RC & RL Transient Response
|
|
|
- Tracey Fitzgerald
- 9 years ago
- Views:
Transcription
1 EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient voltage response across various circuit elements. These responses will be analyzed by theory, simulation and experimental results. The primary response properties of concern are time constant, initial value and final value. The equations that govern R and R circuit transient responses will be calculated by the student, both forward using theory and backwards after having observed experimental results. Methods to measure the time constant of an experimental system and produce a step input using a function generator will be shown. 2. Background 2.1. Equations for R ircuits Time onstant: τ = R apacitor Voltage Transient Equation: v ( t) = v ( ) + [ v (0) v ( )] e t /τ 2.2. Equations for R ircuits Time onstant: τ = /R Theoretical Inductor Instantaneous Voltage: Inductor urrent Transient Equation: Inductor Voltage Transient Equation: 2.3. Important Points to onsider i v v ( t) = i ( t) = v di dt ( ) + [ i = ( ) + [ v (0) i (0) v ( )] e ( )] e The order of components is arbitrary in a series circuit. apacitor voltage cannot change instantaneously. Inductor current cannot change instantaneously. An ideal unit step is zero volts until time zero whereas it instantaneously jumps to one volt and remains at one volt thereafter. A function generator has output impedance. A real inductor has both resistive and inductive components. Writing a voltage transient equation for a real inductor requires adding these two components together. Equations for v assume ideal inductor, thus the value of the inductor s resistance must be multiplied by the inductors current and must be added to v to find the real inductor s voltage transient equation. The voltage of an ideal inductor at t=0+ will not be 0. t /τ t /τ EE Department Page 1 March 26/28, 2007
2 EE 2006 University of Minnesota Duluth ab 8 3. Prelab 3.1. Voltage Transient Response in R omponents Due to a Unit Step Suppose a unit step occurs at time t=0 in the R circuit displayed in Figure 1. alculate the initial voltage across the capacitor, v (t=0 + ), final voltage across the capacitor, v (t= ), initial voltage across the 680Ω resistor, v R (t=0 + ), final voltage Ω Ω across the 680 Ω resistor, v R (t= ), and the time constant, τ, of the circuit. Using nominal component values, calculate the voltage transient time response equation for the capacitor, v (t), Figure 1: R ircuit and voltage transient time response equation for the resistor, v R (t), both for t > 0. Fill in your values in Table Voltage Transient Response in R Elements Due to a Unit Step Suppose a unit step occurs at time t=0 in the R circuit displayed as Figure 2. alculate the initial voltage across the inductor, v (t=0+), final Ω Ω H voltage across the inductor, v (t= ), initial voltage across the 680Ω resistor, v R (t=0 + ), final voltage across the 680 Ω resistor, v R (t= ), and the Figure 2: R ircuit time constant, τ, of the circuit. Using nominal component values, calculate the voltage transient time response equation for the inductor, v (t), and voltage transient time response equation for the resistor, v R (t), both for t > 0. Record your results in Table 2. Have your lab instructor verify these values and obtain his/her signature at the beginning of lab. F Ω EE Department Page 2 March 26/28, 2007
3 EE 2006 University of Minnesota Duluth ab 8 4. Experimental Preparation 4.1. Imitating a unit step We do not provide the equipment to produce and analyze the response of a single unit step. We model a unit step by generating a square wave with a period much greater than the time constant (τ) of the circuit (as was done in an earlier in lab). This provides enough time for the circuit to settle before another imitated unit step is initiated. The square wave generated should be 0 volts for 10τ and 1 Volt for another 10τ. Thus, the square wave period will be 20τ with a corresponding frequency of 1/(20τ). An amplitude of 1 Volt along with a D offset of 0.5 Volts must be set to ensure proper effect Measuring the Time onstant 1 The time constant is defined as the ratio1 e of the rise or fall to the final value. This corresponds to approximately 63% of the rise or fall to the final value. The voltage 1 corresponding to one time constant is v τ = [ v( ) v(0)] [1 e ] + v(0). The time constant can be computed by finding the time it takes to reach v τ. With one of the oscilloscope s vertical bars at the beginning of the unit step and one at v τ, the time difference will be displayed as T. A similar method can be used with the PSpice cursors. 5. Experimental Procedure 5.1. Equipment Tektronix TDS 3012B Digital Phosphor Oscilloscope Agilent 33120A Waveform Generator Resistors, Inductors, apacitors as Needed 5.2. Voltage Transient Response in R omponents Due to a Unit Step onstruct the circuit in Figure 1. The function generator should model a unit step as described in Subsection 4.1. Measure the voltage across the capacitor with one channel probe and the voltage across the function generator with the other channel probe. Enable the MATH function to display the voltage across the 680Ω resistor. Using the oscilloscope horizontal bars, measure the initial capacitor voltage, final capacitor voltage, initial 680Ω resistor voltage, final 680Ω resistor voltage and determine the time constant. astly, write the corresponding transient equations describing the voltages for t > 0 (for one unit step). Record these values in Table 3. EE Department Page 3 March 26/28, 2007
