# LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction of gravity Isaac Newton To explore the nature of motion along a vertical line near the Earth s surface. To extend the explanatory power of Newton s laws by inventing an invisible force (the gravitational force) that correctly accounts for the falling motion of objects observed near the Earth s surface. To examine the magnitude of the acceleration of a falling object under the influence of the gravitational force near the Earth s surface. To examine the motion of an object along an inclined ramp under the influence of the gravitational force. To incorporate frictional forces into Newton s first and second laws of motion. To explore interaction forces between objects as described by Newton s third law of motion. To explore tension forces. To apply Newton s laws of motion to mechanical systems that include tension. OVERVIEW You started your study of Newtonian dynamics in Lab 4 by developing the concept of force. Initially, when asked to define forces, most people think of a force as an obvious push or pull, such as a punch to the jaw or the tug of a rubber band. By studying the acceleration that results from a force when little friction is present, we came up with a second definition of force as that which causes acceleration. These two alternative definitions of force do not always appear to be the same. Pushing on a wall doesn t seem to cause the wall to move. An object dropped close to the surface of the Earth accelerates and yet there is no visible push or pull on it.

2 L06-2 Lab 6 - Gravitational & Passive Forces The genius of Newton was to recognize that he could define net force or combined force as that which causes acceleration, and that if the obvious applied forces did not account for the degree of acceleration then there must be other invisible forces present. A prime example of an invisible force is the gravitational force the attraction of the Earth for objects. When an object falls close to the surface of the Earth, there is no obvious force being applied to it. Whatever is causing the object to move is invisible. Most people rather casually refer to the cause of falling motions as the action of gravity. What is gravity? Can we describe gravity as just another force? Can we describe its effects mathematically? Can Newton s laws be interpreted in such a way that they can be used for the mathematical prediction of motions that are influenced by gravity? It almost seems that we have to invent an invisible gravitational force to save Newton s second law. Since objects near the surface of the Earth fall with a constant acceleration, we will use Newton s second law to show that there must be a constant (gravitational) force acting on the object. Finding invisible forces (forces without an obvious agent to produce them) is often hard because some of them are not active forces. Rather, they are passive forces, such as normal forces, which crop up only in response to active ones. (In the case of normal forces, the active forces are ones like the push you exert on a wall or the gravitational pull on a book sitting on a table.) Frictional and tension forces are other examples of passive forces. The passive nature of friction is obvious when you think of an object like a block being pulled along a rough surface. There is an applied force (active) in one direction and a frictional force in the other direction that opposes the motion. If the applied force is discontinued, the block will slow down to rest but it will not start moving in the opposite direction due to friction. This is because the frictional force is passive and stops acting as soon as the block comes to rest. Likewise, tension forces, such as those exerted by a rope pulling on an object can exist only when there is an active force pulling on the other end of the rope. In this lab you will first study vertical motion and the gravitational force. Then you will examine the motion of an object along an inclined ramp. You will use Newton s laws of motion as a working hypothesis to invent frictional and tension forces. Along the way you will examine Newton s third law of motion.

3 Lab 6 - Gravitational & Passive Forces L06-3 INVESTIGATION 1: MOTION AND GRAVITY Let s begin the study of the phenomenon of gravity by examining the motion of an object such as a ball when it is allowed to fall vertically near the surface of the Earth. This study is not easy, because the motion happens very quickly! You can first predict what kind of motion the ball undergoes by tossing a ball in the laboratory several times and seeing what you think is going on. A falling motion is too fast to observe carefully by eye. You will need the aid of the motion detector and computer to examine the motion quantitatively. Fortunately, the motion detector can do measurements just fast enough to graph this motion. To carry out your measurements you will need motion detector basketball table clamps, rods, etc. 3 m tape measure 4 x 4 wood block Activity 1-1: Motion of a Falling Ball Prediction 1-1: Suppose that you drop the ball from height of about 2 m above the floor, releasing it from rest. On the axes that follow, sketch your predictions for the velocity time and acceleration time graphs of the ball s motion. Assume that the positive y direction is upward. 2 + PREDICTION Acceleration Velocity Time (s) Test your predictions. You have previously used the motion detector to examine the motion of your body and of a cart. The motion of a falling ball takes place much faster.

