Our understanding of DNA as the information storage location for cells is the result of a series of experiments conducted in the early to mid-20 th century. The first part of this chapter describes those experiments that established DNA as the genetic material. As you examine these experiments, first try to place yourself in the position of the researchers and what was known at the time. Next, study how they designed their experiments to examine a specific problem. Many of these experiments are classic examples of the scientific method and still serve as model of how to design and analyze scientific experiments. Before proceeding, examine the criteria for a genetic material on page 231. Following this, you should familiarize yourself with each of the major researchers, their experimental model, and their results. You should also be able to construct a timeline of experimental procedures that led to the discovery of DNA as the genetic material. Outline of Key Terms Molecular genetics Genetic material Information Transmission Replication Variation Griffith s experiment Streptococcus pneumoniae Transformation Avery et al s experiment DNase RNase Protease Hershey and Chase s experiment T2 bacteriophage (phage) Escherichia coli Lysis Experimental procedures of Griffith (Figure 11.1), Avery et al (Figure 11.2), and Hershey and Chase (pages ) 118

2 For questions 1 to 7, match each statement with the researcher(s) who contributed the information to our understanding of DNA. a. Avery, MacLeod, and McCarty b. Hershey and Chase c. Griffith d. all of the above 1. Discovered the process of transformation in bacteria. 2. Treated Streptococcus pneumoniae extracts with enzymes to further identify the genetic material. 3. Used Streptococcus pneumoniae as a model system. 4. Used radioactively labeled phages to determine if DNA or protein was the genetic material. 5. Used a bacteriophage (T2) as the model system. 6. Demonstrated that the transforming principle from the experiments with Streptococcus pneumoniae is DNA. 7. Demonstrated that DNA is the genetic material of bacteriophage T2. Each of the statements below is in reference to Griffith s experiments with Streptococcus pneumoniae. Indicate whether each statement provides support of the genetic material having the properties of information (I), transmission (T), replication (R), or variation (V). 8. The biochemical differences in the capsule of the type R and type S. 9. The copying of the genetic material within the dividing cells. 10. Instructions for type R and type S in the cell. 11. Transformation of type R to type S. For each of the following, match the chemical with its correct description. 12. Protease 13. RNase S 15. DNase P 17. RNA a. Treating a bacterial extract with this will leave only RNA and protein. b. Used to label DNA in the experiments of Hershey and Chase. c. Treating a bacterial extract with this will leave only DNA and protein. d. Used to label proteins in the experiments of Hershey and Chase. e. An enzyme that digests proteins. f. An alternate genetic material in some viruses. 119

3 11.2 of DNA and RNA Structure This small section provides an overview of the nucleic acids, DNA and RNA. Both are macromolecules composed of smaller building blocks. Indeed, the nucleic acid structure can be categorized into four levels of complexity: 1) nucleotides; 2) single strand; 3) double helix; and 4) chromosome (a three-dimensional structure). Outline of Key Terms Nucleic acids Nucleotides Strand Double helix Levels of nucleic acid structure (Figure 11.6) For questions 1 to 5, complete the sentence with the most appropriate term(s): 1. Nucleic acids are made up of repeating structural units called. 2. These repeating structural units are linked together in a linear manner to form a. 3. Nucleic acids are acidic, which means that they release in solutions. 4. Nucleic acids have a net charge at neutral ph. 5. Chromosomes consist of DNA complexed with Nucleotide Structure A nucleotide consists of three parts: 1) a nitrogenous base; 2) a pentose sugar; and 3) at least one phosphate (Refer to Figure 11.7). When the base is attached to only the sugar, we call this pair a nucleoside (Figure 11.9). Nitrogenous bases are of two types: purines, which include adenine and guanine; and pyrimidines, which include cytosine, thymine (found in DNA only), and uracil (found in RNA only). There are also two types of pentose sugars: deoxyribose is found in DNA, while ribose is found in RNA (Refer to Figure 11.8). 120

4 Outline of Key Terms Nucleotide Base Purine Adenine (A) Guanine (G) Pyrimidines Cytosine (C) Thymine (T) Uracil (U) Sugar Deoxyribose Ribose Phosphate Nucleoside Components and structure of nucleotides (Figures ) The following are components of DNA structure. Match each of the following with their correct definition. 1. Nucleoside 2. Ribose 3. Purines 4. Deoxyribose 5. Pyrimidines 6. Nucleotides 7. Strand 8. Double helix a. Cytosine and thymine. b. The structural units of a DNA strand. c. The five-carbon sugar in RNA. d. Nucleotides linked by phosphodiester bonds. e. Adenine and guanine. f. Two interacting strands of DNA. g. The five-carbon sugar in DNA. h. The combination of a base and a sugar Structure of a DNA strand Having discussed the structure of nucleotides, we now take a look at how these come together to form polynucleotides. Nucleotides are covalently linked together to form a linear strand of DNA (or RNA). The bonds that connect adjacent nucleotide are called phosphodiester bonds. These involve a phosphate attachment between the 5 carbon in one nucleotide and the 3 carbon in the other. Therefore, a strand has a directionality (5 to 3 ) based on the orientation of the sugar molecules within that strand. 121

5 Outline of Key Terms Polynucleotide Phosphodiester linkage Backbone Directionality A short strand of DNA containing four nucleotides (Figure 11.10) For questions 1 to 6, match each of the following with its correct letter from the diagram. 1. nucleotide 2. phosphate group 3. 5 end of the strand 4. deoxyribose sugar 5. phosphodiester linkage 6. 3 end of the strand 122

6 11.5 Discovery of the Double Helix Following the discovery of DNA as the genetic material, researchers set out to understand the structure of the molecule. This section outlines the major contributors to this effort. As was the case with Section 11.1, for each researcher you should focus on understanding not only their contribution, but also the experimental system that they utilized to make their discoveries. However, as you progress through these experiments, you need to also focus on the developing DNA molecule. Outline of Key Terms Chargaff s rules X-ray diffraction of DNA (Figure 11.12) Watson and Crick and their model of the DNA double helix (Figure 11.13) For questions 1 to 4, match each of the researcher(s) to their contribution in the discovery of DNA structure. 1. Watson and Crick 2. Franklin 3. Chargaff 4. Pauling a. Studies of protein structure led to an understanding of DNA folding. b. First to describe the AT/GC rule of base-pairing in DNA. c. Contributed X-ray diffraction data that indicated a helical structure. d. Developed a ball and stick model of DNA that illustrated it as a double-helix. 5. Analysis of the DNA content of numerous organisms suggested that the amount of adenine was similar to that of, and the amount of guanine was similar to that of Structure of the DNA Double Helix This section examines the structure of the DNA double helix in more detail. As a student in a genetics class, you must comprehend the structure of DNA and the terminology that is used to describe this molecule. Discussions in later chapters of replication, transcription, and gene expression are built upon a firm understanding of the structure of DNA. 123

7 Outline of Key Terms Double helix Base pairs Complementary AT/GC rule Anti-parallel Right-handed Grooves Major groove Minor groove Forms of DNA B DNA A DNA Z DNA Left-handed Methylation Key features of the structure of the double helix (Figure 11.14) Two models of the double helix (Figure 11.15) Comparison of the structures of B DNA and Z DNA (Figure 11.16) For questions 1 to 9, indicate whether the statement is true (T) or false (F). If the statement is false, change it to make it true The directionality of DNA is said to be in the 3 to 5 direction. The backbone of DNA is made up of deoxyribose sugars. The DNA double helix contains the two purine bases cytosine and thymine. In a double helix, there is a 1: 1 ratio of AT:GC. The DNA molecule consists of major and minor grooves, to which proteins can bind. The linear distance of a complete turn of the double helix is 3.4 nm. In the double helix, the percentage of purines and pyrimidines are equal. There are 8 basepairs in each turn of the double helix. The two DNA strands of the double helix are arranged in an antiparallel pattern. For questions 10 to 12, match each statement with its correct DNA form. a. A DNA b. B DNA c. Z DNA 10. The form of DNA most common in living cells. 11. Forms under conditions of low humidity. 12. A left-handed form of DNA. 124

8 11.7 RNA Structure The final section of this chapter examines the structure of DNA s cousin, RNA. Just like DNA, RNA is also a string of nucleotides (Figure 11.17). And just like DNA, RNA can also form double-stranded helical regions (Figure 11.18), and can fold into three-dimensional structures (Figure 11.19). A strand of RNA (Figure 11.17) Possible structures of RNA molecules (Figure 11.18) The structure of transfer RNA (Figure 11.19) For questions 1 to 5, complete the sentence with the most appropriate term(s): 1. In an RNA strand, adjacent nucleotides are connected via linkages. 2. The pyrimidine bases in RNA are and. 3. Stem-loop structures that can form within RNA molecules are also called. 4. In addition to stem-loops, RNA molecules can also contain loops and loops. 5. The first naturally-occurring RNA to have its structure elucidated was. 6. RNA molecules with catalytic functions are termed. 7. A transfer RNA molecule has two key functional sites that play a role in translation. These are the and the. Quiz 1. The linear distance of a complete turn of the DNA double helix is. a. 2.2 nm b. 20 nm c. 34 nm d. 3.4 nm e. 10 nm 2. used X-ray crystallography data to provide the first evidence of the threedimensional structure of DNA. a. Chargaff b. Watson and Crick c. Franklin d. Griffith 121

9 3. In a DNA nucleotide within a DNA strand, this is the component that can vary. a. phosphate groups b. phosphodiester bonds c. sugar d. type of base e. none of the above vary 4. This is the form of DNA most common in living cells. a. A DNA b. B DNA c. Z DNA d. K DNA 5. discovered the process of transformation in bacteria. a. Avery and colleagues b. Griffith c. Chargaff d. Pauling e. Franklin 6. demonstrated that the genetic material in bacteriophage T2 was DNA. a. Watson and Crick b. Avery and colleagues c. Franklin d. Hershey and Chase e. Pauling 7. In the classic experiments with bacteriophage T2, what was used to label DNA? a. 15 N b. 35 S c. 32 P d. 3 H 8. The 5 to 3 configuration of DNA is called its property. a. complementary b. AT/GC rule c. directionality d. antiparallel 9. If a bacterial chromosome contains 20% adenine, what is the percentage of cytosine? a. 10% b. 20% c. 30% d. 40% e. Can t tell from the given information 10. The structural unit of a DNA strand is the. a. nucleoside b. nucleotide c. ribose sugar d. purine 122

10 Answer Key for Study Guide Questions This answer key provides the answers to the exercises and chapter quiz for this chapter. Answers in parentheses ( ) represent possible alternate answers to a problem, while answers marked with an asterisk (*) indicate that the response to the question may vary c 2. a 3. c 4. b 5. b 6. a 7. b 8. V 9. R 10. I 11. T 12. e 13. c 14. d 15. a 16. b 17. f nucleotide 2. strand 3. H + (hydrogen ion) 4. negative 5. proteins h 2. c 3. e 4. g 5. a 6. b 7. d 8. f a 2. d 3. e 4. c 5. b 6. f d 2. c 3. b 4. a 5. thymine; cytosine 123

11 F, 5 to 3 2. F, sugar-phosphate groups 3. F, pyrimidines 4. T 5. T 6. T 7. T 8. F, 10 bp/turn 9. T 10. b 11. a 12. c phosphodiester 2. cytosine and uracil 3. hairpins 4. internal; bulge 5. transfer RNA 6. ribozymes 7. anticodon; 3 acceptor site Quiz 1. d 2. c 3. d 4. b 5. b 6. d 7. c 8. c 9. c 10. b 121

DNA AND IT S ROLE IN HEREDITY

DNA AND IT S ROLE IN HEREDITY DNA AND IT S ROLE IN HEREDITY Lesson overview and objectives - DNA/RNA structural properties What are DNA and RNA made of What are the structural differences between DNA and RNA What is the structure of

More information

2. Why did biologists used to think that proteins are the genetic material?

2. Why did biologists used to think that proteins are the genetic material? Chapter 16: DNA: The Genetic Material 1. What must genetic material do? 2. Why did biologists used to think that proteins are the genetic material? 3. Describe Griffith s experiments with genetic transformation

More information

DNA (Deoxyribonucleic Acid)

DNA (Deoxyribonucleic Acid) DNA (Deoxyribonucleic Acid) Genetic material of cells GENES units of genetic material that CODES FOR A SPECIFIC TRAIT Called NUCLEIC ACIDS DNA is made up of repeating molecules called NUCLEOTIDES Phosphate

More information

DNA, RNA AND PROTEIN SYNTHESIS

DNA, RNA AND PROTEIN SYNTHESIS DNA, RNA AND PROTEIN SYNTHESIS Evolution of Eukaryotic Cells Eukaryotes are larger, more complex cells that contain a nucleus and membrane bound organelles. Oldest eukarytotic fossil is 1800 million years

More information

The structure of nucleic acid molecules allows for the coding and transmission of information.

The structure of nucleic acid molecules allows for the coding and transmission of information. Principles of Biology contents 12 Nucleic Acids The structure of nucleic acid molecules allows for the coding and transmission of information. The best-known nucleic acid, DNA, occurs in the form of a

More information

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA.

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA. Answer: 2. Uracil Adenine, Cytosine and Guanine are found in both RNA and DNA. Thymine is found only in DNA; Uracil takes its (Thymine) place in RNA molecules. Answer: 2. hydrogen bonds The complementary

More information

INTRODUCTION TO DNA. DNA, CHROMOSOMES AND GENES How do these terms relate to one another?

INTRODUCTION TO DNA. DNA, CHROMOSOMES AND GENES How do these terms relate to one another? INTRODUCTION TO DNA You've probably heard the term a million times. You know that DNA is something inside cells; you probably know that DNA has something to do with who we are and how we get to look the

More information

Study Guide Chapter 12

Study Guide Chapter 12 Study Guide Chapter 12 1. Know ALL of your vocabulary words! 2. Name the following scientists with their contributions to Discovering DNA: a. Strains can be transformed (or changed) into other forms while

More information

DNA Structure and Replication. Chapter Nine

DNA Structure and Replication. Chapter Nine DNA Structure and Replication Chapter Nine 2005 We know: DNAis the hereditary material DNAhas a double helix structure Made of four bases; A,T,C,G Sugar-Phosphate backbone DNAreplication is semi-conservative

More information

12.1 Identifying the Substance of Genes

12.1 Identifying the Substance of Genes 12.1 Identifying the Substance of Genes Lesson Objectives Summarize the process of bacterial transformation. Describe the role of bacteriophages in identifying genetic material. Identify the role of DNA

More information

Web Quest: DNA & Protein Synthesis Biology 1

Web Quest: DNA & Protein Synthesis Biology 1 Web Quest: DNA & Protein Synthesis Biology 1 Name: TO ACCESS THE WEBSITES IN THIS WEB QUEST WITHOUT HAVING TO TYPE IN ALL OF THE URLs: 1. Go to alkire.weebly.com 2. Mouse over Biology 1 3. Click on Online

More information

Nucleic Acids: DNA and RNA

Nucleic Acids: DNA and RNA Nucleic Acids: DNA and RNA Nucleic Acids Responsible for the transfer of genetic information. Two forms of nucleic acids: Ribonucleic Acid (RNA) Mainly found in cytoplasm Deoxyribonucleic Acid (DNA) Found

More information

Nucleotides and Nucleic Acids

Nucleotides and Nucleic Acids Nucleotides and Nucleic Acids Brief History 1 1869 - Miescher Isolated nuclein from soiled bandages 1902 - Garrod Studied rare genetic disorder: Alkaptonuria; concluded that specific gene is associated

More information

DNA Activity Model. For complete technical support call Objectives: Use models to demonstrate complementary base pairing

DNA Activity Model. For complete technical support call Objectives: Use models to demonstrate complementary base pairing Neo/SCI Teacher s Guide DNA Activity Model Objectives: Use models to demonstrate complementary base pairing Learn the components of nucleotides. Model the double helix structure of DNA #30-1335 For complete

More information

Nucleic Acids and DNA Replication. I. Biological Background

Nucleic Acids and DNA Replication. I. Biological Background Lecture 14: Nucleic Acids and DNA Replication I. Biological Background A. Types of nucleic acids: 1. Deoxyribonucleic acid (DNA) a. Makes up genes that indirectly direct protein synthesis b. Contain information

More information

Lecture 9 DNA Structure & Replication

Lecture 9 DNA Structure & Replication Lecture 9 DNA Structure & Replication What is a Gene? Mendel s work left a key question unanswered: What is a gene? The work of Sutton and Morgan established that genes reside on chromosomes But chromosomes

More information

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results

More information

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,

More information

INTRODUCTION TO DNA Replication

INTRODUCTION TO DNA Replication INTRODUCTION TO DNA Replication - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Chapter 13 covers a descriptive explanation of Deoxyribose nucleic Acid

More information

FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS - Vol. I - DNA as Genetic Material and Nucleic Acid Metabolism - Ralph Kirby

FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS - Vol. I - DNA as Genetic Material and Nucleic Acid Metabolism - Ralph Kirby DNA AS GENETIC MATERIAL AND NUCLEIC ACID METABOLISM Ralph Kirby Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa Keywords: Nucleic acid, transformation, DNA, RNA,

More information

Genetics Notes C. Molecular Genetics

Genetics Notes C. Molecular Genetics Genetics Notes C Molecular Genetics Vocabulary central dogma of molecular biology Chargaff's rules messenger RNA (mrna) ribosomal RNA (rrna) transfer RNA (trna) Your DNA, or deoxyribonucleic acid, contains

More information

Mice die Mice live Mice live Mice die

Mice die Mice live Mice live Mice die Module 3E DA Structure and Replication In this module, we will examine: the molecular structure of the genetic material how the genetic material replicates how damage to the genetic material is repaired

More information

DNA. Discovery of the DNA double helix

DNA. Discovery of the DNA double helix DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:

More information

Chromosome Mapping by Recombination

Chromosome Mapping by Recombination Chromosome Mapping by Recombination Genes on the same chromosome are said to be linked. Crossing over: the physical exchange of homologous chromosome segments A given crossover generates two reciprocal

More information

DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms!

DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms! Biological Sciences Initiative HHMI DNA omponents and Structure Introduction Nucleic acids are molecules that are essential to, and characteristic of, life on Earth. There are two basic types of nucleic

More information

Proteins and Nucleic Acids

Proteins and Nucleic Acids Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,

More information

Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure

Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure Nucleic acids play an important role in the storage and expression of genetic information. They are divided into

More information

Unit 9: DNA, RNA, and Proteins. Pig and elephant DNA just don t splice, but why?

Unit 9: DNA, RNA, and Proteins. Pig and elephant DNA just don t splice, but why? Unit 9: DNA, RNA, and Proteins Pig and elephant DNA just don t splice, but why? BONUS - History of DNA Structure of DNA 3.3.1 - Outline DNA nucleotide structure in terms of sugar (deoxyribose), base and

More information

Chapter 10: Protein Synthesis. Biology

Chapter 10: Protein Synthesis. Biology Chapter 10: Protein Synthesis Biology Let s Review What are proteins? Chains of amino acids Some are enzymes Some are structural components of cells and tissues More Review What are ribosomes? Cell structures

More information

II. DNA Deoxyribonucleic Acid Located in the nucleus of the cell Codes for your genes

II. DNA Deoxyribonucleic Acid Located in the nucleus of the cell Codes for your genes HEREDITY = passing on of characteristics from parents to offspring How?...DNA! I. DNA, Chromosomes, Chromatin, and Genes DNA = blueprint of life (has the instructions for making an organism) Chromatin=

More information

DNA Worksheet BIOL 1107L DNA

DNA Worksheet BIOL 1107L DNA Worksheet BIOL 1107L Name Day/Time Refer to Chapter 5 and Chapter 16 (Figs. 16.5, 16.7, 16.8 and figure embedded in text on p. 310) in your textbook, Biology, 9th Ed, for information on and its structure

More information

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!! DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other

More information

Ch. 12: DNA and RNA 12.1 DNA Chromosomes and DNA Replication

Ch. 12: DNA and RNA 12.1 DNA Chromosomes and DNA Replication Ch. 12: DNA and RNA 12.1 DNA A. To understand genetics, biologists had to learn the chemical makeup of the gene Genes are made of DNA DNA stores and transmits the genetic information from one generation

More information

Transcription Activity Guide

Transcription Activity Guide Transcription Activity Guide Teacher Key Ribonucleic Acid (RNA) Introduction Central Dogma: DNA to RNA to Protein Almost all dynamic functions in a living organism depend on proteins. Proteins are molecular

More information

DNA - The Double Helix

DNA - The Double Helix DNA - The Double Helix Name: Date: Recall that the nucleus is a small spherical, dense body in a cell. It is often called the "control center" because it controls all the activities of the cell including

More information

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99. 1. True or False? A typical chromosome can contain several hundred to several thousand genes, arranged in linear order along the DNA molecule present in the chromosome. True 2. True or False? The sequence

More information

Structure and Function of DNA

Structure and Function of DNA Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four

More information

MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS

MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS Richard L. Hodinka, Ph.D. University of South Carolina School of Medicine Greenville Greenville Health System, Greenville, SC hodinka@greenvillemed.sc.edu

More information

DNA Structure and Replication

DNA Structure and Replication Why? DNA Structure and Replication How is genetic information stored and copied? Deoxyribonucleic acid or DNA is the molecule of heredity. It contains the genetic blueprint for life. For organisms to grow

More information

CCR Biology - Chapter 8 Practice Test - Summer 2012

CCR Biology - Chapter 8 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 8 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What did Hershey and Chase know

More information

K'NEX DNA Models. Developed by Dr. Gary Benson Department of Biomathematical Sciences Mount Sinai School of Medicine

K'NEX DNA Models. Developed by Dr. Gary Benson Department of Biomathematical Sciences Mount Sinai School of Medicine KNEX DNA Models Introduction Page 1 of 11 All photos by Kevin Kelliher. To download an Acrobat pdf version of this website Click here. K'NEX DNA Models Developed by Dr. Gary Benson Department of Biomathematical

More information

DNA TM Review And EXAM Review. Ms. Martinez

DNA TM Review And EXAM Review. Ms. Martinez DNA TM Review And EXAM Review Ms. Martinez 1. Write out the full name for DNA molecule. Deoxyribonucleic acid 2. What are chromosomes? threadlike strands made of DNA and PROTEIN 3. What does DNA control

More information

The Molecules of Cells

The Molecules of Cells The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates

More information

DNA replication (Lecture 28,29)

DNA replication (Lecture 28,29) DNA replication (Lecture 28,29) 1. DNA replication and the cell cycle 2. DNA is Reproduced by Semiconservative Replication 2.1 Conservation of the Original Helix 2.2 The Meselson-Stahl Experiment 2.3 Semiconservative

More information

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d. 13 Multiple Choice RNA and Protein Synthesis Chapter Test A Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are found in both

More information

DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3

DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3 DNA, RNA, Protein synthesis, and Mutations Chapters 12-13.3 1A)Identify the components of DNA and explain its role in heredity. DNA s Role in heredity: Contains the genetic information of a cell that can

More information

Lab #5: DNA, RNA & Protein Synthesis. Heredity & Human Affairs (Biology 1605) Spring 2012

Lab #5: DNA, RNA & Protein Synthesis. Heredity & Human Affairs (Biology 1605) Spring 2012 Lab #5: DNA, RNA & Protein Synthesis Heredity & Human Affairs (Biology 1605) Spring 2012 DNA Stands for : Deoxyribonucleic Acid Double-stranded helix Made up of nucleotides Each nucleotide= 1. 5-carbon

More information

STRUCTURES OF NUCLEIC ACIDS

STRUCTURES OF NUCLEIC ACIDS CHAPTER 2 STRUCTURES OF NUCLEIC ACIDS What is the chemical structure of a deoxyribonucleic acid (DNA) molecule? DNA is a polymer of deoxyribonucleotides. All nucleic acids consist of nucleotides as building

More information

1. Which of the following correctly organizes genetic material from the broadest category to the most specific category?

1. Which of the following correctly organizes genetic material from the broadest category to the most specific category? DNA and Genetics 1. Which of the following correctly organizes genetic material from the broadest category to the most specific category? A. genome chromosome gene DNA molecule B. genome chromosome DNA

More information

PRACTICE TEST QUESTIONS

PRACTICE TEST QUESTIONS PART A: MULTIPLE CHOICE QUESTIONS PRACTICE TEST QUESTIONS DNA & PROTEIN SYNTHESIS B 1. One of the functions of DNA is to A. secrete vacuoles. B. make copies of itself. C. join amino acids to each other.

More information

Chapter 8 Nucleotides and Nucleic Acids

Chapter 8 Nucleotides and Nucleic Acids Multiple Choice Questions 1. Some basics The compound that consists of ribose linked by an N-glycosidic bond to N-9 of adenine is: A) a deoxyribonucleoside. B) a purine nucleotide. C) a pyrimidine nucleotide.

More information

OUTCOMES. PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation OVERVIEW ANIMATION CONTEXT RIBONUCLEIC ACID (RNA)

OUTCOMES. PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation OVERVIEW ANIMATION CONTEXT RIBONUCLEIC ACID (RNA) OUTCOMES PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation 3.5.1 Compare the structure of RNA and DNA. 3.5.2 Outline DNA transcription in terms of the formation of an RNA strand

More information

The DNA Discovery Kit The Discovery Approach & Teacher Notes

The DNA Discovery Kit The Discovery Approach & Teacher Notes ...where molecules become real TM The DNA Discovery Kit & Teacher Notes www.3dmoleculardesigns.com All rights reserved on DNA Discovery Kit. US Patent 6,471,520 B1 Photos by Sean Ryan The DNA Discovery

More information

DNA AND IT S STRUCTURE, FUNCTION, TYPES, MODES OF REPLICATION AND REPAIR

DNA AND IT S STRUCTURE, FUNCTION, TYPES, MODES OF REPLICATION AND REPAIR DNA AND IT S STRUCTURE, FUNCTION, TYPES, MODES OF REPLICATION AND REPAIR The discovery that DNA is the prime genetic molecule, carrying all the hereditary information within chromosomes, immediately had

More information

Biology - Student Reader & Workbook Unit 3, Chapter 4: Molecular Genetics - DNA Structure and Protein Synthesis

Biology - Student Reader & Workbook Unit 3, Chapter 4: Molecular Genetics - DNA Structure and Protein Synthesis Biology - Student Reader & Workbook Unit 3, Chapter 4: Molecular Genetics - DNA Structure and Protein Synthesis UNIT 3, CHAPTER 4: MOLECULAR GENETICS: DNA STRUCTURE AND... 3 PROTEIN SYNTHESIS... 3 LESSON

More information

Biol 101 Exam 5: Molecular Genetics Fall 2008

Biol 101 Exam 5: Molecular Genetics Fall 2008 MULTIPLE CHOICE. This exam has 60 questions. All answers go on the SCANTRON provided. Choose the one alternative that best completes the statement or answers the question. 1) The genetic material of all

More information

Life. In nature, we find living things and non living things. Living things can move, reproduce, as opposed to non living things.

Life. In nature, we find living things and non living things. Living things can move, reproduce, as opposed to non living things. Computat onal Biology Lecture 1 Life In nature, we find living things and non living things. Living things can move, reproduce, as opposed to non living things. Both are composed of the same atoms and

More information

Structure. Structural Components of Nucleotides Base. Introduction Nucleotide to Cells & Microscopy and Nucleic Acid. Sugar. Phosphate Glycosidic bond

Structure. Structural Components of Nucleotides Base. Introduction Nucleotide to Cells & Microscopy and Nucleic Acid. Sugar. Phosphate Glycosidic bond 11 Introduction Nucleotide to Cells & Microscopy and Nucleic Acid Structure Structural Components of Nucleotides Base Sugar Phosphate Glycosidic bond H NUCLEOTIDE H 1 RNA DNA Table 3-1 Nucleic acid polymer

More information

DNA, genes and chromosomes

DNA, genes and chromosomes DNA, genes and chromosomes Learning objectives By the end of this learning material you would have learnt about the components of a DNA and the process of DNA replication, gene types and sequencing and

More information

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage. CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic

More information

Chapter 16: DNA Structure & Replication

Chapter 16: DNA Structure & Replication hapter 16: DN Structure & Replication 1. DN Structure 2. DN Replication 1. DN Structure hapter Reading pp. 313-318 enetic Material: Protein or DN? Until the early 1950 s no one knew for sure, but it was

More information

The Structure, Replication, and Chromosomal Organization of DNA

The Structure, Replication, and Chromosomal Organization of DNA Michael Cummings Chapter 8 The Structure, Replication, and Chromosomal Organization of DNA David Reisman University of South Carolina History of DNA Discoveries Friedrich Miescher Isolated nuclein from

More information

The DNA Discovery Kit The Guided Discovery Approach & Teacher Notes

The DNA Discovery Kit The Guided Discovery Approach & Teacher Notes ...where molecules become real TM The DNA Discovery Kit & Teacher Notes www.3dmoleculardesigns.com All rights reserved on DNA Discovery Kit. US Patent 6,471,520 B1 Photos by Sean Ryan Teacher Notes Contents

More information

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Lecture Outline Overview: Life s Operating Instructions In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double-helical

More information

Molecular Genetics. RNA, Transcription, & Protein Synthesis

Molecular Genetics. RNA, Transcription, & Protein Synthesis Molecular Genetics RNA, Transcription, & Protein Synthesis Section 1 RNA AND TRANSCRIPTION Objectives Describe the primary functions of RNA Identify how RNA differs from DNA Describe the structure and

More information

Chapter 6: Cell Growth and Reproduction Lesson 2: Chromosomes and DNA Replication

Chapter 6: Cell Growth and Reproduction Lesson 2: Chromosomes and DNA Replication Chapter 6: Cell Growth and Reproduction Lesson 2: Chromosomes and DNA Replication Cell reproduction involves a series of steps that always begin with the processes of interphase. During interphase the

More information

RNA and Protein Synthesis Biology Mr. Hines

RNA and Protein Synthesis Biology Mr. Hines RNA and Protein Synthesis 12.3 Biology Mr. Hines Now we know how DNA (genes) are copied. But how is it used to make a living organism? Most of the structures inside of a cell are made of protein - so we

More information

NUCLEIC ACIDS. An INTRODUCTION. Two classes of Nucleic Acids

NUCLEIC ACIDS. An INTRODUCTION. Two classes of Nucleic Acids NUCLEIC ACIDS An INTRODUCTION Two classes of Nucleic Acids Deoxynucleic Acids (DNA) Hereditary molecule of all cellular life Stores genetic information (encodes) Transmits genetic information Information

More information

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water

More information

DNA & Protein Synthesis Exam

DNA & Protein Synthesis Exam DNA & Protein Synthesis Exam DO NOT WRITE ON EXAM EXAM # VER. B Multiple choice Directions: Answer the following questions based on the following diagram. (1pt. each) 5. The above nucleotide is purine

More information

Academic Nucleic Acids and Protein Synthesis Test

Academic Nucleic Acids and Protein Synthesis Test Academic Nucleic Acids and Protein Synthesis Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Each organism has a unique combination

More information

WEEK ONE VOCABULARY. Adhesion- the attraction between water molecules and other molecules

WEEK ONE VOCABULARY. Adhesion- the attraction between water molecules and other molecules WEEK ONE VOCABULARY Acid- hydrogen donors; acids increase the hydrogen ion concentration in solution Adhesion- the attraction between water molecules and other molecules Alpha (α) helix- secondary protein

More information

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose 1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen

More information

Bio Factsheet. How Science Works: Meselson and Stahl s Classic Experiment. Number 207.

Bio Factsheet. How Science Works: Meselson and Stahl s Classic Experiment. Number 207. Number 207 How Science Works: Meselson and Stahl s lassic Experiment n 1953 James Watson and Francis rick built their model of the structure of DNA, which is still accepted today: DNA is an anti-parallel

More information

Transcription and Translation of DNA

Transcription and Translation of DNA Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes

More information

Copyright 2012 Nelson Education Ltd. Chapter 6: DNA Hereditary Molecules of Life 6-2

Copyright 2012 Nelson Education Ltd. Chapter 6: DNA Hereditary Molecules of Life 6-2 Chapter 6 Review, pages 304 309 Knowledge 1. c 2. d 3. b 4. c 5. b 6. d 7. b 8. a 9. b 10. c 11. c 12. d 13. a 14. False. Bacteria do not possess membrane-bound organelles to store their DNA. 15. False.

More information

B5 B8 ANWERS DNA & ) DNA

B5 B8 ANWERS DNA & ) DNA Review sheet for test B5 B8 ANWERS DNA review 1. What bonds hold complementary bases between 2 strands of DNA together? Hydrogen bonds 2. What bonds exist between sugars and phosphates? Covalent bonds

More information

2.1 Nucleic acids the molecules of life

2.1 Nucleic acids the molecules of life 1 2.1 Nucleic acids the molecules of life Nucleic acids information molecules of the cells form new cells stored in chromosomes in nucleus of the cell in the form of a code in DNA / parts of the code are

More information

Multiple Choice Review- Genes

Multiple Choice Review- Genes Multiple Choice Review- Genes 1. Deoxyribonucleic acid nucleotides are composed of a. Ribose sugar, a phosphate group and one of four bases (adenine, cytosine, thymine and guanine) b. Ribose sugar, a phosphate

More information

7 Nucleic acids. Chapter summary a reminder of the issues to be revised

7 Nucleic acids. Chapter summary a reminder of the issues to be revised 7 Nucleic acids Chapter summary a reminder of the issues to be revised 1 DNA, an extremely long, thread-like macromolecule, consists of two anti-parallel polynucleotide strands, paired together and held

More information

DNA: Molecule of Life

DNA: Molecule of Life DNA: Molecule of Life History DNA Structure Protein Synthesis Gene Regulation History of DNA H I S T O By the 1940 s, scientists knew that chromosomes consisted of both DNA and protein but did not know

More information

CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES

CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which

More information

Exercise 7: DNA and Protein Synthesis

Exercise 7: DNA and Protein Synthesis Exercise 7: DNA and Protein Synthesis Introduction DNA is the code of life, and it is the blueprint for all living things. DNA is contained in all cells, and it is replicated every time a cell divides.

More information

BINF6201/8201. Basics of Molecular Biology

BINF6201/8201. Basics of Molecular Biology BINF6201/8201 Basics of Molecular Biology 08-26-2016 Linear structure of nucleic acids Ø Nucleic acids are polymers of nucleotides Ø Nucleic acids Deoxyribonucleic acids (DNA) Ribonucleic acids (RNA) Phosphate

More information

DNA replication. DNA RNA Protein

DNA replication. DNA RNA Protein DNA replication The central dogma of molecular biology transcription translation DNA RNA Protein replication Revers transcriptase The information stored by DNA: - protein structure - the regulation of

More information

Complementary Base Pairs: A and T. DNA contains complementary base pairs in which adenine is always linked by two hydrogen bonds to thymine (A T).

Complementary Base Pairs: A and T. DNA contains complementary base pairs in which adenine is always linked by two hydrogen bonds to thymine (A T). Complementary Base Pairs: A and T DNA contains complementary base pairs in which adenine is always linked by two hydrogen bonds to thymine (A T). Complementary Base Pairs: G and C DNA contains complementary

More information

Section 1 Workbook (unit 2) ANSWERS

Section 1 Workbook (unit 2) ANSWERS Section 1 Workbook (unit 2) ANSWERS Complete the following table: nucleotide DNA RN Name: B5. Describe DNA replication 1) Label each base given in the diagram below and describe the 4 primary characteristics

More information

Chapter 10 Molecular Biology of the Gene

Chapter 10 Molecular Biology of the Gene Chapter 10 Molecular Biology of the Gene PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture

More information

MBLG1001 Lecture 8 page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Lecture 8

MBLG1001 Lecture 8 page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Lecture 8 MBLG1001 Lecture 8 page 1 University of Sydney Library Electronic Item CURSE: MBLG1001 Lecturer: Dale ancock Lecture 8 CMMNWEALT F AUSTRALIA Copyright Regulation WARNING This material has been reproduced

More information

Proteomics: Principles and Techniques Prof: Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay

Proteomics: Principles and Techniques Prof: Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay (Refer Slide Time: 00:29) Proteomics: Principles and Techniques Prof: Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay Lecture No. # 02 Central Dogma:

More information

Basic Concepts of DNA, Proteins, Genes and Genomes

Basic Concepts of DNA, Proteins, Genes and Genomes Basic Concepts of DNA, Proteins, Genes and Genomes Kun-Mao Chao 1,2,3 1 Graduate Institute of Biomedical Electronics and Bioinformatics 2 Department of Computer Science and Information Engineering 3 Graduate

More information

DNA Replication Activity Guide

DNA Replication Activity Guide DNA Replication Activity Guide Teacher Key Deoxyribonucleic Acid (DNA) Exploring DNA 1. List at least three reasons why a cell must undergo division. Answers may vary but may include: growth, repair, reproduction,

More information

Chapter 2. Introduction to some basic features of genetic information: From DNA to proteins

Chapter 2. Introduction to some basic features of genetic information: From DNA to proteins Chapter 2 Introduction to some basic features of genetic information: From DNA to proteins DAVID QUIST, 1 KAARE M. NIELSEN 1, 2 AND TERJE TRAAVIK 1, 3 1 THE NORWEGIAN INSTITUTE OF GENE ECOLOGY (GENØK),

More information

Name: Date: Period: DNA Unit: DNA Webquest

Name: Date: Period: DNA Unit: DNA Webquest Name: Date: Period: DNA Unit: DNA Webquest Part 1 History, DNA Structure, DNA Replication DNA History http://www.dnaftb.org/dnaftb/1/concept/index.html Read the text and answer the following questions.

More information

The joined base + sugar is called a nucleoside. Study the picture below:

The joined base + sugar is called a nucleoside. Study the picture below: BIOMOLECULES.2 (nucleic acids, genetic code) Nucleic acids -- these molecules are the basis for the genetic material of all life on Earth, and so are central for our speculations about life elsewhere.

More information

Molecular Biology of The Cell - An Introduction

Molecular Biology of The Cell - An Introduction Molecular Biology of The Cell - An Introduction Nguyen Phuong Thao School of Biotechnology International University Contents Three Domain of Life The Cell Eukaryotic Cell Prokaryotic Cell The Genome The

More information

1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False

1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False 1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False 2. True or False? Dideoxy sequencing is a chain initiation method of DNA sequencing. False

More information

What is the role nucleic acids play in the formation of proteins and cellular structure?

What is the role nucleic acids play in the formation of proteins and cellular structure? 00Note Set 4 1 NUCLEIC ACIDS The Nature of Nucleic Acids What is the role nucleic acids play in the formation of proteins and cellular structure? THE TWO TYPES OF NUCLEIC ACID: DNA AND RNA (see Fig 4.1)

More information

Chapter 5. The Structure and Function of Macromolecule s

Chapter 5. The Structure and Function of Macromolecule s Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.

More information