4 EE 2006 University of Minnesota Duluth ab 8 Include an Oscilloscope Screenshot displaying both the capacitor and resistor voltage transient responses to a unit step in your write up Voltage transient response in R elements due to a unit step onstruct the circuit in Figure 2. The function generator should model a unit step as described in Subsection 4.2. As with the R circuit, place one channel probe across the unit step and the other across either the inductor or the 680Ω resistor utilizing the MATH function in a similar manner. The circuit components may be arranged in a different manner than that shown in Figure 2 for convenience. Measure the initial inductor voltage, final inductor voltage, initial 680Ω resistor voltage, final 680Ω resistor voltage, and determine the time constant. astly, write the corresponding transient equations describing the voltages for t > 0 (for one unit step). Record these values in Table 4. Include an Oscilloscope Screenshot displaying both the inductor and resistor voltage transient responses to a unit step in your write-up. 6. Simulated Procedure 6.1. Voltage Transient Response in R omponents Due to a Unit Step Generate a schematic modeling the R circuit s voltage transient response to a unit step. Using the PSpice cursor, measure the initial capacitor voltage, final capacitor voltage, initial 680Ω resistor voltage, final 680Ω resistor voltage and determine the time constant. astly, write the corresponding transient equations describing the voltages for t > 0 (for one unit step). Record these values in Table 5. Include a schematic screenshot and a screenshot of the transient analysis of the voltage across the function generator, the capacitor and the resistor. These three traces should be displayed on the same graph Voltage Transient Response in R Elements Due to a Unit Step Generate a computer simulation modeling the R circuit s voltage transient response to a unit step. Measure the initial inductor voltage, final inductor voltage, initial 680Ω resistor voltage, final 680Ω resistor voltage, and determine the time constant. astly, write the corresponding transient equations describing the voltages for t > 0 (for one unit step). Record these values in Table 6. Include a schematic screenshot and a screenshot of the transient analysis of the voltage across the function generator, the inductor and the resistor. These three traces should be displayed on the same graph. EE Department Page 4 March 26/28, 2007
5 EE 2006 University of Minnesota Duluth ab 8 7. onclusions This concludes the lab. Make sure to return all components to their appropriate bins. This week you are not required to complete a full report. Instead, you will be writing a memo. The memo should include: The recipient (i.e. TA) and his/her general company (University) information The writer (you) and your general company (University) information The date The purpose of writing the memo (i.e. conveying your lab results) A brief discussion of your results in a clear manner Greeting and conclusion The discussion within the memo should include an explanation for the reasons for discrepancies between the theoretical, simulated and experimental values for v (t=0+), v (t= ),v (t=0+), v (t= ), v R (t=0+), v R (t= ) and τ. The memo should also include the following as attachment and refer to them in the body of the memo: The Data Entry and ab Instructor Signature Page with all recorded numbers. Any snapshots, circuit diagrams, and/or calculations requested in the procedure. EE Department Page 5 March 26/28, 2007
6 EE 2006 University of Minnesota Duluth ab 8 Data Entry and ab Instructor Signature Page(s) Attach this/these page(s) to your write-up. Table 1: Theoretical R ircuit Values (Prelab) v c (t=0 + ) (V) v c (t= ) (V) v R (t=0 + ) (V) v R (t= ) (V) τ c (s) Transient Equation (apacitor): Table 2: Theoretical R ircuit Values (Prelab) v (t=0 + ) (V) v (t= ) (V) v R (t=0 + ) (V) v R (t= ) (V) τ (s) Transient Equation (Inductor): Prelab ompletion Signature Table 3: Measured R ircuit Values v c (t=0 + ) (V) v c (t= ) (V) v R (t=0 + ) (V) V R (t= ) (V) τ c (s) Transient Equation (apacitor): Table 4: Measured R ircuit Values v (t=0 + ) (V) v (t= ) (V) v R (t=0 + ) (V) V R (t= ) (V) τ (s) Transient Equation (Inductor): EE Department Page 6 March 26/28, 2007
7 EE 2006 University of Minnesota Duluth ab 8 Table 5: Simulated R ircuit Values v c (t=0 + ) (V) v c (t= ) (V) v R (t=0 + ) (V) V R (t= ) (V) τ c (s) Transient Equation (apacitor): Table 6: Simulated R ircuit Values v (t=0 + ) (V) v (t= ) (V) v R (t=0 + ) (V) V R (t= ) (V) τ (s) Transient Equation (Inductor): EE Department Page 7 March 26/28, 2007
Oscilloscope, Function Generator, and Voltage Division
1. Introduction Oscilloscope, Function Generator, and Voltage Division In this lab the student will learn to use the oscilloscope and function generator. The student will also verify the concept of voltage
EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP
1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose
Step Response of RC Circuits
Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3
EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits
EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.