5 Lab 6 - Gravitational & Passive Forces L06-5 Question 1-2: Is the acceleration of the ball positive or negative as it falls? Does this sign agree with the way that the velocity appears to be changing on the velocity-time graph? Discuss. Activity 1-2: The Magnitude of Gravitational Acceleration As you saw in Lab 3, you can find a value for the average acceleration in various ways. One method is to read the average value from the acceleration - time graph. Another is to find the slope of the velocity time graph. 1. Use the statistics features of the software to read the average value of the acceleration during the time interval from just after the ball began falling (beginning of uniform acceleration) to just before the ball stopped falling (end of uniform acceleration). Average acceleration: m/s 2 2. Use the fit routine to find the mathematical relationship between velocity and time during the same time interval as in step 1. Write below the equation you find from the fit that relates velocity (v) to time (t). 3. From the equation in step 2, what is the value of the acceleration? Average acceleration: m/s 2 Question 1-3: Discuss how well the two values for the gravitational acceleration agree with each other.

6 L06-6 Lab 6 - Gravitational & Passive Forces Activity 1-3: Motion Up and Down Prediction 1-2: Suppose that you toss a ball upward and analyze the motion as it moves up, reaches its highest point, and falls back down. Is the acceleration of the ball the same or different during the three parts of the motion moving upward, momentarily at the highest point, and moving downward? Explain. Moving upward: Momentarily at highest point: Moving downward: Prediction 1-3: Sketch on the axes below your predictions of the velocity - time and acceleration - time graphs for the entire motion of the ball from the moment it leaves your hand going up until just before it returns to your hand. Assume that the positive direction is upward. 2 + PREDICTION Time when ball reaches highest point Time 4 5 Throwing the ball upward and keeping it in the range of the motion detector is harder to do than dropping the ball. Try to throw the ball up directly under the motion detector. It may take a number of tries. Again be sure that your body is not seen by the motion detector.

7 Lab 6 - Gravitational & Passive Forces L The same experiment file L Falling Ball used in Activity 1-1 should work in this activity as well. You can keep the graphs from Activity 1-1 on the screen if you desire. The new data will be in a different color. You can also click on the Data icon and choose not to display a particular data run. 2. When everything is ready, begin graphing, and when you hear the clicking begin, toss the ball up toward the motion detector. Toss the ball as high as you can, but remember that it should never get closer than 20 cm below the motion detector. A short quick throw will work best. Repeat until you get a throw where you are sure the ball went straight up and down directly below the detector. You can choose under Experiment to delete the last data run if you do not want to keep it. You can also click on a graph and use the DELETE key to remove it. You may need to make several tries before you decide to keep the data. Let all group members try, if you have time. 3. When you obtain a good run, print one set of graphs for your group and include them in your report. 4. Label the portions of the printed graphs that show the ball s up and down motion. Also label with an arrow the instant in time when the ball reached its highest point. Question 1-4: Qualitatively compare the acceleration during the three parts of the motion on the way up, at the highest point, and on the way down. Discuss your observations based on the sign of the change in velocity. How well do you observations agree with your predictions? On the way up: At the highest point: On the way down: Question 1-5: There is a common idea that the acceleration of the ball must be zero when it stops. If this were true, could the velocity of the ball change once it stopped? Discuss.

8 L06-8 Lab 6 - Gravitational & Passive Forces Activity 1-4 (Optional): Vertical Motion with Air Resistance In this Activity you will use the motion detector to examine the motion of a paper coffee filter falling from rest. In addition to the setup in Activity 1-1 you will need a flat-bottomed paper coffee filter - the type with folds along the sides 1. Use the experiment file L Falling Filter. As usual, wait until you hear the motion detector click and then release the coffee filter with the flat bottom facing down as shown on the left. If necessary, increase the time range to record the complete motion of the filter and adjust the velocity and acceleration axes if necessary to display the graphs more clearly. It may take you several tries to obtain a good graph, because the coffee filter tends to float to the side out of range of the motion detector. 2. Be sure to keep your body out of the way of the motion detector. 3. Print out one set of graphs and include them with your report. Question 1-6: Compare the graphs to those for the falling ball. Does the filter also appear to fall with a constant acceleration? If not, how would you describe the motion? Is the velocity changing as the filter falls? If so, how? Question 1-7: Based on Newton s laws of motion, do you think that the gravitational force is the only force acting on the filter? If there is another force, what is its direction and how does its magnitude compare to the gravitational force? Discuss.

9 Lab 6 - Gravitational & Passive Forces L06-9 Activity 1-5: Motion Along an Inclined Ramp Another common motion involving the gravitational force is that of an object along an inclined ramp. Motion Detector Prediction 1-4: Consider a very low-friction cart moving along an inclined ramp, as shown above. The cart is given a push up the ramp and released, and its motion is graphed using the motion detector at the top of the ramp. [The direction toward the motion detector is positive.] Sketch on the axes below your predictions of the velocity - time and acceleration - time graphs for the motion of the cart. + 2 Predictions Time (s) Prediction 1-5: How do you predict the magnitude of the acceleration of the cart will compare to the acceleration you determined in Activity 1-2 for a ball falling straight downward? Explain.

10 L06-10 Lab 6 - Gravitational & Passive Forces To test your predictions, you will need in addition to the equipment used above motion cart (with no friction pad) 2-m motion track and support to raise one end about 10 cm 1. Set up the ramp with the motion detector at the high end. Use a wooden block to elevate one end of the ramp by 10 cm or so. Be sure that the motion detector sees the cart over the whole length of the ramp. 2. Open the experiment file called L Inclined Ramp to display the velocity time and acceleration time plots that were shown previously for Prediction 1-4. As before, the software has been set up to consider motion toward the detector positive so that the positive direction of motion is up the ramp. 3. Hold the cart at the bottom of the ramp and begin graphing. When you hear the clicks of the motion detector, give the cart a push up the ramp and release it. DO NOT PUSH THE CART HARD ENOUGH FOR IT TO HIT THE MOTION DETECTOR OR FALL OFF THE TRACK!! PRACTICE A COUPLE OF TIMES! The graph should include all three parts of the motion up the ramp, at its highest point, and on its way down and the cart should never get closer than 20 cm from the motion detector. Repeat until you have good graphs. Only keep your good data. 4. Print out one set of graphs for your group and include them with your report. 5. Use an arrow to mark the instant when the cart was at its highest point along the track on both the velocity and acceleration graph. 6. Use the statistics features of the software to measure the average acceleration of the cart during the time interval after it was released and before it was stopped at the bottom of the ramp. Average acceleration: m/s 2 Question 1-8: Did your graphs agree with your predictions? Does this motion appear to be with a constant acceleration?

11 Lab 6 - Gravitational & Passive Forces L06-11 Question 1-9: How did the magnitude of the acceleration compare with that for the ball falling which you determined in Activity 1-2? Is this what you predicted? Was this motion caused by the gravitational force? Why isn t the acceleration the same as for the ball falling? Question 1-10: What fraction of the falling-ball acceleration did the cart experience? % INVESTIGATION 2: NEWTON S LAWS WHEN FRICTION IS PRESENT In previous labs we have worked hard to create situations where we could ignore the effects of friction. We have concentrated on applied forces involving pushes and pulls that we can see and measure directly. The time has come to take friction into account. You can make observations by applying a force directly to your force probe mounted on a block (with significant friction) and comparing the block s acceleration to the acceleration of the cart (with negligible friction). To make observations on the effects of friction you will need force probe motion detector string ( ~30 cm. long with loops on each end). Activity 2-1: Static and Kinetic Frictional Forces 2-m motion track wood friction block If the frictional force is equal in magnitude to the applied force, then according to Newton s first law, the block must either remain at rest or move with a constant velocity. The frictional forces when two objects are sliding along each other are called kinetic frictional forces. If the objects are not sliding along each other, then the frictional forces are called static frictional forces. In this Activity you will examine whether the frictional force is different when an object is at rest (static friction) than when it is sliding along a track (kinetic friction). Prediction 2-1: A block is sitting on a table, as shown above. You pull on a string attached to the block, and the block doesn t move because the frictional force opposes

12 L06-12 Lab 6 - Gravitational & Passive Forces your pull. You pull harder, and eventually the block begins to slide along the table top. How does the frictional force just before the block started sliding compare to the frictional force when the block is actually sliding? Explain. You can test your prediction by mounting the force probe on a wooden block and pulling the block along the table top (not on the aluminum track). 1. Measure the mass of the block and force probe: Mass of block: kg. Mass of probe: kg. 2. Set up the block, string, force probe and motion detector as shown below. Make sure that the wood side of the block is down. Set the force probe on top of the friction block. Place all four ½ kg masses on the force probe to make the overall mass about 2.5 kg. > 20 cm 3. Prepare to graph velocity and force by opening the experiment file called L Static and Kinetic Friction. 4. Zero the force probe with nothing pulling on it. Begin graphing with the string loose, then gradually pull very gently on the force probe with the string and increase the force very slowly. Be sure that you pull horizontally not at an angle up or down. When the block begins to move, pull only hard enough to keep it moving with a small velocity, which is as constant (steady) as possible. 5. Do not erase your data so that you can use them for comparison with those in Activity 2-2. Do not yet print out the data.

13 Lab 6 - Gravitational & Passive Forces L06-13 Question 2-1: Does the block feel a force on it due to the string, and yet not move? Why? What happens to the frictional force just as the block begins to slide? Does this agree with your prediction? Explain. Question 2-2: Note the time on your force graph when the block just began to slide (you ll mark it later after you ve printed the graphs). From the graph, how do you know when this time is? Activity 2-2: Frictional Force and Normal Force The frictional force is nearly the same regardless of how fast the object moves, but there is usually a difference between static and kinetic frictional forces. Now you will examine if frictional forces depend on the force between the surface and the object the normal force. All of the forces exerted on a block being pulled on a table top are shown in the diagram below. Surfaces like a wall or a table top can exert a force perpendicular to the surface called a normal force. In the case of the block on the table, the table exerts a normal force upward on the block, and the Earth exerts a gravitational force (the weight of the block) downward on the block. Since we know that the block doesn t move up or down as it sits at rest or slides along the table s surface, the combined (net) vertical force must be zero according to Newton s first law. So the magnitude of the normal force must just equal the magnitude of the gravitational force. Using the symbols in the diagram, we obtain FG = FN = mg where m is the total mass of the object, and g is the gravitational acceleration, 9.8 m/s 2.

14 L06-14 Lab 6 - Gravitational & Passive Forces Prediction 2-2: If you change the normal force exerted by the table on the block (by adding or removing masses from the force probe), what will happen to the frictional force? Explain. Test your prediction. Use the same setup and experiment file, L Static and Kinetic Friction, as in Activity Remove all but two of the ½ kg masses from the top of the force probe. [The new total mass should be about 1.5 kg.] 2. Zero the force probe with nothing pulling on it. The data from Activity 2-1 is still being displayed on the computer screen. As in Activity 2-1, begin graphing with the string loose, then gradually pull very gently on the force probe with the string, and increase the force very slowly. Be sure that you pull horizontally not at an angle up or down. When the block begins to move, pull only hard enough to keep it moving with a small velocity that is as constant (steady) as possible. 3. Both sets of data with different masses should be displayed. Question 2-3: Compare the two sets of graphs. In what ways are they similar, and in what ways are they different? Are the kinetic frictional forces the same or different? Discuss. 4. Add another ½ kg mass [for a total of about 2 kg] and repeat the measurement. 5. For each of the runs, use the statistics features of the software to measure the average frictional forces during the time intervals when the block was moving with a constant velocity. Record the systems masses and frictional forces in the appropriate row of Table 2-1. [You can choose which run you are displaying by clicking on and off the Run # under the Data icon.]

15 Lab 6 - Gravitational & Passive Forces L06-15 Table 2-1 System: block, force probe and mass Total Mass (kg) Normal force (N) Average kinetic frictional force (N) Coefficient of friction kg masses kg masses kg masses 6. Calculate the normal forces and the coefficient of friction (the ratio of the frictional force to the normal force: µ = Ff FN ) for each run and record in Table Print out one graph containing all these data for your group. Carefully mark on your graph the total mass for each set of data. 8. Use an arrow to mark the time on your force graph when the block just began to slide (see Question 2-2). Question 2-4: Discuss the assertion that µ is approximately constant. INVESTIGATION 3: NEWTON S THIRD LAW All individual forces on an object can be traced to an interaction between it and another object. For example, we believe that while the falling ball is experiencing a gravitational force exerted by the Earth on it, the ball is exerting a force back on the Earth. In this investigation we want to compare the forces exerted by interacting objects on each other. What factors might determine the forces between the objects? Is there a general law that relates these forces? We will begin our study of interaction forces by examining the forces each person exerts on the other in a tug-of-war. Let s start with a couple of predictions. Prediction 3-1: Suppose that you have a tug-of-war with someone who is the same size and weight as you. You both pull as hard as you can, and it is a stand-off. One of you might move a little in one direction or the other, but mostly you are both at rest.

16 L06-16 Lab 6 - Gravitational & Passive Forces Predict the relative magnitudes of the forces between person 1 and person 2. Place a check next to your prediction. Person 1 exerts a larger force on person 2. The people exert the same size force on each other. Person 2 exerts a larger force on person 1. Prediction 3-2: Suppose now that you have a tug-of-war with someone who is much smaller and lighter than you. As before, you both pull as hard as you can, and it is a stand-off. One of you might move a little in one direction or the other, but mostly you are both at rest. Predict the relative magnitudes of the forces between person 1 and person 2. Place a check next to your prediction. Person 1 exerts a larger force on person 2. The people exert the same size force on each other. Person 2 exerts a larger force on person 1. Prediction 3-3: Again, suppose that you have a tug-of-war with someone who is much smaller and lighter than you. This time the lighter person is on a skateboard, and with some effort you are able to pull him or her along the floor.

17 Lab 6 - Gravitational & Passive Forces L06-17 Predict the relative magnitudes of the forces between person 1 and person 2. Place a check next to your prediction. Person 1 exerts a larger force on person 2. The people exert the same size force on each other. Person 2 exerts a larger force on person 1. To test your predictions you will need the following in addition to previously: another force probe (total of two) Activity 3-1: Interaction Forces in a Tug-of-War 1. Open the experiment file called L Tug-of-War. The software will then be set up to measure the force applied to each probe with a data collection rate of 20 points per second. 2. Since the force probes will be pulling in opposite directions in the tug-of-war, we have reversed the sign of one of them. two 1-kg masses 3. When you are ready to start, zero both of the force probes. Then hook the force probes together, begin graphing, and begin a gentle tug-of-war. Pull back and forth while watching the graphs. Be sure not to exceed a force of 50 N. Do not pull too hard, since this might damage the force probes. 4. Print out one set of graphs for your group. Question 3-1: How did the two pulls compare to each other? Was one significantly different from the other? How did your observations compare to your predictions? INVESTIGATION 4: TENSION FORCES When you pull on a rope attached to a crate, your pull is somehow transmitted down the rope to the crate. Tension is the name given to forces transmitted along stretched strings, ropes, rubber bands, springs, and wires. Is the whole force you apply transmitted to the crate, or is the pull at the other end larger or smaller? Does it matter how long the rope is? How is the force

18 L06-18 Lab 6 - Gravitational & Passive Forces magically transmitted along the rope? examine in this investigation. These are some of the questions you will Obviously, the rope by itself is unable to exert a force on the crate if you are not pulling on the other end. Thus, tension forces are passive just like frictional and normal forces. They act only in response to an active force like your pull. Prediction 4-1: If you apply a force to the end of a rope as in the picture above, is the whole force transmitted to the crate, or is the force at the crate smaller or larger than your pull? To test your prediction you will need the following in addition to what you already have: table clamp and rod string Activity 4-1: Mechanism of Tension Forces 1. Open the experiment file called L Tension Forces. 2. Hold the two probes with a string loop hanging loosely between the hooks. 3. Zero both force probes. Begin graphing, and pull softly at first and then harder. Then vary the applied force back and forth. Be sure not to exceed 50 N. 4. Print out one set of graphs for your group. Question 4-1: Based on the readings of the two force probes, when you pull on one end of the string, is the force transmitted down to the other end? Explain. 5. Indicate with arrows on the diagram above the directions of the forces exerted by the string on force probe 1 and on force probe 2.

19 Lab 6 - Gravitational & Passive Forces L06-19 Prediction 4-2: What happens when a string is hung around a pulley? Is the tension force still transmitted fully from one end of the string to the other? To test your prediction, in addition to the equipment listed above you will need low-friction pulley low friction cart 2-m motion track long piece of string level Activity 4-2: Tension When a String Changes Direction 1. Attach force probe 1 securely to the cart, and set up the cart, track, pulley, string, and force probes. > 20 cm 2. The experiment file L Tension Forces is also appropriate for this activity. You will have graphs of the two force probes versus time. 3. Zero both force probes with the string loose. Hold the cart to keep it from moving. Then begin graphing while pulling on force probe 2. Pull softly at first, then harder, and then alternately soft and hard. Do not exceed 10 N. 4. Print out one set of graphs for your group report. Question 4-2: Based on your observations of the readings of the two force probes, was the pull you exerted on force probe 2 transmitted undiminished to force probe 1 even though it went through a right angle bend? How does this compare to your prediction? Discuss.

20 L06-20 Lab 6 - Gravitational & Passive Forces Activity 4-3: Tension and Newton s Second Law Prediction 4-3: Suppose that in place of force probe 2 you hang a 50 g mass from the end of the string. With the cart held at rest, what value do you expect force probe 1 to read? Be quantitative. Explain. Prediction 4-4: Suppose that you hang the same 50-g mass but release the cart and let it accelerate as the mass falls. Do you expect force probe 1 to read the same force or a larger or smaller force as the cart accelerates? Explain. To test your predictions you will need the following in addition to the equipment for Activity 4-2: 50 g mass 1. Use the same setup as for Activity 4-2, but replace force probe 2 with a hanging mass and set up the motion detector. 2. Determine the mass of the cart and force probe: g 3. Open the experiment file called L Tension and N2. 4. Be sure that the motion detector can see the cart all the way to the end of the track. 5. Hang the 50 g mass from the end of the string, and hold the cart at rest at least 20 cm away from the motion detector. 6. Just before you are ready to start zero the force probe with the string loose. Let the 50 g mass hang without swinging and then begin graphing. Hold the cart for the first second after you hear the clicks of the motion detector and then release it. Be sure to stop the cart before it comes to the end of the track. 7. Print out one set of graphs for your group. Use arrows on your force and acceleration graphs to indicate the time when the cart was released.

21 Lab 6 - Gravitational & Passive Forces L Use the statistics features of the software to measure the average value of the tension measured by the force probe before the cart was released and while it was accelerating. Also measure the average value of the acceleration during the time interval while the cart had a fairly constant acceleration. Average tension with cart at rest: N Average tension with cart accelerating: N Average acceleration: m/s 2 Question 4-3: How did the tension while the cart was at rest compare to the weight of the hanging mass? [Hint: Remember that weight mg.] Did this agree with your prediction? Was the force applied to the end of the string by the hanging mass transmitted undiminished to the cart, as you observed in the previous activity? Question 4-4: Did anything happen to the tension after the cart was released? How did the value of the tension as the cart was accelerating compare to the weight of the hanging mass? Did this agree with your prediction? Discuss. Comment: When the cart is released, both the cart and hanging mass must always move with the same velocity since they are connected by the string as a single system. Thus, the cart and mass must have the same acceleration. According to Newton s second law, the combined (net) force on the cart must equal its mass times the acceleration, and the combined (net) force on the hanging mass must equal its mass times the same acceleration.

22 L06-22 Lab 6 - Gravitational & Passive Forces Question 4-5: Use Newton s second law to explain your answer to Question 4-4. Why must the tension in the string be smaller than the weight of the hanging mass if the hanging mass is to accelerate downward?

### LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

### Lab 6 - Gravitational and Passive Forces

Lab 6 Gravitational and Passive Forces L6-1 Name Date Partners L06-1 Lab 6 - Gravitational and Passive Forces Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable

### Experiment: Static and Kinetic Friction

PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### Physics 100 Friction Lab

Åsa Bradley SFCC Physics Name: AsaB@spokanefalls.edu 509 533 3837 Lab Partners: Physics 100 Friction Lab Two major types of friction are static friction and kinetic (also called sliding) friction. Static

### STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

### WEEK 6: FORCE, MASS, AND ACCELERATION

Name Date Partners WEEK 6: FORCE, MASS, AND ACCELERATION OBJECTIVES To develop a definition of mass in terms of an object s acceleration under the influence of a force. To find a mathematical relationship

### A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### WEEK 2: INTRODUCTION TO MOTION

Names Date OBJECTIVES WEEK 2: INTRODUCTION TO MOTION To discover how to use a motion detector. To explore how various motions are represented on a distance (position) time graph. To explore how various

### AP Physics Newton's Laws Practice Test

AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a

### Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### physics 111N forces & Newton s laws of motion

physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the

### 1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### Vectors and the Inclined Plane

Vectors and the Inclined Plane Introduction: This experiment is designed to familiarize you with the concept of force as a vector quantity. The inclined plane will be used to demonstrate how one force

### If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical

### ACTIVITY 1: Gravitational Force and Acceleration

CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

### Newton s Laws Pre-Test

Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

### Physics 11 Chapter 4 HW Solutions

Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction

### Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity?

AS 101 Lab Exercise: Gravity (Report) Your Name & Your Lab Partner s Name Due Date Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? 2. What are several advantage

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### Newton's First Law. Driving Questions. Background. Materials and Equipment. Safety. For each student or group: Name Period Date

Name Period Date Newton's First Law Driving Questions What factors affect the motion of objects? Aristotle (384 BC to 322 BC) believed that the natural state of an object was to be at rest and therefore

### Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

### Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

### ACTIVITY 6: Falling Objects

UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.

### Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)

Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### AP Physics C Fall Final Web Review

Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

### HW#4b Page 1 of 6. I ll use m = 100 kg, for parts b-c: accelerates upwards, downwards at 5 m/s 2 A) Scale reading is the same as person s weight (mg).

HW#4b Page 1 of 6 Problem 1. A 100 kg person stands on a scale. a.) What would be the scale readout? b.) If the person stands on the scale in an elevator accelerating upwards at 5 m/s, what is the scale

### 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2

1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to well-defined rules. The book Philosophiae

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Mass, energy, power and time are scalar quantities which do not have direction.

Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and

### Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

### B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

### Static and Kinetic Friction

Objectives Static and Kinetic Friction In this lab you will Equipment investigate how friction varies with the applied force. measure the coefficients of static and kinetic friction. learn how to use the

### Prelab Exercises: Hooke's Law and the Behavior of Springs

59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

### Friction and Newton s 3rd law

Lecture 4 Friction and Newton s 3rd law Pre-reading: KJF 4.8 Frictional Forces Friction is a force exerted by a surface. The frictional force is always parallel to the surface Due to roughness of both

### 04-1. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.

Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that

### Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START. Laboratory Section: Partners Names: EXPERIMENT 2

Laboratory Section: Partners Names: Last Revised on January 8, 05 Grade: EXPERIENT Acceleration of Gravity 0. Pre-Laboratory Work [pts]. You have just completed the first part of this lab and have five

### PHYSICS MIDTERM REVIEW

1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

### Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

### Summary Notes. to avoid confusion it is better to write this formula in words. time

National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

### Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan

PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture

### PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION

Newton s 3rd Law and Momentum Conservation, p./ PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION Read over the lab and then answer the following questions about the procedures:. Write down the definition

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body

Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of

### 2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

### Newton s Law of Motion

chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### Mechanics 1. Revision Notes

Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....

### Physics Exam 1 Review - Chapter 1,2

Physics 1401 - Exam 1 Review - Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental

### AP Physics B Free Response Solutions

AP Physics B Free Response Solutions. (0 points) A sailboat at rest on a calm lake has its anchor dropped a distance of 4.0 m below the surface of the water. The anchor is suspended by a rope of negligible

### Force. Net Force Mass. Acceleration = Section 1: Weight. Equipment Needed Qty Equipment Needed Qty Force Sensor 1 Mass and Hanger Set 1 Balance 1

Department of Physics and Geology Background orce Physical Science 1421 A force is a vector quantity capable of producing motion or a change in motion. In the SI unit system, the unit of force is the Newton

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### Physics 201 Fall 2009 Exam 2 October 27, 2009

Physics 201 Fall 2009 Exam 2 October 27, 2009 Section #: TA: 1. A mass m is traveling at an initial speed v 0 = 25.0 m/s. It is brought to rest in a distance of 62.5 m by a force of 15.0 N. The mass is

### AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### Newton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1

Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is

### THE NOT SO SIMPLE PENDULUM

INTRODUCTION: THE NOT SO SIMPLE PENDULUM This laboratory experiment is used to study a wide range of topics in mechanics like velocity, acceleration, forces and their components, the gravitational force,

### A ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum.

MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS THE PENDULUM (2014;2) A pendulum is set up, as shown in the diagram. The length of the cord attached to the bob is 1.55 m. The bob has a mass of 1.80 kg. The

### Experiment P-6 Friction Force

1 Experiment P-6 Friction Force Objectives To learn about the relationship between force, normal force and coefficient. To observe changes in the force within different surfaces and different masses. To

### Laboratory #3 Newton s Third Law

Laboratory #3 Newton s Third Law Part A. Tug O War Concepts Newton s 3 rd law; Newton s 2 nd Law; Tension; Forces; Force of Gravity Introduction Have you ever noticed that when you play tug o war, the

### Clicker Question. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road.

A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road. A. positive. B. negative. C. zero. Clicker Question The total work done on the

### Kinetic Friction. Experiment #13

Kinetic Friction Experiment #13 Joe Solution E01234567 Partner- Jane Answers PHY 221 Lab Instructor- Nathaniel Franklin Wednesday, 11 AM-1 PM Lecture Instructor Dr. Jacobs Abstract The purpose of this

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Physics 201 Homework 5

Physics 201 Homework 5 Feb 6, 2013 1. The (non-conservative) force propelling a 1500-kilogram car up a mountain -1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest

### UNIT 2D. Laws of Motion

Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

### 1206EL - Concepts in Physics. Friday, September 18th

1206EL - Concepts in Physics Friday, September 18th Notes There is a WebCT course for students on September 21st More information on library webpage Newton s second law Newton's first law of motion predicts

### UNIT 6: GRAVITY AND PROJECTILE MOTION

Name Date Section UNIT 6: GRAVITY AND PROJECTILE MOTION Dolphins are powerful, graceful, and intelligent animals. As this dolphin leaps out of the water in delighted play, she experiences a change in velocity

### TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

### COEFFICIENT OF KINETIC FRICTION

COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

### What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact?

Chapter 4: Forces What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Application different forces (field forces, contact

### 356 CHAPTER 12 Bob Daemmrich

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### 4 Gravity: A Force of Attraction

CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

### Two-Body System: Two Hanging Masses

Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.

### Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

### Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

### Teaching Motion with the Air Puck

Name: Teaching Motion with the Air Puck Objective: In studying motion of objects, many times it is difficult to quantitatively measure objects on Earth because of ever-present friction issues. Often, our

### Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

### AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

### The quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo:

Team: Projectile Motion So far you have focused on motion in one dimension: x(t). In this lab, you will study motion in two dimensions: x(t), y(t). This 2D motion, called projectile motion, consists of

### Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

### 25 N to the right. F gravity

Have you heard the story about Isaac Newton sitting under an apple tree? According to the story, an apple fell from a tree and hit him on the head. From that event, it is said that Newton discovered the

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

### Motion in One-Dimension

This test covers one-dimensional kinematics, including speed, velocity, acceleration, motion graphs, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. A rock is released

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting