Kindergarten: Unit 1 Gravity. gravity mass distance attract

Size: px
Start display at page:

Download "Kindergarten: Unit 1 Gravity. gravity mass distance attract"

Transcription

1 Kindergarten: Unit 1 Gravity Vocabulary: gravity mass distance attract Background Knowledge for the Teacher: Gravity is one of the four fundamental forces of nature. (The other three natural forces are electromagnetic, which is the force of electricity, magnetism, and light; and strong and weak nuclear forces, which hold atoms together.) Gravity is the weakest of these four forces, but it is important to life on Earth and the structure of the universe. Everything that has matter, having mass, generates gravity, from the smallest grain of sand to the largest objects in the universe. That gravity pulls things together. Gravity is described as the force which attracts all objects to each other. We tend to think of gravity as pulling everything toward the center of the Earth, but that is only true because we are on the planet. We feel gravity as a force that pulls all materials toward the center of the Earth because the Earth s mass in comparison to ours makes it by far the stronger gravitational force. However, although the Sun has far greater mass than the Earth, and thus far greater gravitational force, the distance we are from the Sun makes its force less than the gravitational pull we feel from the planet we are standing on. The closer two objects are to each other, the stronger the gravitational attraction between them. The greater the distance between two objects, the less the gravitational attraction. When it comes to gravity, the larger an object is, the stronger its force. A person creates gravity but not enough to pull objects toward him or cause things to go into orbit around him. A planet, being much larger and with greater mass, has enough gravity to pull objects toward it and keep them in orbit around it. The Earth s gravity keeps our moon in orbit. The moon has less mass and therefore less gravitational force so it is pulled toward the Earth

2 rather than the Earth being pulled toward it. If not for gravity between the Earth and moon, the moon would simply float away into space. A star makes enough gravity to pull whole solar systems into its orbit. Our Sun generates enough gravity to hold all of the eight planets, their moons, and all other matter in our solar system in orbits around it. Our Sun's gravity is so strong that it keeps an object Pluto that is roughly 3.7 billion miles away in orbit. Gravity also causes the tides of the oceans. Because it is made of matter, the Moon also has a gravitational pull, but it is not strong enough to move Earth. It pulls on the soft parts of the Earth s surface, the oceans, and that pull is observed as tides. As the Earth rotates on its axis, the moon pulls from different angles and locations, causing high and low tides. Whenever the water on the beach recedes and comes back with the ebb and flow of the tide, the ocean is reacting to the pull of the Moon's gravity. The sun s gravitational force causes some tides as well. All life needs gravity to survive. Gravity not only holds us in place, but it holds our atmosphere close to the surface, providing us with the air we breathe. Without gravity, people and all other objects would go floating off into space. Gravity also keeps Earth close enough and far enough in orbit around the Sun that we are not freezing or burning. Therefore, life would not have begun on Earth were it not for the force of gravity. Gravity has been around since the very beginning of the universe and it works the same way everywhere in the universe, on all kinds of different objects, and on objects of all different sizes larger than atoms. (Atoms are held together by strong and weak atomic forces.) In the very beginning of the universe, after the Big Bang, gravity pulled atoms together to form the stars and planets. Once the stars and planets had formed, gravity kept the planets in orbit around the larger stars, and moons orbiting around the planets. And on each planet that is large enough, gravity keeps an atmosphere around the planet just like a blanket is held on a bed. Without gravity, our atmosphere would disappear into space and life on Earth could not exist. On Earth, gravity keeps the air around us and everything else from drifting off into space. When on the moon, astronauts had to have enough energy in their lunar

3 module to overcome the force of the Moon s gravity to lift off and out of the moon s atmosphere. Once out of the pull of the Moon s gravitational force, the spacecraft was at freefall until the Earth s gravity took over and pulled the spacecraft back through the atmosphere and to the surface. Gravity also causes lighter hot air to rise while more dense colder air falls; the convection currents that in turn cause wind. Nobody fully understands how gravity works, or even why gravity exists. One way of looking at gravity is to think of it not as a force like magnetism but instead as a natural result of the way mass bends space. Think of space as a thick rubber sheet. A heavy object placed on the center of the sheet will stretch or bend the fabric with its weight. Now picture smaller objects along the outside corners of the sheet. Heavier objects will cause the lighter or less dense objects to move toward them. Any object with mass, like a star, pushes on space and bends it, so that other objects, like planets, that are moving in a straight line are also going around the star. It looks to us like the star is pulling on the planet, but really the star is bending space. Another way of thinking about gravity is to think that the star and the planet are exchanging tiny particles called gravitons that help to pull the star and the planet together. It's as if they were tossing tiny balls back and forth between them. But if the planet gets further away from the star, more of the balls get dropped and lost, and so the gravity between them is weaker. It's likely that both of these ideas are at least partly right maybe the gravitons bend space, or maybe bending space produces gravitons. Most of the time, when people need to figure out some problem involving gravity, like how fast a ball will fall when you drop it from a tall building, they forget about why it works and just use a good enough approximation of what gravity does. This approximation tells us that gravity at the surface of the Earth is approximately 9.8 meters per second. That means that, not counting friction with the air, if you drop a ball from a building, it will gain speed at the rate of by 9.8 meters/second for every second that it falls. If it begins at 0 meters/second, after one second the ball will be going 9.8 meters/second, and after two seconds it will be going 19.6 meters/second, and after three seconds it will be going 29.4 meters/second, and so on. The closer the ball gets to Earth, the faster it is falling.

4 Activity 1: Show the following picture on a dry erase board or white paper screen. Ask students to look at the picture and describe what they see. Describe the objects in the picture and their location in the room. Ask the students questions like: Where is the floor of the room? Where is the ceiling? How is this different from most rooms in our houses? Could this happen in our house? Why or why not? Are some things closer to the ceiling? Are some things closer to the floor? What is the heaviest thing in the room? The lightest? How does the heaviest object compare in location to the lightest object? Ask the students to consider the present position of each object. Have them make surmises as to the original location of each object. For example, where

5 might the bed have been positioned on the floor? Where might the chairs have been? What objects might have been on other objects? Using a dry erase or other marker (depending on medium the picture is projected on), have students trace the motions the objects may have made traveling from their original location to their present position. Draw arrows or lines to show the movement. Lines might be waving left to right, up and down, or forward and backward. Remind the students of the motions they have learned about in previous units. Once the motions of the objects have been determined, explain to the students that they are going to construct a story in the style of a journal entry. It may begin, Dear Diary, This morning the most extraordinary things began happening as I was waking up Have students create a sequence of events that shows how each object may have moved and in what order. Did the lighter objects float easier and faster than the heavy objects? Where would the person in bed end up? Encourage students to describe the emotions of feeling a bed float and objects begin to move around them. Challenge students to explain why they think these occurrences are happening.

6 Activity 2: Begin this lesson by showing students the picture below. Ask them to describe what is happening to Mr. Newton in the picture. Ask them if they can explain why it is happening. Introduce the word GRAVITY to the students. Explain that it is another type of force, like push and pull. A force acting on objects causes motion. What motion is occurring in the picture? Why did the apple drop? What movement might the man in the picture make in reaction to the motion of the apple? Ask students to discuss the statements on the chart below. Be sure to record their responses and save the chart for later use. Statement Yes No Why Gravity holds the air and clouds around us. Gravity moves water. A bowling ball will drop to Earth faster than a wiffle ball. I weigh more on Earth than I would on Mars. If there was no gravity, I could throw a baseball and it would keep going straight and never slow down. Students should be aware that objects that are dropped will fall to the Earth s surface but because gravity is an invisible force it is an abstract concept for them to explain. Gravity is also a non contact force, meaning it does not touch the objects it acts upon. Explain to students that gravity cannot be seen, but

7 we can observe the results of it acting on objects. Point out that although they can see the apple apparently falling on Newton s head, gravity is all around in this picture. As the students discuss the statements, it is more important that they generate ideas about gravity than have right answers. Listen to the WHY reasoning and guide them with further information. Allow students to amend or change their responses as they listen to the discussion. YES: Gravity is the force that keeps our atmosphere in place around the planet. Without gravity, the air and clouds would lift up into space and scatter. YES: Gravity moves water downhill, across lower regions, and as ocean tides. Water flows from the mountains of Georgia, across the Piedmont, and onto the coastal areas. It is this movement of water from higher elevations to lower that causes erosion and moves freshwater to the oceans. NO: Because gravitational force varies only slightly at different locations on Earth, the bowling ball and wiffle ball will drop at the same speed. Although the bowling ball has greater mass, it takes greater force to move, thus equaling out the speed of the fall. All matter falls to Earth at the rate of 9.8 meters per second. (that s a little over 32 feet per second) YES: Because Mars gravitational pull is so much less than Earth s, a 100 pound individual will weigh 38 pounds on Mars. Jupiter has the strongest gravitational force of all the planets due to its mass. A 100 pound person would weigh 31,800 pounds on Jupiter. YES: If no gravity was present, all objects in motion would stay in motion, traveling in a straight line until acted on by another force. Gravity continually acts on objects in motion, causing them to travel at a descending arc toward the surface of the Earth. Without gravity, the ball would fly through the air without any force acting upon it.

8 Activity 3: Student Handout 1 or as Teacher Demonstration Materials needed: Student Handout (copy this on cardstock if done as teacher demonstration) tape scissors paper clips Ask students to watch the following video, Chicken Little. After they have watched it through once, replay it and have the students read along with the words on the screen. Discuss with students why Chicken Little thought the sky was falling. What was it that hit Chicken Little on the head? Where did it come from? What other things seem to fall through air? Ask students to generate a list of everything they can think of that falls down to Earth. Be creative and consider animal products, plant products, things people send into the air, things that may fall from space (meteors, falling stars ) and things the wind might carry from place to place. (paper, sand, dust, trash.) Draw arrows or lines beside each object on the list to show the movement of the object in air. It is important that students grasp the concept that gravity is attraction BETWEEN objects, and that objects can travel in different directions in the air than straight up and down. Many forces, like wind, temporarily overcome the force of gravity, but as the force lessens or is withdrawn, like the wind dying down, gravity will pull the object toward Earth. Use Student Handout 1 as either a teacher demonstration or allow each student to make their own gravity floater. One model is leaves and the other feathers.

9 Follow these instructions for construction: 1. Cut out each model on the solid dark lines. 2. Fold the side flaps back on the dotted lines. 3. Tape the folded flaps back with a single piece of tape. 4. Place a paper clip on the bottom of the model. 5. Bend the top blades in any direction. 6. Toss the Gravity Floater up into the air. Observe the floaters as they move. Allow students to experiment with folding the top blades in different directions. Have them describe the movement of the Gravity Floater as it comes down. Try the Floaters without the paperclip on the bottom. How does that affect movement? (the paperclip adds mass and thus more gravitational pull) Ask students to compare the mass of the Floater to the air around it. Does the Floater go up or down? If it moves down, it has more mass than the air around it. Ask the students why the object moves downward. They should be able to offer a good explanation of gravitational pull and gravity.

10 Activity 4: Review the list and motion generated in Activity 3, then ask the students to observe the following pictures. Ask students to describe what is happening in each picture. Encourage them to determine where the most gravitational force is in each. Point out directions of motion in the pictures. Ask them to explain how gravity is working in each. What has mass? In what direction will gravity attract the objects? What would happen in each picture if there were no gravity?

11 Activity 5: Student Handout 2 Show the students the picture used in Activity 1 and reread the diary entry created in Activity 1. Discuss how these events would be affected by gravity. Could this picture be real? Why or why not? Encourage students to work through the Concept Map below. Ask them to use the picture to offer examples they can use on the Map. Be sure to use words like mass, attraction, gravity, and distance from Earth. I can show how the picture is not real here. I can show how gravity attracts me here. Gravity I can write a sentence about gravity here. I can draw three different masses shown in the picture here.

12

13 Student Handout 2 I can show how the picture is not real here. I can show how gravity attracts me here. I can write a sentence about gravity here. Gravity I can three different masses shown in the picture here.

Gravity? Depends on Where You Are!

Gravity? Depends on Where You Are! Gravity? Depends on Where You Are! Overview Gravity is one of the fundamental concepts of Physics. It is an abstract concept that benefits from activities that help illustrate it. This lesson plan involves

More information

Gravity. in the Solar System. Beyond the Book. FOCUS Book

Gravity. in the Solar System. Beyond the Book. FOCUS Book FOCUS Book Design a test to find out whether Earth s gravity always pulls straight down. A pendulum is a weight that hangs from a string or rod that can swing back and forth. Use string and metal washers

More information

Educator Guide to S LAR SYSTEM. 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org

Educator Guide to S LAR SYSTEM. 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org Educator Guide to S LAR SYSTEM 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org Pre-Visit Activity: Orbital Paths Materials: Plastic Plate Marble Scissors To Do: 1. Put the plate on a flat

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating

What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating What are Tides? Tides are very long-period waves that move through the oceans as a result of the gravitational attraction of the Moon and the Sun for the water in the oceans of the Earth. Tides start in

More information

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter IT S UNIVERSAL GRAVITY CONCEPTS Gravity is the universal force of attraction between all matter Weight is a measure of the gravitational force pulling objects toward Earth Objects seem weightless when

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Date R. Mirshahi. Forces are all around us. Without forces, nothing can move and no work can be done.

Date R. Mirshahi. Forces are all around us. Without forces, nothing can move and no work can be done. Name Date R. Mirshahi Forces and Movement: Balanced and Unbalanced Forces Forces are all around us. Without forces, nothing can move and no work can be done. There are different types of forces. Some forces

More information

Section 1 Gravity: A Force of Attraction

Section 1 Gravity: A Force of Attraction Section 1 Gravity: A Force of Attraction Key Concept Gravity is a force of attraction between objects that is due to their masses. What You Will Learn Gravity affects all matter, including the parts of

More information

Friction and Gravity. Friction. Section 2. The Causes of Friction

Friction and Gravity. Friction. Section 2. The Causes of Friction Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

More information

Lift vs. Gravity Questions:

Lift vs. Gravity Questions: LIFT vs GRAVITY Sir Isaac Newton, an English scientist, observed the force of gravity when he was sitting under a tree and an apple fell on his head! It is a strong force that pulls everything down toward

More information

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2 Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

More information

Space Poems For Preschool Children

Space Poems For Preschool Children Space Poems Hey Diddle Diddle Hey diddle diddle, The cat and the fiddle, The cow jumped over the moon. The little dog laughed To see such sport, And the dish ran away With the spoon. Twinkle, Twinkle Little

More information

The University of Texas at Austin. Gravity and Orbits

The University of Texas at Austin. Gravity and Orbits UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the

More information

Practice TEST 2. Explain your reasoning

Practice TEST 2. Explain your reasoning Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

More information

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.

More information

Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

RETURN TO THE MOON. Lesson Plan

RETURN TO THE MOON. Lesson Plan RETURN TO THE MOON Lesson Plan INSTRUCTIONS FOR TEACHERS Grade Level: 9-12 Curriculum Links: Earth and Space (SNC 1D: D2.1, D2.2, D2.3, D2.4) Group Size: Groups of 2-4 students Preparation time: 1 hour

More information

Classifying Matter. reflect. look out!

Classifying Matter. reflect. look out! reflect Do you know what air, water, and an apple all have in common? They are all examples of matter. Matter is a word we use a lot in science. It means stuff. All of the stuff in the world that has mass

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

What is Energy? What is the relationship between energy and work?

What is Energy? What is the relationship between energy and work? What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

More information

The Earth, Sun, and Moon

The Earth, Sun, and Moon reflect The Sun and Moon are Earth s constant companions. We bask in the Sun s heat and light. It provides Earth s energy, and life could not exist without it. We rely on the Moon to light dark nights.

More information

What's Gravity Got To Do With It?

What's Gravity Got To Do With It? Monday, December 16 What's Gravity Got To Do With It? By Erin Horner When you woke up this morning did you fly up to the ceiling? Of course not! When you woke up this morning you put both feet on the floor

More information

Third Grade Science Vocabulary Investigation Design & Safety

Third Grade Science Vocabulary Investigation Design & Safety recycle dispose reuse goggles data conclusion predict describe observe record identify investigate evidence analyze mass matter float sink attract force magnet magnetic magnetism pole pull push repel Third

More information

The Sun and the Stars

The Sun and the Stars www.k5learning.com Objective Concepts (gravity, climate, solar system, hydrogen, helium, elements, core, ultraviolet rays, cluster, galaxy, Milky Way Galaxy); Sight words (surface, middle, dangerous, causes,

More information

ACTIVITY 6: Falling Objects

ACTIVITY 6: Falling Objects UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

Earth in the Solar System

Earth in the Solar System Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Pushes and Pulls. TCAPS Created June 2010 by J. McCain

Pushes and Pulls. TCAPS Created June 2010 by J. McCain Pushes and Pulls K i n d e r g a r t e n S c i e n c e TCAPS Created June 2010 by J. McCain Table of Contents Science GLCEs incorporated in this Unit............... 2-3 Materials List.......................................

More information

Creation. Then God spoke and Creation came into being. God formed everything: Creation Week God called all that He had created good.

Creation. Then God spoke and Creation came into being. God formed everything: Creation Week God called all that He had created good. Creation Teacher Pep Talk: Imagine darkness and emptiness and nothing else except God. God in His own time decides that He is going to create something wonderful: something which will eventually cost Him

More information

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? Grade 6 Standard 3 Unit Test A Astronomy Multiple Choice 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? A. They are also rocky and small. B. They

More information

Chapter 1 Student Reading

Chapter 1 Student Reading Chapter 1 Student Reading Chemistry is the study of matter You could say that chemistry is the science that studies all the stuff in the entire world. A more scientific term for stuff is matter. So chemistry

More information

Interaction at a Distance

Interaction at a Distance Interaction at a Distance Lesson Overview: Students come in contact with and use magnets every day. They often don t consider that there are different types of magnets and that they are made for different

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

The Expanding Universe

The Expanding Universe Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

TIDES. 1. Tides are the regular rise and fall of sea level that occurs either once a day (every 24.8 hours) or twice a day (every 12.4 hours).

TIDES. 1. Tides are the regular rise and fall of sea level that occurs either once a day (every 24.8 hours) or twice a day (every 12.4 hours). TIDES What causes tides? How are tides predicted? 1. Tides are the regular rise and fall of sea level that occurs either once a day (every 24.8 hours) or twice a day (every 12.4 hours). Tides are waves

More information

Why don t planets crash into each other?

Why don t planets crash into each other? 1 Just as we know that the sun will rise every morning, we expect the planets and the moon to stay in their orbits. And rightly so. For 400 years, people have understood that the movements of Earth, the

More information

Gravity SEN. Answers (in the wrong order) Force Isaac Newton Energy Gravity Apple Powerful engines less Newtons Gravity

Gravity SEN. Answers (in the wrong order) Force Isaac Newton Energy Gravity Apple Powerful engines less Newtons Gravity Gravity Gravity is a force, which we don t think a lot about. It is gravity that holds things to the Earth s surface and prevents things from floating off into the atmosphere. Isaac Newton was one of the

More information

Essential Question. Enduring Understanding

Essential Question. Enduring Understanding Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons

More information

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

Name: Date: Period: Gravity Study Guide

Name: Date: Period: Gravity Study Guide Vocabulary: Define the following terms. Law of Universal Gravitation Gravity Study Guide Weight Weightlessness Gravitational Field Black hole Escape velocity Math: Be able to use the equation for the law

More information

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

More information

The Birth of the Universe Newcomer Academy High School Visualization One

The Birth of the Universe Newcomer Academy High School Visualization One The Birth of the Universe Newcomer Academy High School Visualization One Chapter Topic Key Points of Discussion Notes & Vocabulary 1 Birth of The Big Bang Theory Activity 4A the How and when did the universe

More information

A: Planets. Q: Which of the following objects would NOT be described as a small body: asteroids, meteoroids, comets, planets?

A: Planets. Q: Which of the following objects would NOT be described as a small body: asteroids, meteoroids, comets, planets? Q: Which of the following objects would NOT be described as a small body: asteroids, meteoroids, comets, planets? A: Planets Q: What can we learn by studying small bodies of the solar system? A: We can

More information

Related Standards and Background Information

Related Standards and Background Information Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and

More information

Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

Earth, Moon, and Sun Study Guide. (Test Date: )

Earth, Moon, and Sun Study Guide. (Test Date: ) Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Astronomical Units and The Solar System Grade Level and Course: 8th grade Physical Science Materials: Visual introduction for solar system (slides, video, posters,

More information

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name: Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

More information

Beginning of the Universe Classwork 6 th Grade PSI Science

Beginning of the Universe Classwork 6 th Grade PSI Science Beginning of the Universe Classwork Name: 6 th Grade PSI Science 1 4 2 5 6 3 7 Down: 1. Edwin discovered that galaxies are spreading apart. 2. This theory explains how the Universe was flattened. 3. All

More information

The Solar System. A Collaborative Science Activity for Key Stage 2. Teacher s Notes. Procedure

The Solar System. A Collaborative Science Activity for Key Stage 2. Teacher s Notes. Procedure The Solar System A Collaborative Science Activity for Key Stage 2 Teacher s Notes This material links reading and oral skills. The text is divided into three parts so that pupils have the task of collecting

More information

Star of the Solar System-The Sun

Star of the Solar System-The Sun Star of the Solar System-The Sun Lesson Concept Link The solar system is comprised of the Sun, our closest star, and eight planets. The sun is at the center and is the primary energy source for Earth.

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage

More information

Magnetic Storm PROGRAM OVERVIEW

Magnetic Storm PROGRAM OVERVIEW Magnetic Storm PROGRAM OVERVIEW NOVA explores what creates Earth s magnetic field and why it might be headed for a reversal. Solar Wind Earth The program: explains how scientists think Earth s magnetic

More information

Gravity and Falling How does gravity work?

Gravity and Falling How does gravity work? Gravity and Falling How does gravity work? About the Activity Using a bucket with stretchy fabric stretched over it, allow visitors to experiment with marbles and weights to discover some basics about

More information

The Science of Flight

The Science of Flight The Science of Flight This resource pack is a collaborative effort between the Royal Air Force Museum, Cosford and St. Patrick s Catholic Primary School, Wellington. Supported by MLA West Midlands. CATHOLIC

More information

ORANGE PUBLIC SCHOOLS OFFICE OF CURRICULUM AND INSTRUCTION OFFICE OF SCIENCE. GRADE 6 SCIENCE Post - Assessment

ORANGE PUBLIC SCHOOLS OFFICE OF CURRICULUM AND INSTRUCTION OFFICE OF SCIENCE. GRADE 6 SCIENCE Post - Assessment ORANGE PUBLIC SCHOOLS OFFICE OF CURRICULUM AND INSTRUCTION OFFICE OF SCIENCE GRADE 6 SCIENCE Post - Assessment School Year 2013-2014 Directions for Grade 6 Post-Assessment The Grade 6 Post-Assessment is

More information

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks)

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks) The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3: To define the efficiency

More information

Lesson 2 The Buoyant Force

Lesson 2 The Buoyant Force Lesson 2 Student Labs and Activities Page Launch Lab 26 Content Vocabulary 27 Lesson Outline 28 MiniLab 30 Content Practice A 31 Content Practice B 32 School to Home 33 Key Concept Builders 34 Enrichment

More information

CHARACTERISTICS OF THE SOLAR SYSTEM

CHARACTERISTICS OF THE SOLAR SYSTEM reflect Our solar system is made up of thousands of objects, at the center of which is a star, the Sun. The objects beyond the Sun include 8 planets, at least 5 dwarf planets, and more than 170 moons.

More information

Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

More information

Solids, Liquids, and Gases

Solids, Liquids, and Gases Solids, Liquids, and Gases nd Intended for Grade: 2 Grade Subject: Science Description: Activities to help students understand solids, liquids, gases, and the changes between these states. Objective: The

More information

4 HOW OUR SOLAR SYSTEM FORMED 750L

4 HOW OUR SOLAR SYSTEM FORMED 750L 4 HOW OUR SOLAR SYSTEM FORMED 750L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets come from the clouds of gas and dust that

More information

Science Standard 3 Energy and Its Effects Grade Level Expectations

Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects The flow of energy drives processes of change in all biological, chemical, physical, and geological

More information

What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage

What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage Unit Grades K-3 Awareness Teacher Overview What is energy? Energy makes change; it does things for us. It moves cars along the road and boats over the water. It bakes a cake in the oven and keeps ice frozen

More information

Station 1 Energy Presentations

Station 1 Energy Presentations Station 1 Energy Presentations Directions: One person from your group should create a Google Presentation. Your names, block, and topic should be on the first slide. Your group will be assigned one energy

More information

Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by

More information

Roanoke Pinball Museum Key Concepts

Roanoke Pinball Museum Key Concepts Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.

More information

Topic 7A: Tides, Part II. Online Lecture: The Bulge Theory of Tides

Topic 7A: Tides, Part II. Online Lecture: The Bulge Theory of Tides 7A_2 Slide 1 Topic 7A: Tides, Part II Online Lecture: The Theory of Tides Overly Simplistic: no continents, ocean is the same depth everywhere The Theory of Tides 7A_2 Slide 2 High Tide North Pole Low

More information

force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.

force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system. 4 Forces 4-1 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional

More information

TESTING THE STRENGTH OF DIFFERENT MAGNETS. Anthony Guzzo. Cary Academy ABSTRACT

TESTING THE STRENGTH OF DIFFERENT MAGNETS. Anthony Guzzo. Cary Academy ABSTRACT TESTING THE STRENGTH OF DIFFERENT MAGNETS Anthony Guzzo Cary Academy ABSTRACT The purpose of the experiment was to determine the strongest type of magnet. The three types of magnets that were being tested

More information

Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.

6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test. Select the be answer on the answer sheet. Please do not make any marks on this te. 1. Weather is be defined as the A. changes that occur in cloud formations from day to day. B. amount of rain or snow that

More information

Explain the Big Bang Theory and give two pieces of evidence which support it.

Explain the Big Bang Theory and give two pieces of evidence which support it. Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric

More information

Solar System Overview

Solar System Overview Solar System Overview Planets: Four inner planets, Terrestrial planets Four outer planets, Jovian planets Asteroids: Minor planets (planetesimals) Meteroids: Chucks of rocks (smaller than asteroids) (Mercury,

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

Study Guide due Friday, 1/29

Study Guide due Friday, 1/29 NAME: Astronomy Study Guide asteroid chromosphere comet corona ellipse Galilean moons VOCABULARY WORDS TO KNOW geocentric system meteor gravity meteorite greenhouse effect meteoroid heliocentric system

More information

Chapter 3 Student Reading

Chapter 3 Student Reading Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

More information

ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY

ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY 1 Pre-Test Directions: This will help you discover what you know about the subject of motion before you begin this lesson. Answer the following true or false. 1. Aristotle believed that all objects fell

More information

Tides and Water Levels

Tides and Water Levels Tides and Water Levels What are Tides? Tides are one of the most reliable phenomena in the world. As the sun rises in the east and the stars come out at night, we are confident that the ocean waters will

More information

Earth Is Not the Center of the Universe

Earth Is Not the Center of the Universe Earth Is Not the Center of the Universe Source: Utah State Office of Education Introduction Have you ever looked up at the night sky and wondered about all the pinpoint lights? People through the ages

More information

Motion of a Fan Car LESSON

Motion of a Fan Car LESSON 18 LESSON Motion of a Fan Car INTRODUCTION You will now begin the first of four lessons in which you will investigate the relationship of force, motion, and energy. In this lesson, you will study the motion

More information

Elements of Physics Motion, Force, and Gravity Teacher s Guide

Elements of Physics Motion, Force, and Gravity Teacher s Guide Teacher s Guide Grade Level: 9 12 Curriculum Focus: Physical Science Lesson Duration: Three class periods Program Description Examine Isaac Newton's laws of motion, the four fundamental forces of the universe,

More information

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

More information

Chapter 1 Our Place in the Universe

Chapter 1 Our Place in the Universe Chapter 1 Our Place in the Universe Syllabus 4 tests: June 18, June 30, July 10, July 21 Comprehensive Final - check schedule Website link on blackboard 1.1 Our Modern View of the Universe Our goals for

More information

Space Exploration Classroom Activity

Space Exploration Classroom Activity Space Exploration Classroom Activity The Classroom Activity introduces students to the context of a performance task, so they are not disadvantaged in demonstrating the skills the task intends to assess.

More information

Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley

Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley Chapter 1: Our Place in the Universe Topics Our modern view of the universe The scale of the universe Cinema graphic tour of the local universe Spaceship earth 1.1 A Modern View of the Universe Our goals

More information

What Is Energy? Energy and Work: Working Together. 124 Chapter 5 Energy and Energy Resources

What Is Energy? Energy and Work: Working Together. 124 Chapter 5 Energy and Energy Resources 1 What You Will Learn Explain the relationship between energy and work. Compare kinetic and potential energy. Describe the different forms of energy. Vocabulary energy kinetic energy potential energy mechanical

More information