Reading assignment: All students should read the Appendix about using oscilloscopes.
10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors
RC Circuits and The Oscilloscope Physics Lab X
Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for
Frequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
Inductors in AC Circuits
Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum
MATERIALS. Multisim screen shots sent to TA.
Page 1/8 Revision 0 9-Jun-10 OBJECTIVES Learn new Multisim components and instruments. Conduct a Multisim transient analysis. Gain proficiency in the function generator and oscilloscope. MATERIALS Multisim
See Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)
Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage
Step response of an RLC series circuit
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 5 Step response of an RLC series circuit 1 Introduction Objectives
AC CIRCUITS - CAPACITORS AND INDUCTORS
EXPRIMENT#8 AC CIRCUITS - CAPACITORS AND INDUCTORS NOTE: Two weeks are allocated for this experiment. Before performing this experiment, review the Proper Oscilloscope Use section of Experiment #7. Objective
Lab #9: AC Steady State Analysis
Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.
EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1
EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1 Objective: To build, simulate, and analyze three-phase circuits using OrCAD Capture Pspice Schematics under balanced
ε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
Lab 1: Introduction to PSpice
Lab 1: Introduction to PSpice Objectives A primary purpose of this lab is for you to become familiar with the use of PSpice and to learn to use it to assist you in the analysis of circuits. The software
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
Chapter 35 Alternating Current Circuits
hapter 35 Alternating urrent ircuits ac-ircuits Phasor Diagrams Resistors, apacitors and nductors in ac-ircuits R ac-ircuits ac-ircuit power. Resonance Transformers ac ircuits Alternating currents and
SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY
SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY Page 1 of 25 PURPOSE: The purpose of this lab is to simulate the LCC circuit using MATLAB and ORCAD Capture CIS to better
EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS
1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides
Chapter 12 Driven RLC Circuits
hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...
Capacitors in Circuits
apacitors in ircuits apacitors store energy in the electric field E field created by the stored charge In circuit apacitor may be absorbing energy Thus causes circuit current to be reduced Effectively
The Time Constant of an RC Circuit
The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common
Lab #4 Thevenin s Theorem
In this experiment you will become familiar with one of the most important theorems in circuit analysis, Thevenin s Theorem. Thevenin s Theorem can be used for two purposes: 1. To calculate the current
Alternating-Current Circuits
hapter 1 Alternating-urrent ircuits 1.1 A Sources... 1-1. Simple A circuits... 1-3 1..1 Purely esistive load... 1-3 1.. Purely Inductive oad... 1-5 1..3 Purely apacitive oad... 1-7 1.3 The Series ircuit...
Basic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
Using the Impedance Method
Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even
OPERATIONAL AMPLIFIERS
INTRODUCTION OPERATIONAL AMPLIFIERS The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques
Operational Amplifier - IC 741
Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset
Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4
Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore Lecture - 33 3 phase System 4 Hello everybody. So, in the last class we have been
ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 46 2007. Test Method for AC to DC Power Supplies
ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 46 2007 Test Method for AC to DC Power Supplies NOTICE The Society of Cable Telecommunications Engineers (SCTE)
Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip
Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC
DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b
DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,
30. Bode Plots. Introduction
0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these
1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.
CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change
RLC Series Resonance
RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function
CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis
CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the
SERIES-PARALLEL DC CIRCUITS
Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.
Laboratory Manual for AC Electrical Circuits
AC Electrical Circuits Laboratory Manual James M. Fiore 2 Laboratory Manual for AC Electrical Circuits Laboratory Manual for AC Electrical Circuits by James M. Fiore Version 1.3.1, 01 March 2016 Laboratory
Lab E1: Introduction to Circuits
E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter
= V peak 2 = 0.707V peak
BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
Germanium Diode AM Radio
Germanium Diode AM Radio LAB 3 3.1 Introduction In this laboratory exercise you will build a germanium diode based AM (Medium Wave) radio. Earliest radios used simple diode detector circuits. The diodes
CIRCUITS LABORATORY EXPERIMENT 2
CIRCUITS LABORATORY EXPERIMENT 2 The Oscilloscope and Transient Analysis 2.1 Introduction In the first experiment, the utility of the DMM to measure many simple DC quantities was demonstrated. However,
Measuring Impedance and Frequency Response of Guitar Pickups
Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited [email protected] www.syscompdesign.com April 30, 2011 Introduction The CircuitGear
Current and Temperature Ratings
Document 361-1 Current and Temperature Ratings Introduction This application note describes: How to interpret Coilcraft inductor current and temperature ratings Our current ratings measurement method and
Series and Parallel Circuits
Pre-Laboratory Assignment Series and Parallel Circuits ECE 2100 Circuit Analysis Laboratory updated 16 May 2011 1. Consider the following series circuit. Derive a formula to calculate voltages V 1, V 2,
Experiment 8 : Pulse Width Modulation
Name/NetID: Teammate/NetID: Experiment 8 : Pulse Width Modulation Laboratory Outline In experiment 5 we learned how to control the speed of a DC motor using a variable resistor. This week, we will learn
Laboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular
L and C connected together. To be able: To analyse some basic circuits.
circuits: Sinusoidal Voltages and urrents Aims: To appreciate: Similarities between oscillation in circuit and mechanical pendulum. Role of energy loss mechanisms in damping. Why we study sinusoidal signals
Lab 5 Operational Amplifiers
Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties
First Order Circuits. EENG223 Circuit Theory I
First Order Circuits EENG223 Circuit Theory I First Order Circuits A first-order circuit can only contain one energy storage element (a capacitor or an inductor). The circuit will also contain resistance.
EE 255 ELECTRONICS I LABORATORY EXPERIMENT 2 POWER SUPPLY DESIGN CONSIDERATIONS
EE 55 ELETRONIS I LABORATORY EXPERIMENT POWER SUPPLY ESIGN ONSIERATIONS OBJETIES In this experiment you will Learn how to select the best rectifier circuit for your application Gain experience in designing
Fundamentals of Signature Analysis
Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...
AMERICAN NATIONAL STANDARD
ENGINEERING COMMITTEE Interface Practice Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 46 2014 Test Method for AC to DC Outdoor Power Supplies NOTICE The Society of Cable Telecommunications Engineers
Q1. The graph below shows how a sinusoidal alternating voltage varies with time when connected across a resistor, R.
Q1. The graph below shows how a sinusoidal alternating voltage varies with time when connected across a resistor, R. (a) (i) State the peak-to-peak voltage. peak-to-peak voltage...v (1) (ii) State the
Chapter 22 Further Electronics
hapter 22 Further Electronics washing machine has a delay on the door opening after a cycle of washing. Part of this circuit is shown below. s the cycle ends, switch S closes. t this stage the capacitor
5. Measurement of a magnetic field
H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of
Electronic WorkBench tutorial
Electronic WorkBench tutorial Introduction Electronic WorkBench (EWB) is a simulation package for electronic circuits. It allows you to design and analyze circuits without using breadboards, real components
Using an Oscilloscope
Using an Oscilloscope The oscilloscope is used to measure a voltage that changes in time. It has two probes, like a voltmeter. You put these probes on either side of the thing that you want to measure
Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit
Maxim > Design Support > Technical Documents > Tutorials > Power-Supply Circuits > APP 986 Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit TUTORIAL 986 Input and
WHY DIFFERENTIAL? instruments connected to the circuit under test and results in V COMMON.
WHY DIFFERENTIAL? Voltage, The Difference Whether aware of it or not, a person using an oscilloscope to make any voltage measurement is actually making a differential voltage measurement. By definition,
ELC 4383 RF/Microwave Circuits I Laboratory 3: Optimization Using Advanced Design System Software
1 EL 4383 RF/Microwave ircuits I Laboratory 3: Optimization Using Advanced Design System Software Note: This lab procedure has been adapted from a procedure written by Dr. Tom Weller at the University
12. Transformers, Impedance Matching and Maximum Power Transfer
1 1. Transformers, Impedance Matching and Maximum Power Transfer Introduction The transformer is a device that takes AC at one voltage and transforms it into another voltage either higher or lower than
School of Engineering Department of Electrical and Computer Engineering
1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives
Series and Parallel Resistive Circuits Physics Lab VIII
Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested
Capacitor Ripple Current Improvements
Capacitor Ripple Current Improvements The multiphase buck regulator topology allows a reduction in the size of the input and put capacitors versus single-phase designs. By quantifying the input and put
BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011
AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT
Kirchhoff s Laws Physics Lab IX
Kirchhoff s Laws Physics Lab IX Objective In the set of experiments, the theoretical relationships between the voltages and the currents in circuits containing several batteries and resistors in a network,
Experiment 2 Diode Applications: Rectifiers
ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness
Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)
6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions
CHAPTER 11: Flip Flops
CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach
Positive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.
Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive
Experiment1: Introduction to laboratory equipment and basic components.
Experiment1: Introduction to laboratory equipment and basic components. 1 OBJECTIVES. This experiment will provide exposure to the various test equipment to be used in subsequent experiments. A primary
Lab 7: Operational Amplifiers Part I
Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,
Electricity & Electronics 5: Alternating Current and Voltage
Electricity & Electronics 5: lternating Current and Voltage lternating Current and Voltage IM This unit looks at several aspects of alternating current and voltage including measurement of frequency and
Physics 102: Lecture 13 RLC circuits & Resonance
Physics 102: Lecture 13 L circuits & esonance L Physics 102: Lecture 13, Slide 1 I = I max sin(2pft) V = I max sin(2pft) V in phase with I eview: A ircuit L V = I max X sin(2pft p/2) V lags I IE I V t
Constructing a precision SWR meter and antenna analyzer. Mike Brink HNF, Design Technologist.
Constructing a precision SWR meter and antenna analyzer. Mike Brink HNF, Design Technologist. Abstract. I have been asked to put together a detailed article on a SWR meter. In this article I will deal
Current Probes, More Useful Than You Think
Current Probes, More Useful Than You Think Training and design help in most areas of Electrical Engineering Copyright 1998 Institute of Electrical and Electronics Engineers. Reprinted from the IEEE 1998
Frequency response: Resonance, Bandwidth, Q factor
Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The
UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering
UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 10 - Balanced Three-Phase Networks Overview: Three-phase networks can be connected either in a
Measuring Parasitic Capacitance and Inductance Using TDR
Measuring Parasitic apacitance and Inductance Using TDR Time-domain reflectometry (TDR) is commonly used as a convenient method of determining the characteristic impedance of a transmission line or quantifying
Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
Lab 1: The Digital Oscilloscope
PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix
Apprentice Telecommunications Technician Test (CTT) Study Guide
Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The
Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes
Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes By David S. Lay P. Eng Foreword This guide contains information to help you become familiar with using digital oscilloscopes. You should work through
Chapter 11. Inductors ISU EE. C.Y. Lee
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
Lab 3 Rectifier Circuits
ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct
ECEN 1400, Introduction to Analog and Digital Electronics
ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall
Physics 120 Lab 6: Field Effect Transistors - Ohmic region
Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V
Switch Mode Power Supply Topologies
Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.
Iowa State University Electrical and Computer Engineering. E E 452. Electric Machines and Power Electronic Drives. Laboratory #3 Figures of Merit
Electrical and Computer Engineering E E 452. Electric Machines and Power Electronic Drives Laboratory #3 Figures of Merit Summary Simple experiments will be conducted. Experimental waveforms will be measured,
Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E
Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer
