A Qucs Tutorial for RF Transmission Lines

Size: px
Start display at page:

Download "A Qucs Tutorial for RF Transmission Lines"

Transcription

1 A Qucs Tutorial for RF Transmission Lines Pere Palà-Schönwälder February Simple Transmission Line in the Time Domain Let s start with a simple circuit composed of a voltage generator, a transmission line and a load. This will be our first circuit, which will be built step by step: To start, go to the sources tab and select a Voltage Pulse source. Next, adjust the parameters of the source as depicted in the figure. In this case, we want to investigate the response to a step function. Hence, we have set the pulse width to 1 ms, which is several orders of magnitude longer than our simulation will last. We choose the generic transmission line component for the transmission line. When setting the line length do not write m for the unit of length, as m is considered mili! After placing the load resistor, we only have to insert a simulation. In this case, a transient simulation with the parameters adjusted as shown. The most important point is the final time and the time step or, as in the figure, the number of time points where the response will be computed. Finally, we will attach markers to the nodes that we will like to watch. These will be named V1 and V2, corresponding to the input and output port of the transmission line, respectively. The simulation is started with <F2> or through the menu. In any case, we get an empty results page where we will insert a Cartesian plot from the diagrams palette. 1

2 We will select the traces named V1.Vt and V2.Vt. The prefix of these signals corresponds to the node name. Suffix V means voltage and suffix t means time-domain data. If everything worked ok, we should see something like: The marker on the graph is inserted with <Ctrl-B> or through the insert menu. After the box is inserted, we may navigate the waveform with the cursors to locate the time instant when the step is detected at the output t = Since the line length is 1 m, it follows that the propagation velocity along the line is V p = 1/ = m/s. It follows that Qucs is assuming that the transmission line uses air as the dielectric. While there are other kinds of transmission line in Qucs, we will try to include an arbitrary propagation factor. For instance, to model a lossless RG-58 coaxial line, we need a velocity factor of To achieve this, we may insert an equation item into our schematic sheet and add some equations to it: Now, if we wanted to change the physical length of the line, we would change truel. The equivalent length is inserted into the length property of the transmission line component. If we simulate this design, we will see that a 1 m line introduces a 5 ns delay, as corresponds to a propagation velocity of 0.66c. 2

3 2 Frequency Response of a Simple Transmission Line Circuit The frequency response gives a lot of insight into a circuit s behavior. To plot a frequency response in Qucs we have to insert a specific source, an ac Voltage Source, and insert a specific kind of simulation, an ac Simulation. To be able to plot the amplification and phase shift of the circuit, we will define some additional variables, Vb mag and Vb ph, inside a second Equation block: To view the results, we will add some cartesian plots to our output tab. When choosing the variables to plot, we will use those with the suffix.v, as these correspond to the ac analysis that we have carried out. Note that we may directly plot Vb.v. This is equivalent to plotting the magnitude of the complex number Vb.v. However, when we put a marker on the graph, it displays the complex value. This may be handy for some applications: The amplification and phase shift plots may be seen in blue in the right column of the previous figure. Some markers are included to show the amplification and phase shift at 50 MHz. 3

4 As the transmission line has Z 0 = 50Ω and is terminated in Z L = Z 0, the output signal is simply v G (t τ). This means a constant modulus and a linear phase shift. For instance, the period at 50 MHz is T = 20 ns. If a sinusoidal of this frequency is delayed 5 ns, this amounts to T/4, i.e. a phase shift of -90 o. If the load resistance is not matched to Z 0, the output is no longer a delayed version of the input. This may be readily seen in the next figure, where R L = 100Ω. 3 Input Impedance vs Frequency Sometimes we wish to investigate the input impedance of a circuit. For instance, what is the input impedance of 1 m length of RG-58 coaxial line, terminated with 200Ω at the frequency of 25 MHz? Input impedance is the ratio of input voltage to input current. So, if we use a current source of 1 A, the measured input voltage is already the input impedance. The required schematic is depicted next: Note that we have set up a simulation with only 3 frequency points: we are interested in the response at 25 MHz but have also included 24 MHz and 26 MHz as the number of points has to be 2. We have also defined the variables Zin xxx to be able to plot them as desired. The obtained simulation is shown below: 4

5 From this, we may answer the previous question: at 25 MHz, the input impedance of the circuit is Z in = 23.5 j44ω. This corresponds to a series RC combination, with 1/ωC = 44, i.e. C = 72 pf (and, of course, R = 23.5Ω). It is also quite interesting to simulate the input impedance of this circuit when the load is an open circuit. In this case, we might set up a wider frequency range, for instance between 1 MHz and 200 MHz. The resulting plot clearly highlights the periodicity in the circuit s response. It also shows that the input resistance is 0 (there is only reactance). For low frequencies (f < 50 MHz), the impedance is capacitive (negative reactance), at f = 50 MHz the input impedance is zero and for frequencies 50f < 100 (MHz) the input impedance is inductive (positive reactance). It is also instructive to superimpose the input impedance of a 100 pf capacitor: the lumped capacitance of 1 m of RG-58 coaxial line. This is shown in green on the same plot: We conclude that the lumped capacitor is a reasonable approximation for low frequencies. However, the true impedance quickly deviates from this and becomes completely uncorrelated. (Note: in the last plot, the y-axis range has been limited manually. The input impedance ideally reaches infinity!) 5

6 4 Input Impedance vs Line Length Sometimes we wish to simulate the evolution of a quantity with respect to a circuit parameter. A significant and illustrative example in the context of this tutorial is the evolution of the input impedance of an open circuited transmission line with respect to the physical line length when operating at a fixed frequency. Consider the case of a transmission line of length up to 2 m operating at a frequency of 50 MHz. This may be simulated by this setup: Before explaining the exact meaning of the items in EqnB, we may have a look at the meaning of Zin imag and Xin vs reall: We see that Zin imag is a two-dimensional matrix: for each value of truel, we have three values of Z in imag, one for each of the three frequencies (45, 50 and 55 MHz). Unfortunately there seems to be no way to have a CW analysis, i.e. a single frequency ac analysis! Our desired information is at 50 MHz, so we take all elements of the first dimension of Zin imag (the first : and take the second element of the second dimension. Since the index starts at 0, this means writing [:,1]. 6

7 So, let s see the graph of input reactance vs line length. To obtain the next graph, we have set the the velocity factor to 2/3 and we have incremented the number of points of the sweep to 201. From this, we may conclude that, to synthesize an input impedance of j50 Ω we need 0.5 m of cable. Theoretically, the input impedance should be exactly j50 Ω, and not j49.95 Ω but this is an error of only 0.1%, which should be negligible for most applications. Perhaps we would like to see the previous graph with respect to the line length expressed in multiples of the wavelength λ = V p /f, as in this figure: To achieve this, we have added LdivLambda=trueL/4 Xin_vs_lLambda=PlotVs(Xin_vs_realL,LdivLambda) to the equations in the schematic and we have changed manually the x-axis of the plot to show l / lambda. 5 Microstrip Matching Circuit and Smith Charts Sometimes we may also have the need to simulate a microstrip circuit. Consider, for instance, the problem of matching a load of 300 Ω to 50 Ω using a microstrip line on conventional FR4 substrate. 7

8 We may start firing the Line Calculation tool of Qucs. Once the correct substrate parameters are given, the tool computes the required trace width to achieve a certain characteristic impedance Z 0 and the trace length to achieve the desired electrical length (expressed in degrees, i.e. a length of 90 o is equivalent to a λ/4). This figure illustrates common parameters for FR4: FR4 parameters are not tightly specified by most manufacturers. As a consequence, the results should be treated with caution. In any case, we may conclude that a line width of 2.97 mm and line length of 40.8 mm are required for our design goal. These parameters may be imported into a Qucs schematic with the Copy to Clipboard function. Once in Qucs, we may paste this into the schematic. We get much more components than we currently need, so we may just delete them, keeping only the substrate and the microstrip line. Our current objective is to design a matching network. So, we will set up some simulations. Again, we will first simulate the input impedance of a given circuit. With this in mind, we include an 1 A current source and compute the input voltage. From the input voltage, we will compute the input reflection coefficient as ρ in = Z in 50 Z in + 50 This is achieved by the following equation entry: (1) roin_z=(vin.v-50)/(vin.v+50) Microstrip matching requires parallel connections, so we will also need to compute the input admittance and its corresponding point in the Smith Chart: 8

9 Yin=1/Vin.v roin_y=(yin-1/50)/(yin+1/50) We may draw a schematic that looks as in the next figure: On the top left side we have the substrate definition. The top circuit in the right simulates the input impedance of the load and a length of microstrip line. The circuit in the bottom right side simulates a single-stub matching section. Each set of equations corresponds to one of the circuits. The circuit is analyzed from 950 MHz to 1050 MHz (ac simulation) with 7 frequency points. The next figure shows the input reflection coefficients plotted on a Smith Chart: 9

10 The left plot shows how the input admittance may be transformed to lie on the circle 1 + jb with a length of line of 30.5 mm. The right Smitch Chart shows the input impedance after the matching stub, showing an excellent match at 1 GHz. Observe how a 5% increase or decrease in operating frequency translates into a reflection coefficient which is quite far from the origin. To build the whole matching network we have included a microstrip tee and also a microstrip open. Real tees and real open circuits are not simple junctions and infinite impedances: their more or less accurate models are included in Qucs. The following figures show another matching network and the achieved match: 10

The Critical Length of a Transmission Line

The Critical Length of a Transmission Line Page 1 of 9 The Critical Length of a Transmission Line Dr. Eric Bogatin President, Bogatin Enterprises Oct 1, 2004 Abstract A transmission line is always a transmission line. However, if it is physically

More information

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z +

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z + Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Quick Review of Reflection Coefficient The Smith chart is a method of graphing reflection coefficients and impedance, and is often useful

More information

ADS Tutorial Stability and Gain Circles ECE145A/218A

ADS Tutorial Stability and Gain Circles ECE145A/218A ADS Tutorial Stability and Gain Circles ECE145A/218A The examples in this tutorial can be downloaded from xanadu.ece.ucsb.edu/~long/ece145a as the file: stab_gain.zap The first step in designing the amplifier

More information

A wave lab inside a coaxial cable

A wave lab inside a coaxial cable INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera

More information

Capacitor Self-Resonance

Capacitor Self-Resonance Capacitor Self-Resonance By: Dr. Mike Blewett University of Surrey United Kingdom Objective This Experiment will demonstrate some of the limitations of capacitors when used in Radio Frequency circuits.

More information

RLC Series Resonance

RLC Series Resonance RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

More information

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

ε: Voltage output of Signal Generator (also called the Source voltage or Applied Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

More information

RLC Resonant Circuits

RLC Resonant Circuits C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

Measuring Parasitic Capacitance and Inductance Using TDR

Measuring Parasitic Capacitance and Inductance Using TDR Measuring Parasitic apacitance and Inductance Using TDR Time-domain reflectometry (TDR) is commonly used as a convenient method of determining the characteristic impedance of a transmission line or quantifying

More information

EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1

EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1 EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1 Objective: To build, simulate, and analyze three-phase circuits using OrCAD Capture Pspice Schematics under balanced

More information

Circuit Simulation: Here are some of ADS analysis:

Circuit Simulation: Here are some of ADS analysis: Advanced Design System (ADS) Tutorial: ADS is a simulator like spice, cadence. But it focuses on the RF and microwave design, so most of its devices on the library are microwave devices. Circuit Simulation:

More information

Transmission Lines. Smith Chart

Transmission Lines. Smith Chart Smith Chart The Smith chart is one of the most useful graphical tools for high frequency circuit applications. The chart provides a clever way to visualize complex functions and it continues to endure

More information

Impedance Matching. Using transformers Using matching networks

Impedance Matching. Using transformers Using matching networks Impedance Matching The plasma industry uses process power over a wide range of frequencies: from DC to several gigahertz. A variety of methods are used to couple the process power into the plasma load,

More information

Project 1: Rectangular Waveguide (HFSS)

Project 1: Rectangular Waveguide (HFSS) Project 1: Rectangular Waveguide (HFSS) b ε r a a = 0.9 (2.286cm) b = 0.4 (1.016cm) ε r = 1.0 Objective Getting Started with HFSS (a tutorial) Using HFSS, simulate an air-filled WR-90 waveguide shown above.

