Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK
|
|
- Janis Cross
- 5 years ago
- Views:
Transcription
1 Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Dai Lu, Ph.D. Tel: Office: RCOP, Room 307
2 Drug Discovery and Development
3 Drug Molecules Medicinal and pharmaceutical chemistry are the sciences of how drugs can be designed and developed. Small molecule drugs: Small, chemically manufactured molecules (SMOLs ) are the classic active substances and make up over 90 percent of the drugs on the market today. Generally, they are organic compounds with molecular weight (MW) less than 900 Daltons (Da). Most often the drug s molecular weight (MW) is less than 500 Da. Macro-molecules: Nucleic acids, proteins, and polysaccharides (MW: 1K-150 KDa).
4 Proteins Drug Targets Receptors Enzymes Transport proteins Nucleic Acids
5 Drug Targets: Proteins 1. The building blocks for proteins: Amino acids Amino acids are small molecules containing an amino group ( - NH 2 ), a carboxyl group ( - COOH), a hydrogen atom, a carbon atom, and a side chain that differs among amino acids. H 3 N H CO 2 R Head group (zwitterion) Residue or side chain The identity and unique chemical properties of each amino acid are determined by the nature of the R group.
6 1. The building blocks for proteins: Amino acids There are 20 common amino acids in human proteins Codes for amino acids Alanine Ala A Arginine Arg R Asparagine Asn N Aspartic acid Asp D Cysteine Cys C Glutamic acid Glu E Glutamine Gln Q Glycine Gly G Proline Pro P Serine Ser S Tyrosine Tyr Y Histidine His H Isoleucine Ile I Leucine Leu L Lysine Lys K Methionine Met M Phenylalanine Phe F Threonine Thr T Tryptophan Trp W Valine Val V
7 1. The building blocks for proteins: Amino acids
8 1. The building blocks for proteins: Amino acids Each amino acid has an identical head group, but different side chain R Amino acids are chiral molecules (except glycine, R=H) Naturally occurring amino acids are the L-form The L-amino acids are S-enantiomers (except cysteine; R = CH 2 SH) H H 3 N CO 2 H 3 N CO 2 H Fischer diagram R How to determine whether a stereocenter has R or S stereochemistry--i.e., how to name the "absolute configuration" of a chiral carbon? S_Sequence_Rules R
9 Structures of Proteins Only when a protein is in its correct three dimensional structure, or conformation, it is able to function efficiently. A key concept in understanding how proteins work is that function is derived from three dimensional structure, and the three dimensional structure is in turn specified by the amino acid sequence. The structure of proteins can be considered at four levels of organization starting with their primary structure sequence.
10 Structures of Proteins Primary (sequence) Secondary (local folding) Tertiary (long rang folding) Quaternary (multimeric organization)
11 Structures of Proteins 2. The primary structure of proteins The primary structure is the order in which the amino acids are linked together. The amino acids are linked through their head groups by peptide bonds to form a polypeptide chain or backbone. Peptide bonds Protein chain H N R 1 O N H R 2 O H N R 3 O Protein chain This has an important consequence for protein tertiary structure.
12 2. The primary structure of proteins This partial double bond is sufficient to stop free rotation about the C-N bond. This has an important consequence for protein tertiary structure. The planar peptide bonds indirectly play an important role in tertiary structure. Since bond rotation is hindered in peptide bonds with the trans configuration generally favored, the number of possible confirmations that a protein can adopt is significantly limited.
13 2. The primary structure of proteins Example - Met enkephalin N-terminus Phe C-terminus Residues H 2 N O N H Gly O H N Gly O N H O H N CO 2 H Peptide backbone Residues HO Tyr SMe Met
14 3. The secondary structure of proteins Secondary structure refers to the shape of a folding protein due exclusively to hydrogen bonding between its backbone amino (NH) and carbonyl groups (C=O). Secondary structure does not include bonding between the R-groups of amino acids. The two most commonly encountered secondary structures of a polypeptide chain are α-helices and β-pleated sheets. These structures are the first major steps in the folding of a polypeptide chain, and they establish important topological motifs that dictate subsequent tertiary structure and the ultimate function of the protein.
15 3. The secondary structure of proteins Helices (α-helix, π-helix, 3 10 helix), Pleated sheets (α-, β-pleated sheets ) Tight turns
16 3. The secondary structure of proteins α-helices An alpha-helix is a right-handed coil of amino-acid residues on a polypeptide chain, typically ranging between 4 and 40 residues. The coil is held together by H-bonds between the oxygen of C=O on top coil and the hydrogen of N-H on the bottom coil. Such a hydrogen bond is formed exactly every 5 amino acid residues because the H-bond needs to be in a linear orientation. C O H N
17 3. The secondary structure of proteins Β-Pleated sheets The beta - pleated sheet is a secondary structure found in proteins in which H-bonds are formed between two parts of the protein chain that can be far apart.
18 3. The secondary structure of proteins Β-Pleated sheets ( anti-parallel and parallel) anti-parallel N to C C to N parallel N to C N to C Anti-parallel β sheet formed by two H-bonds within the same amino acid residues. Parallel β sheet formed by two H-bonds with two different amino acid residues.
19 3. The secondary structure of proteins It is well known that helices and ß-sheets are the major stabilizing structures in proteins. Segments of the protein chain which are not helical nor ß-sheet have been generally designated as random coil or irregular regions. These nonrepetitive motif elements include tight turns, bulges, and random coil structures
20 3. The secondary structure of proteins TIGHT TURNS Turns play an important role in globular proteins from both structural and functional points of view. A polypeptide chain cannot fold into a compact structure without the component of turns. Also, turns usually occur on the exposed surface of proteins and hence probably represent antigenic sites or involve molecular recognition.
21 3. The secondary structure of proteins TIGHT TURNS Alpha-turn - An alpha-turn involves 5 amino acid residues where the distance between the Cα (i) and the Cα (i+4) is less than 7Å and the pentapeptide chain is not in a helical conformation. Beta-turn - A beta-turn involves 4 amino acid residues and may or may not be stabilized by the intraturn hydrogen bond between the backbone CO(i) and the backbone NH(i+3). Gamma-turn - It involves 3 amino acid residues and the intraturn hydrogen bond for a gamma-turn is formed between the backbone CO(i) and the backbone NH(i+2). Delta-turn - It is the smallest tight turn which involves only 2 amino acid residues and the intraturn hydrogen bond for a delta-turn is formed between the backbone NH(i) and the backbone CO(i+1). Pi-turn - It is the largest tight turn which involves 6 amino acid residues.
22 3. The secondary structure of proteins Beta-turn A ß-turn consists of four consecutive residues defined by positions i, i+1, i+2, i+3 which are not present in alpha-helix; the distance between Cα (i) and Cα (i+3) is less than 7Å.
23 4. The tertiary structure of proteins The interactions of the R groups give a protein its specific three-dimensional tertiary structure. 1. Disulfide linkages 2. Hydrogen Bonding 3. Electrostatic interactions 4. Hydrophobic interactions
24 4. The tertiary structure of proteins Bond strength: Covalent (S-S) > Ionic (salt bridge)> H-bonds> van der Walls Importance: Covalent (S-S) < Ionic (salt bridge)< H-bonds< van der Walls
25 5. The quaternary structure of proteins Only proteins that are made up of multiple subunits have quaternary structures. van der Waals interactions Hydrophobic regions
26 5. The quaternary structure of proteins Hemoglobin
27 6. Protein function As structural proteins - tubulin
28 6. Protein function Enzymes - life s catalysts Receptors - life s communication system
29 6. Protein function Transport proteins Polar molecule Transport protein
IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins
IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon A. Acid/Base properties 1. carboxyl group is proton donor! weak acid 2. amino group is proton acceptor! weak base 3. At physiological ph: H
Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?
Pipe Cleaner Proteins GPS: SB1 Students will analyze the nature of the relationships between structures and functions in living cells. Essential question: How does the structure of proteins relate to their
Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?)
ChemActivity 46 Amino Acids, Polypeptides and Proteins 1 ChemActivity 46 Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) Model 1: The 20 Amino Acids at Biological p See
A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys
Questions- Proteins & Enzymes A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Reaction of the intact peptide
The peptide bond is rigid and planar
Level Description Bonds Primary Sequence of amino acids in proteins Covalent (peptide bonds) Secondary Structural motifs in proteins: α- helix and β-sheet Hydrogen bonds (between NH and CO groups in backbone)
The Organic Chemistry of Amino Acids, Peptides, and Proteins
Essential rganic Chemistry Chapter 16 The rganic Chemistry of Amino Acids, Peptides, and Proteins Amino Acids a-amino carboxylic acids. The building blocks from which proteins are made. H 2 N C 2 H Note:
Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell
Lecture 2 Protein conformation ecap Proteins.. > 50% dry weight of a cell ell s building blocks and molecular tools. More important than genes A large variety of functions http://www.tcd.ie/biochemistry/courses/jf_lectures.php
Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5
Protein physics, Lecture 5 Peptide bonds: resonance structure Properties of proteins: Peptide bonds and side chains Proteins are linear polymers However, the peptide binds and side chains restrict conformational
Shu-Ping Lin, Ph.D. E-mail: splin@dragon.nchu.edu.tw
Amino Acids & Proteins Shu-Ping Lin, Ph.D. Institute te of Biomedical Engineering ing E-mail: splin@dragon.nchu.edu.tw Website: http://web.nchu.edu.tw/pweb/users/splin/ edu tw/pweb/users/splin/ Date: 10.13.2010
Amino Acids, Peptides, Proteins
Amino Acids, Peptides, Proteins Functions of proteins: Enzymes Transport and Storage Motion, muscle contraction Hormones Mechanical support Immune protection (Antibodies) Generate and transmit nerve impulses
Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0?
Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7 4. Which of the following weak acids would make the best buffer at ph = 5.0? A) Acetic acid (Ka = 1.74 x 10-5 ) B) H 2 PO - 4 (Ka =
Built from 20 kinds of amino acids
Built from 20 kinds of amino acids Each Protein has a three dimensional structure. Majority of proteins are compact. Highly convoluted molecules. Proteins are folded polypeptides. There are four levels
Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.
Protein Structure Amino Acids Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain Alpha Carbon Amino Group Carboxyl Group Amino Acid Properties There are
Structure and properties of proteins. Vladimíra Kvasnicová
Structure and properties of proteins Vladimíra Kvasnicová Chemical nature of proteins biopolymers of amino acids macromolecules (M r > 10 000) Classification of proteins 1) by localization in an organism
BOC334 (Proteomics) Practical 1. Calculating the charge of proteins
BC334 (Proteomics) Practical 1 Calculating the charge of proteins Aliphatic amino acids (VAGLIP) N H 2 H Glycine, Gly, G no charge Hydrophobicity = 0.67 MW 57Da pk a CH = 2.35 pk a NH 2 = 9.6 pi=5.97 CH
MCAT Organic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins
MCAT rganic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins Question No. 1 of 10 Question 1. Which amino acid does not contain a chiral center? Question #01 (A) Serine (B) Proline (C)
Amino Acids and Proteins
Amino Acids and Proteins Proteins are composed of amino acids. There are 20 amino acids commonly found in proteins. All have: N2 C α R COO Amino acids at neutral p are dipolar ions (zwitterions) because
Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins Proteins Amides from Amino Acids Amino acids contain a basic amino group and an acidic carboxyl
INTRODUCTION TO PROTEIN STRUCTURE
Name Class: Partner, if any: INTRODUCTION TO PROTEIN STRUCTURE PRIMARY STRUCTURE: 1. Write the complete structural formula of the tripeptide shown (frame 10). Circle and label the three sidechains which
Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation
Amino Acids, Proteins, and Enzymes Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation 1 Primary Structure of Proteins H 3 N The particular sequence of
Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 22 Proteins
hemistry 110 Bettelheim, Brown, ampbell & Farrell Ninth Edition Introduction to General, rganic and Biochemistry hapter 22 Proteins Step-growth polyamide (polypeptide) polymers or oligomers of L-α-aminoacids.
Structure of proteins
Structure of proteins Primary structure: is amino acids sequence or the covalent structure (50-2500) amino acids M.Wt. of amino acid=110 Dalton (56 110=5610 Dalton). Single chain or more than one polypeptide
Ionization of amino acids
Amino Acids 20 common amino acids there are others found naturally but much less frequently Common structure for amino acid COOH, -NH 2, H and R functional groups all attached to the a carbon Ionization
Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1
Protein Physics A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 PROTEINS Functions in a Cell MOLECULAR MACHINES BUILDING BLOCKS of a CELL ARMS of a CELL ENZYMES - enzymatic catalysis of biochemical reactions
18.2 Protein Structure and Function: An Overview
18.2 Protein Structure and Function: An Overview Protein: A large biological molecule made of many amino acids linked together through peptide bonds. Alpha-amino acid: Compound with an amino group bonded
CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10
CSC 2427: Algorithms for Molecular Biology Spring 2006 Lecture 16 March 10 Lecturer: Michael Brudno Scribe: Jim Huang 16.1 Overview of proteins Proteins are long chains of amino acids (AA) which are produced
(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton?
Problem 1. (12 points total, 4 points each) The molecular weight of an unspecified protein, at physiological conditions, is 70,000 Dalton, as determined by sedimentation equilibrium measurements and by
H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph
Amino acids - 0 common amino acids there are others found naturally but much less frequently - Common structure for amino acid - C, -N, and functional groups all attached to the alpha carbon N - C - C
CHAPTER 29 AMINO ACIDS, POLYPEPTIDES, AND PROTEINS SOLUTIONS TO REVIEW QUESTIONS
APTER 29 AMI AIDS, PLYPEPTIDES, AD PRTEIS SLUTIS T REVIEW QUESTIS 1. The designation, α, means that the amine group in common amino acids is connected to the carbon immediately adjacent to the carboxylic
Carbohydrates, proteins and lipids
Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,
Biological Molecules
Biological Molecules I won t lie. This is probably the most boring topic you have ever done in any science. It s pretty much as simple as this: learn the material deal with it. Enjoy don t say I didn t
The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are
Introduction to Protein Structure Proteins are large heteropolymers usually comprised of 50 2500 monomer units, although larger proteins are observed 7. The monomer units of proteins are amino acids. The
Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following can be classified as biomolecules except A) lipids. B) proteins. C)
Combinatorial Biochemistry and Phage Display
Combinatorial Biochemistry and Phage Display Prof. Valery A. Petrenko Director - Valery Petrenko Instructors Galina Kouzmitcheva and I-Hsuan Chen Auburn 2006, Spring semester COMBINATORIAL BIOCHEMISTRY
Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II
Biochemistry - I Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II In the last class we studied the enzyme mechanisms of ribonuclease A
http://faculty.sau.edu.sa/h.alshehri
http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They
Introduction to Chemical Biology
Professor Stuart Conway Introduction to Chemical Biology University of xford Introduction to Chemical Biology ecommended books: Professor Stuart Conway Department of Chemistry, Chemistry esearch Laboratory,
Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d)
Proteins Proteins Most diverse and most important molecule in living i organisms Functions: 1. Structural (keratin in hair, collagen in ligaments) 2. Storage (casein in mother s milk) 3. Transport (HAEMOGLOBIN!)
Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain.
Peptide Bond Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain. + H 2 O 2 Peptide bonds are strong and not broken by conditions that denature proteins, such as heating.
Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush
Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush α-keratins, bundles of α- helices Contain polypeptide chains organized approximately parallel along a single axis: Consist
Helices From Readily in Biological Structures
The α Helix and the β Sheet Are Common Folding Patterns Although the overall conformation each protein is unique, there are only two different folding patterns are present in all proteins, which are α
Disulfide Bonds at the Hair Salon
Disulfide Bonds at the Hair Salon Three Alpha Helices Stabilized By Disulfide Bonds! In order for hair to grow 6 inches in one year, 9 1/2 turns of α helix must be produced every second!!! In some proteins,
Lecture 13-14 Conformation of proteins Conformation of a protein three-dimensional structure native state. native condition
Lecture 13-14 Conformation of proteins Conformation of a protein refers to the three-dimensional structure in its native state. There are many different possible conformations for a molecule as large as
4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose
1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen
Chapter 16 Amino Acids, Proteins, and Enzymes
Chapter 16 Amino Acids, Proteins, and Enzymes 1 Functions of Proteins Proteins in the body are polymers made from 20 different amino acids differ in characteristics and functions that depend on the order
THE CHEMICAL SYNTHESIS OF PEPTIDES
TE EMIAL SYTESIS F PEPTIDES Peptides are the long molecular chains that make up proteins. Synthetic peptides are used either as drugs (as they are biologically active) or in the diagnosis of disease. Peptides
Structures of Proteins. Primary structure - amino acid sequence
Structures of Proteins Primary structure - amino acid sequence Secondary structure chain of covalently linked amino acids folds into regularly repeating structures. Secondary structure is the result of
Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following?
MCAT Question Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following? A. Carboxylic group and amino group B. Two carboxylic
Peptide Bonds: Structure
Peptide Bonds: Structure Peptide primary structure The amino acid sequence, from - to C-terminus, determines the primary structure of a peptide or protein. The amino acids are linked through amide or peptide
Chapter 2: Biochemistry Problems
hapter 2: Biochemistry Problems Biochemistry Problems If you were a biochemist, you would study chemical substances and vital processes that occur in living organisms. You might study macromolecules such
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I V E S T I E D Z V J E V Z D Ě L Á V Á Í AMIAIDS PEPTIDES AMIAIDS = substitutional/functional derivatives of carboxylic acids = basic units of proteins (2-aminoacids) General formula of 2-aminoacids (α-aminoacids):
A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.
CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic
AMINO ACIDS & PEPTIDE BONDS STRUCTURE, CLASSIFICATION & METABOLISM
AMINO ACIDS & PEPTIDE BONDS STRUCTURE, CLASSIFICATION & METABOLISM OBJECTIVES At the end of this session the student should be able to, recognize the structures of the protein amino acid and state their
Conformational Properties of Polypeptide Chains
Conformational Properties of Polypeptide Chains Levels of Organization Primary structure Amino acid sequence of the protein Secondary structure H bonds in the peptide chain backbone α helix and β sheets
Previously published in Biophysical Society On-line Textbook PROTEINS CHAPTER 1. PROTEIN STRUCTURE. Section 1. Primary structure, secondary motifs,
Previously published in Biophysical Society On-line Textbook PROTEINS CHAPTER 1. PROTEIN STRUCTURE Section 1. Primary structure, secondary motifs, tertiary architecture, and quaternary organization Jannette
Chapter 5. The Structure and Function of Macromolecule s
Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.
Acidic amino acids: Those whose side chains can carry a negative charge at certain ph values. Typically aspartic acid, glutamic acid.
A Acidic amino acids: Those whose side chains can carry a negative charge at certain ph values. Typically aspartic acid, glutamic acid. Active site: Usually applied to catalytic site of an enzyme or where
How To Understand The Chemistry Of Organic Molecules
CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which
Myoglobin and Hemoglobin
Myoglobin and Hemoglobin Myoglobin and hemoglobin are hemeproteins whose physiological importance is principally related to their ability to bind molecular oxygen. Myoglobin (Mb) The oxygen storage protein
8/20/2012 H C OH H R. Proteins
Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids
Invariant residue-a residue that is always conserved. It is assumed that these residues are essential to the structure or function of the protein.
Chapter 6 The amino acid side chains have polar and nonpolar properties, and the relative hydrophobicity of the amino acid side chains is critical for the folding and stability of a protein. The more hydrophobic
Role of Hydrogen Bonding on Protein Secondary Structure Introduction
Role of Hydrogen Bonding on Protein Secondary Structure Introduction The function and chemical properties of proteins are determined by its three-dimensional structure. The final architecture of the protein
Exam 4 Outline CH 105 Spring 2012
Exam 4 Outline CH 105 Spring 2012 You need to bring a pencil and your ACT card. Chapter 24: Lipids 1. Describe the properties and types of lipids a. All are hydrophobic b. Fatty acid-based typically contain
PROTEINS STRUCTURE AND FUNCTION (DR. TRAISH)
Introduction to Proteins - Proteins are abundant and functionally diverse molecules - They participate in cell regulation at all levels - They share a common structural feature: all are linear polymers
Proteins and Nucleic Acids
Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,
2007 7.013 Problem Set 1 KEY
2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you
Chapter 12 - Proteins
Roles of Biomolecules Carbohydrates Lipids Proteins 1) Catalytic 2) Transport 3) Regulatory 4) Structural 5) Contractile 6) Protective 7) Storage Nucleic Acids 12.1 -Amino Acids Chapter 12 - Proteins Amino
Sickle cell anemia: Altered beta chain Single AA change (#6 Glu to Val) Consequence: Protein polymerizes Change in RBC shape ---> phenotypes
Protein Structure Polypeptide: Protein: Therefore: Example: Single chain of amino acids 1 or more polypeptide chains All polypeptides are proteins Some proteins contain >1 polypeptide Hemoglobin (O 2 binding
Amino Acids as Acids, Bases and Buffers:
Amino Acids as Acids, Bases and Buffers: - Amino acids are weak acids - All have at least 2 titratable protons (shown below as fully protonated species) and therefore have 2 pka s o α-carboxyl (-COOH)
Molecular Facts and Figures
Nucleic Acids Molecular Facts and Figures DNA/RNA bases: DNA and RNA are composed of four bases each. In DNA the four are Adenine (A), Thymidine (T), Cytosine (C), and Guanine (G). In RNA the four are
Chapter 3 Molecules of Cells
Bio 100 Molecules of cells 1 Chapter 3 Molecules of Cells Compounds containing carbon are called organic compounds Molecules such as methane that are only composed of carbon and hydrogen are called hydrocarbons
The chemistry of insulin
FREDERICK S ANGER The chemistry of insulin Nobel Lecture, December 11, 1958 It is great pleasure and privilege for me to give an account of my work on protein structure and I am deeply sensitive of the
UNIT (11) MOLECULES OF LIFE: LIPIDS AND PROTEINS
UNIT (11) MOLECULES OF LIFE: LIPIDS AND PROTEINS 11.1 Types of Lipids Lipids are also biochemical compounds that contain carbon, hydrogen, and oxygen. But lipids, unlike carbohydrates, share no common
Protein Structure and Function
Jones & Bartlett Learning, LL. T F SALE DISTIBUTI Protein Structure and Function SETI I APTE 2 APTE 3 Protein Structure Protein Function 27 Jones & Bartlett Learning, LL. T F SALE DISTIBUTI 2 Protein Structure
From Sequence to Structure
1 From Sequence to Structure The genomics revolution is providing gene sequences in exponentially increasing numbers. onverting this sequence information into functional information for the gene products
Concluding lesson. Student manual. What kind of protein are you? (Basic)
Concluding lesson Student manual What kind of protein are you? (Basic) Part 1 The hereditary material of an organism is stored in a coded way on the DNA. This code consists of four different nucleotides:
In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms
In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms attached to the carbons (hydrogens in this case) can no
This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are
This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are put together. 1 A more detailed view of a single protein
Polypeptides and Proteins
Polypeptides and Proteins These molecules are composed, at least in part, of chains of amino acids. Each amino acid is joined to the next one through an amide or peptide bond from the carbonyl carbon of
Lecture 4: Peptides and Protein Primary Structure [PDF] Key Concepts. Objectives See also posted Peptide/pH/Ionization practice problems.
Lecture 4: Peptides and Protein Primary Structure [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 2, pp. 34-37 Practice problems (peptide ionization) [PDF]; problems in textbook: chapter 2, pp. 63-64,
Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water
Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water
Preliminary MFM Quiz
Preliminary MFM Quiz 1. The major carrier of chemical energy in all cells is: A) adenosine monophosphate B) adenosine diphosphate C) adenosine trisphosphate D) guanosine trisphosphate E) carbamoyl phosphate
PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins.
Ca 2+ The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department of Education. However, those
Proteins the primary biological macromolecules of living organisms
Proteins the primary biological macromolecules of living organisms Protein structure and folding Primary Secondary Tertiary Quaternary structure of proteins Structure of Proteins Protein molecules adopt
Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids
Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)
AP BIOLOGY 2008 SCORING GUIDELINES
AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.
NO CALCULATORS OR CELL PHONES ALLOWED
Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.
Guidelines for Writing a Scientific Paper
Guidelines for Writing a Scientific Paper Writing an effective scientific paper is not easy. A good rule of thumb is to write as if your paper will be read by a person who knows about the field in general
Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.
1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.
LECTURE-2. Basics of Amino acids and Proteins HANDOUT. Proteins are the most complex and versatile macromolecules comprised of amino acids
LECTURE-2 Basics of Amino acids and Proteins HANDOUT PREAMBLE Proteins are the most complex and versatile macromolecules comprised of amino acids as the building blocks. There are 20 standard amino acids
The Molecules of Cells
The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates
Lecture 19: Proteins, Primary Struture
CPS260/BGT204.1 Algorithms in Computational Biology November 04, 2003 Lecture 19: Proteins, Primary Struture Lecturer: Pankaj K. Agarwal Scribe: Qiuhua Liu 19.1 The Building Blocks of Protein [1] Proteins
Peptides & Proteins. (thanks to Hans Börner)
Peptides & Proteins (thanks to Hans Börner) 1 Proteins & Peptides Proteuos: Proteus (Gr. mythological figure who could change form) proteuo: "first, ref. the basic constituents of all living cells peptos:
Non-Covalent Bonds (Weak Bond)
Non-Covalent Bonds (Weak Bond) Weak bonds are those forces of attraction that, in biological situations, do not take a large amount of energy to break. For example, hydrogen bonds are broken by energies
Biological molecules:
Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some
Hydrogen Bonds The electrostatic nature of hydrogen bonds
Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein a-helices and b-sheets were predicted based largely
Peptide Design Strategy: Basics, Optimization, and Application. Presented by: Tiffany Gupton Campolongo, Ph.D.
Peptide Design Strategy: Basics, Optimization, and Application Presented by: Tiffany Gupton Campolongo, Ph.D. Presentation overview 1 2 3 4 Introduction Peptide Design Basics Advanced Design Strategy Strategy
Chapter 5: The Structure and Function of Large Biological Molecules
Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called
Introduction to Protein Folding
Introduction to Protein Folding Chapter 4 Proteins: Three Dimensional Structure and Function Conformation - three dimensional shape Native conformation - each protein folds into a single stable shape (physiological
--not necessarily a protein! (all proteins are polypeptides, but the converse is not true)
00Note Set 5b 1 PEPTIDE BONDS AND POLYPEPTIDES OLIGOPEPTIDE: --chain containing only a few amino acids (see tetrapaptide, Fig 5.9) POLYPEPTIDE CHAINS: --many amino acids joined together --not necessarily