More information

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment. Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

More information

Creating a new project: Choose File> New Project. A dialog box appears and asking about the work directory that by default

Creating a new project: Choose File> New Project. A dialog box appears and asking about the work directory that by default Advanced Design System (ADS) Tutorial: ADS is a simulator like spice, cadence. But it focuses on the RF and microwave design, so most of its devices on the library are microwave devices. Circuit Simulation:

More information

2. The Vector Network Analyzer

2. The Vector Network Analyzer ECE 584 Laboratory Experiments 2. The Vector Network Analyzer Introduction: In this experiment we will learn to use a Vector Network Analyzer to measure the magnitude and phase of reflection and transmission

More information

Connectivity in a Wireless World. Cables Connectors 2014. A Special Supplement to

Connectivity in a Wireless World. Cables Connectors 2014. A Special Supplement to Connectivity in a Wireless World Cables Connectors 204 A Special Supplement to Signal Launch Methods for RF/Microwave PCBs John Coonrod Rogers Corp., Chandler, AZ COAX CABLE MICROSTRIP TRANSMISSION LINE

More information

S-parameter Simulation and Optimization

S-parameter Simulation and Optimization S-parameter Simulation and Optimization Slide 5-1 S-parameters are Ratios Usually given in db as 20 log of the voltage ratios of the waves at the ports: incident, reflected, or transmitted. S-parameter

More information

Electrical Resonance

Electrical Resonance Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

More information

100 ADS Design Examples A Design Approach Using (ADS)

100 ADS Design Examples A Design Approach Using (ADS) 100 ADS Design Examples A Design Approach Using (ADS) Chapter 2: Transmission Line Components Ali Behagi 2 100 ADS Design Examples 100 ADS Design Examples A Design Approach Using (ADS) Chapter 2: Transmission

More information

Understanding SWR by Example

Understanding SWR by Example Understanding SWR by Example Take the mystery and mystique out of standing wave ratio. Darrin Walraven, K5DVW It sometimes seems that one of the most mysterious creatures in the world of Amateur Radio

More information

Lab 1: Introduction to PSpice

Lab 1: Introduction to PSpice Lab 1: Introduction to PSpice Objectives A primary purpose of this lab is for you to become familiar with the use of PSpice and to learn to use it to assist you in the analysis of circuits. The software

More information

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009 Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

More information

Lab E1: Introduction to Circuits

Lab E1: Introduction to Circuits E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

More information

CONCEPT-II. Overview of demo examples

CONCEPT-II. Overview of demo examples CONCEPT-II CONCEPT-II is a frequency domain method of moment (MoM) code, under development at the Institute of Electromagnetic Theory at the Technische Universität Hamburg-Harburg (www.tet.tuhh.de). Overview

More information

S-Parameters and Related Quantities Sam Wetterlin 10/20/09

S-Parameters and Related Quantities Sam Wetterlin 10/20/09 S-Parameters and Related Quantities Sam Wetterlin 10/20/09 Basic Concept of S-Parameters S-Parameters are a type of network parameter, based on the concept of scattering. The more familiar network parameters

More information

L stub Z A = Z 0 Z R Z 0S. Single stub impedance matching

L stub Z A = Z 0 Z R Z 0S. Single stub impedance matching Single stub impedance matching Impedance matching can be achieved by inserting another transmission line (stub) as shown in the diagram below Z A = Z 0 Z 0 Z R Z 0S d stub L stub Amanogawa, 006 Digital

More information

Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance

Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance The Performance Leader in Microwave Connectors Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance.050 *.040 c S11 Re REF 0.0 Units 10.0 m units/.030.020.010 1.0 -.010 -.020

More information

SECTION 2 Transmission Line Theory

SECTION 2 Transmission Line Theory SEMICONDUCTOR DESIGN GUIDE Transmission Line Theory SECTION 2 Transmission Line Theory Introduction The ECLinPS family has pushed the world of ECL into the realm of picoseconds. When output transitions

More information

Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11

Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11 Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11 Introduction The purpose of this document is to illustrate the process for impedance matching of filters using the MSA software. For example,

More information

DRAFT. University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques

DRAFT. University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques 1. Introduction. Students are often frustrated in their attempts to execute

More information

Lab #9: AC Steady State Analysis

Lab #9: AC Steady State Analysis Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

More information

Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces

Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces Mark I. Montrose Montrose Compliance Services 2353 Mission Glen Dr. Santa Clara, CA 95051-1214 Abstract: For years,

More information

Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip.

Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Each dielectric configuration has different high-frequency characteristics. All configurations

More information

Common-Emitter Amplifier

Common-Emitter Amplifier Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,

More information

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY Page 1 of 25 PURPOSE: The purpose of this lab is to simulate the LCC circuit using MATLAB and ORCAD Capture CIS to better

More information

Qucs. A Tutorial. Getting Started with Qucs. Stefan Jahn Juan Carlos Borrás

Qucs. A Tutorial. Getting Started with Qucs. Stefan Jahn Juan Carlos Borrás Qucs A Tutorial Getting Started with Qucs Stefan Jahn Juan Carlos Borrás Copyright c 2007 Stefan Jahn Copyright c 2007 Juan Carlos Borrás Permission is granted to

More information

Reading assignment: All students should read the Appendix about using oscilloscopes.

Reading assignment: All students should read the Appendix about using oscilloscopes. 10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors

More information

Critical thin-film processes such as deposition and etching take place in a vacuum

Critical thin-film processes such as deposition and etching take place in a vacuum WHITEPAPER INTRODUCING POWER SUPPLIES AND PLASMA Critical thin-film processes such as deposition and etching take place in a vacuum SYSTEMS chamber in the presence of a plasma. A plasma is an electrically

More information

Tutorial 2: Using Excel in Data Analysis

Tutorial 2: Using Excel in Data Analysis Tutorial 2: Using Excel in Data Analysis This tutorial guide addresses several issues particularly relevant in the context of the level 1 Physics lab sessions at Durham: organising your work sheet neatly,

More information

BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010)

BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) Introduction The Mini-Circuits family of microwave monolithic integrated circuit (MMIC) Darlington amplifiers offers the RF designer

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

Series and Parallel Resistive Circuits

Series and Parallel Resistive Circuits Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

More information

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP 1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

More information

ATE-A1 Testing Without Relays - Using Inductors to Compensate for Parasitic Capacitance

ATE-A1 Testing Without Relays - Using Inductors to Compensate for Parasitic Capacitance Introduction (Why Get Rid of Relays?) Due to their size, cost and relatively slow (millisecond) operating speeds, minimizing the number of mechanical relays is a significant goal of any ATE design. This

More information

Copyright 2011 Linear Technology. All rights reserved.

Copyright 2011 Linear Technology. All rights reserved. Copyright. All rights reserved. LTspice IV Getting Started Guide 2 Benefits of Using LTspice IV Stable SPICE circuit simulation with Unlimited number of nodes Schematic/symbol editor Waveform viewer Library

More information

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This

More information

RC Circuits and The Oscilloscope Physics Lab X

RC Circuits and The Oscilloscope Physics Lab X Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

More information

Transmission Lines in Communication Systems FACET

Transmission Lines in Communication Systems FACET Computer-Based Electronics Training System Transmission Lines in Communication Systems FACET 36970- Order no.: 36970-00 First Edition Revision level: 02/2015 By the staff of Festo Didactic Festo Didactic

More information

Measurement of Inductor Q with the MSA Sam Wetterlin 3/31/11. Equation 1 Determining Resonant Q from Inductor Q and Capacitor Q

Measurement of Inductor Q with the MSA Sam Wetterlin 3/31/11. Equation 1 Determining Resonant Q from Inductor Q and Capacitor Q Measurement of Inductor with the MSA Sam Wetterlin 3/31/11 The of an inductor, which is its reactance divided by its internal series resistance, is used as an indication of how well it will perform at

More information

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

More information

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines. Repeated n times I L

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines. Repeated n times I L Transmission Lines Introduction A transmission line guides energy from one place to another. Optical fibres, waveguides, telephone lines and power cables are all electromagnetic transmission lines. are

More information

Transmission Line Transformers

Transmission Line Transformers Radio Frequency Circuit Design. W. Alan Davis, Krishna Agarwal Copyright 2001 John Wiley & Sons, Inc. Print ISBN 0-471-35052-4 Electronic ISBN 0-471-20068-9 CHAPTER SIX Transmission Line Transformers 6.1

More information

Changes PN532_Breakout board

Changes PN532_Breakout board Changes PN532_Breakout board Document: Changes PN532_Breakout board Department / Faculty : TechnoCentrum - Radboud University Nijmegen Contact: René Habraken Date: 17 May 2011 Doc. Version: 1.0 Contents

More information

Eatman Associates 2014 Rockwall TX 800-388-4036 rev. October 1, 2014. Striplines and Microstrips (PCB Transmission Lines)

Eatman Associates 2014 Rockwall TX 800-388-4036 rev. October 1, 2014. Striplines and Microstrips (PCB Transmission Lines) Eatman Associates 2014 Rockwall TX 800-388-4036 rev. October 1, 2014 Striplines and Microstrips (PCB Transmission Lines) Disclaimer: This presentation is merely a compilation of information from public

More information

2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Two-ways of describing device: A. Equivalent - Circuit-Model

2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Two-ways of describing device: A. Equivalent - Circuit-Model ECE45A/8A Notes et #4 Port Parameters Two-ways of describing device: A. Equivalent - Circuit-Model Physically based Includes bias dependence Includes frequency dependence Includes size dependence - scalability

More information

Three phase circuits

Three phase circuits Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

More information

MATERIALS. Multisim screen shots sent to TA.

MATERIALS. Multisim screen shots sent to TA. Page 1/8 Revision 0 9-Jun-10 OBJECTIVES Learn new Multisim components and instruments. Conduct a Multisim transient analysis. Gain proficiency in the function generator and oscilloscope. MATERIALS Multisim

More information

Fundamentals of Signature Analysis

Fundamentals of Signature Analysis Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...

More information

An Antenna Impedance Meter for the High Frequency Bands

An Antenna Impedance Meter for the High Frequency Bands An Antenna Impedance Meter for the High Frequency Bands When SWR isn t enough here s a tool that you can build. Bob Clunn, W5BIG An SWR meter is a very useful instrument and in many situations provides

More information

Understanding Power Impedance Supply for Optimum Decoupling

Understanding Power Impedance Supply for Optimum Decoupling Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,

More information

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q

More information

Operational Amplifier - IC 741

Operational Amplifier - IC 741 Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

More information

BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011

BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011 AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

ELC 4383 RF/Microwave Circuits I Laboratory 3: Optimization Using Advanced Design System Software

ELC 4383 RF/Microwave Circuits I Laboratory 3: Optimization Using Advanced Design System Software 1 EL 4383 RF/Microwave ircuits I Laboratory 3: Optimization Using Advanced Design System Software Note: This lab procedure has been adapted from a procedure written by Dr. Tom Weller at the University

More information

When designing. Inductors at UHF: EM Simulation Guides Vector Network Analyzer. measurement. EM SIMULATION. There are times when it is

When designing. Inductors at UHF: EM Simulation Guides Vector Network Analyzer. measurement. EM SIMULATION. There are times when it is Inductors at UHF: EM Simulation Guides Vector Network Analyzer Measurements John B. Call Thales Communications Inc., USA When designing There are times when it is circuits for necessary to measure a operation

More information

Z Analyze Software. User Manual Version 1.6 - April 2015. Frontier Technical Services 1

Z Analyze Software. User Manual Version 1.6 - April 2015. Frontier Technical Services 1 Frontier Technical Services 1 Z Analyze Software User Manual Version 1.6 - April 2015 Frontier Technical Services Carl Almgren Sidelinesoft Alexei Smirnov Z Analyze Software Manual Matthew Ferrand / Jared

More information

RigExpert AA-30 Antenna Analyzer (0.1 to 30 MHz) AA-54 Antenna Analyzer (0.1 to 54 MHz) User s manual

RigExpert AA-30 Antenna Analyzer (0.1 to 30 MHz) AA-54 Antenna Analyzer (0.1 to 54 MHz) User s manual RigExpert AA-30 Antenna Analyzer (0.1 to 30 MHz) AA-54 Antenna Analyzer (0.1 to 54 MHz) User s manual Table of contents 1. Description... 3 2. Specifications... 4 3. Precautions... 5 4. Operation... 6

More information

WAVEGUIDE-COAXIAL LINE TRANSITIONS

WAVEGUIDE-COAXIAL LINE TRANSITIONS WAVEGUIDE-COAXIAL LINE TRANSITIONS 1. Overview Equipment at microwave frequencies is usually based on a combination of PCB and waveguide components. Filters and antennas often use waveguide techniques,

More information

AN-837 APPLICATION NOTE

AN-837 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

More information

30. Bode Plots. Introduction

30. Bode Plots. Introduction 0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these

More information

Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

More information

Measurement of Capacitance

Measurement of Capacitance Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two

More information

Standex-Meder Electronics. Custom Engineered Solutions for Tomorrow

Standex-Meder Electronics. Custom Engineered Solutions for Tomorrow Standex-Meder Electronics Custom Engineered Solutions for Tomorrow RF Reed Relays Part II Product Training Copyright 2013 Standex-Meder Electronics. All rights reserved. Introduction Purpose Designing

More information

TWO PORT NETWORKS h-parameter BJT MODEL

TWO PORT NETWORKS h-parameter BJT MODEL TWO PORT NETWORKS h-parameter BJT MODEL The circuit of the basic two port network is shown on the right. Depending on the application, it may be used in a number of different ways to develop different

More information

Using ADS to simulate Noise Figure

Using ADS to simulate Noise Figure Using ADS to simulate Noise Figure ADS can be used to design low noise amplifiers much in the same way you have already used it for MAG or MSG designs. Noise circles and available gain circles are the

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

Lab Exercise 1: Acoustic Waves

Lab Exercise 1: Acoustic Waves Lab Exercise 1: Acoustic Waves Contents 1-1 PRE-LAB ASSIGNMENT................. 2 1-3.1 Spreading Factor: Spherical Waves........ 2 1-3.2 Interference In 3-D................. 3 1-4 EQUIPMENT........................

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

Experiments Using the HP8714 RF Network Analyzer

Experiments Using the HP8714 RF Network Analyzer Experiments Using the HP8714 RF Network Analyzer Purpose: The purpose of this set of experiments is two folded: to get familiar with the basic operation of a RF network analyzer, and to gain a physical

More information

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5 ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5 10.5 Broadband ESD Protection Circuits in CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering Department, University of

More information

Hands On ECG. Sean Hubber and Crystal Lu

Hands On ECG. Sean Hubber and Crystal Lu Hands On ECG Sean Hubber and Crystal Lu The device. The black box contains the circuit and microcontroller, the mini tv is set on top, the bars on the sides are for holding it and reading hand voltage,

More information

RC & RL Transient Response

RC & RL Transient Response EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient

More information

Basic Op Amp Circuits

Basic Op Amp Circuits Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

More information

Cable Impedance and Structural Return Loss Measurement Methodologies

Cable Impedance and Structural Return Loss Measurement Methodologies Cable Impedance and Structural Return Loss Measurement Methodologies Introduction Joe Rowell Joel Dunsmore and Les Brabetz Hewlett Packard Company Santa Rosa, California Two critical electrical specifications

More information

Cable Analysis and Fault Detection using the Bode 100

Cable Analysis and Fault Detection using the Bode 100 Cable Analysis and Fault Detection using the Bode 100 By Stephan Synkule 2014 by OMICRON Lab V1.3 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support.

More information

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications White paper High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

More information

Chapter 10. RC Circuits ISU EE. C.Y. Lee

Chapter 10. RC Circuits ISU EE. C.Y. Lee Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine

More information

Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013

Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Antenna Properties and their impact on Wireless System Performance Dr. Steven R. Best Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Phone (603) 627-7877 FAX: (603) 627-1764 Email: sbest@cushcraft.com

More information

How to make a Quick Turn PCB that modern RF parts will actually fit on!

How to make a Quick Turn PCB that modern RF parts will actually fit on! How to make a Quick Turn PCB that modern RF parts will actually fit on! By: Steve Hageman www.analoghome.com I like to use those low cost, no frills or Bare Bones [1] type of PCB for prototyping as they

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note

Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the

More information

1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:

1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction: ECE 584 Microwave Engineering Laboratory Experiments 1. The Slotted Line Introduction: In this experiment we will use a waveguide slotted line to study the basic behavior of standing waves and to measure

More information