Essential Question. Enduring Understanding

Size: px
Start display at page:

Download "Essential Question. Enduring Understanding"

Transcription

1 Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons and Moon Phases: Before. Unit : How is daily life connected to the regular and predictable motion of the solar system? Guiding s Talking It Over: Sunlight and Shadows Investigation: Measuring Shadows, Measuring Time S1.2c S3.2b S3.2g 3 Standard 1 S2.2c S3.1a S3.2a How are accurate and complete observations of our world important for making conclusions about the natural world? If we did not have a clock, how would we know that a day has Scientists evaluate each others explanations. The apparent movement of the Sun during the day can be used to determine the time of day. Thinking about the Sun and the Moon, what are some observations you have made in the past? Are they observations or inferences or what you have learned? What is a shadow? How are shadows and shade alike or different? What is data? What do you think is causing the changes in the direction of the shadow from Tyler s tree from early to late in the day? What do you think is causing the changes in the length of the shadow from Tyler s tree from early to late in the day? What data would you collect to test your ideas? What was Tyler s investigation? What conclusions did Tyler have? Why does a science experiment need to be reproducible? What improvements could be made to Tyler s investigation? How would (student idea) improve the investigation? Sun affect you each day? If you recorded shadows during the day at the same times next month do you think your results would be the same or different?

2 Unit : How is daily life connected to the regular and predictable motion of the solar system? Guiding s Modeling: A Day on Earth If we did not have a clock, how would we know that a day has A day is 24 hours in length. The rotation of a planet around its axis explains the length of a planet s day What is a day? How long is a day? Do different planets have different lengths of daylight? If it is noon in Buffalo, is it noon everywhere in the world? What changes happen in the sky every day? What causes these changes? If you were to try to live on another planet, do you think it would be important to go to a planet with a similar length of day as Earth? Why or why not? Reading: As Earth Rotates f If we did not have a clock, how would we know that a day has A day is 24 hours in length. The rotation of a planet around its axis explains the length of a planet s day Science and technology have advanced through contributions of many different people in different cultures and at different times in history. Do you have friends or family that live in other parts of the US or world? Is it (state time) there now? How do you know? Do we need standardized When looking at the time zone map for the US, why aren t the lines dividing the zones straight? World? How have your ideas about the cause of Earth s day/night cycle changed since you began this unit?

3 Unit : How is daily life connected to the regular and predictable motion of the solar system? Guiding s Investigation: Sunlight and Seasons Computer Simulation: A Year Seen From Space 2 1.1c If we didn t have calendars, how would we know that a year has If we didn t have calendars, how would we know that a year has There is a relationship between the angle of the sun in the sky and seasons. The tilt of the Earth as it revolves around the sun is the cause of seasons. Earth s orbit is nearly a circle and it has a regular and predictable motion. The distance of Earth from the Sun does vary, but too slightly (<5%) to cause the degree of temperature variation from season to season. Earth is 6 million km closer to the Sun during the Northern Hemisphere s winter, rather than in its summer. What do you think caused the changes Tyler observed in the tree s shadow? What happens in a year? What causes these changes? What shape do you observe on the graph? How do December, June, March or September relate to seasons? What is a year? What happens to Earth in a year s What do you notice about the average temperatures and length of daylight hours in Melbourne, Australia and Chicago, Illinois in December and June? What role does the proximity to oceans have? Why does Melbourne have summer when Chicago has winter? When you think about how you learn, was it easier to see the pattern in the length of daylight hours and angle of the sun using the chart format or the line graph format? What made that format easier? Thinking about what you have learned about the average length of daylight hours and temperatures throughout the year, would you prefer to live in Chicago, Melbourne or Quito. Why?

4 Unit : How is daily life connected to the regular and predictable motion of the solar system? Guiding s Modeling: Explaining the Seasons Reading: The Earth on the Move 1 Standard f If we didn t have calendars, how would we know that a year has If we didn t have calendars, how would we know that a year has The tilt of the earth leads to different surface temperatures. The motions of rotation and revolution help us mark time. Does the distance between the Sun and Earth stay the same as the Earth rotates? Does the change in distance cause seasons? What is the cause of seasons? If the Earth did not have a tilt of 23.5 what would change? Does the angle that the flashlight is held when shinning light on the wall affect how much light you see? Why? How long is a day? What motion causes the day/night cycle. How long is a year? What motion causes the cycle of a year? What are seasons? Why do we have seasons? How does latitude affect the seasons? What is the Northern Hemisphere? Southern Hemisphere? Do the Northern and Southern Hemisphere have winter at the same How did each of the following models help you understand how Earth s tilt causes the seasons? The computer model The globe and a flashlight The solar cell and motor How have your ideas about the reasons for the seasons changed since you began this unit?

5 Unit : How is daily life connected to the regular and predictable motion of the solar system? Guiding s Field Study: The Predictable Moon Modeling: Explaining the Phases of the Moon Computer Simulation: Moon Phase Simulator 1- S1.1a S S2.1b 1 Standard 1 S2.1b lunar cycle help us mark lunar cycle help us mark lunar cycle help us mark The moon s appearance changes in a regular and repeated pattern. The Moon does not produce light moonlight is reflected from the Sun. The Moon s revolution around the Earth causes the Moon s phases What have you noticed about the moon? What time of day did you observe this? Is the moon only visible at night? What are some names for the different phases you have observed? How did you make your predictions for when the next full Moon will occur? How did you make your prediction for when the next new moon will occur? What changes take place in the visible shape of the moon? How long does it take for these changes to take place? What causes these changes? What phenomena can be represented by computer modeling? In the computer simulation, what does the dark half of the Earth represent? Dark half of the Moon? Light half of the Earth? Light half of the Moon? Why are the lighter colored halves of the Moon and Earth always shown facing the Sun? As you made your observations of the Moon over the last few weeks, what else did you notice in the sky that interested you? Why did it interest you? What questions do you have because of these observations? What are the strengths and weaknesses of the model you used to observe the phases of the moon? Does a computer model help you learn?

6 Unit : How is daily life connected to the regular and predictable motion of the solar system? Guiding s Investigation: Tides and the Moon Talking It Over: Marking Time S3.1a S3.2e 2-3 lunar cycle help us mark How is the perspective of the observer important as they observe the cyclical changes on Earth that are caused by the interactions among objects in the universe? There is a relationship between the phase of the Moon and extreme tides. Calendars meet the needs of society. Have you ever heard of high or low tides? How often do they occur? What is the average number of days in a lunar cycle? When looking at the drawing, what is the position of the Earth, Sun and Moon when extreme tides occur? Would there be extreme tides if there was no moon? calendar we use in our daily affairs relate to the motions of the Earth and Moon? What are the advantages of each of the proposed calendars? What are the disadvantages of each calendar? Would all societies identify the same advantages/disadvantages? How have your ideas about the reason for the phases of the Moon changed since you began this unit? What is the most important reason you use a calendar? Why is it important?

7 Investigation: Planets In Motion Student Presentations of Investigation Unit Written Assessment Complete: My Ideas About A Day, Year, Seasons and Moon Phases: After EARTH IN SPACE SUMMATIVE UNIT ASSESSMENT COMPONENTS # of 55 Assessment Activity Overview 3 Students work in pairs to analyze data about a fictional planet and use the data to predict the day length, year length, extent of seasonal variation, and tides for the plant 1 Students model and discuss the characteristics of their planet in a presentation to the class. 1 Students complete a written test that is comprised of multiple choice and constructed response questions. 1 Students complete My Ideas About A Day, Year, Seasons and Moon Phases: After NOTE: Once students have completed this worksheet, they will compare it to the My Ideas About A Day, Year Seasons, and Moon Phases: Before that they did on the first day of the unit to see how their understanding has changed over time.

Unit 5 Test

Unit 5 Test 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. Unit 5 Test 1. How many days does it take to complete a single Lunar Cycle? A. About 365 B. About 1 C. About 28

More information

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead

More information

Earth, Moon, and Sun Study Guide. (Test Date: )

Earth, Moon, and Sun Study Guide. (Test Date: ) Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to

More information

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

More information

Relationship Between the Earth, Moon and Sun

Relationship Between the Earth, Moon and Sun Relationship Between the Earth, Moon and Sun Rotation A body turning on its axis The Earth rotates once every 24 hours in a counterclockwise direction. Revolution A body traveling around another The Earth

More information

Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC

Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC Cycles in the Sky What is a Fun damental? Each Fun damental is designed to introduce your younger students to some of the basic ideas about one particular area of science. The activities in the Fun damental

More information

The diagram shows the apparent paths of the Sun in relation to a house in the northeastern United States on June 21 and December 21.

The diagram shows the apparent paths of the Sun in relation to a house in the northeastern United States on June 21 and December 21. Teacher: Mr. gerraputa Print Close Name: 1. Approximately how many hours of daylight are received at the North Pole on June 21? 1. 0 3. 18 2. 12 4. 24 2. The diagram shows the apparent paths of the Sun

More information

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'. is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - ''. Learning Connections Primary Science Interactives are teaching tools which have been created

More information

1. How many days each year does the Sun rise due East and set due West?

1. How many days each year does the Sun rise due East and set due West? Motion of the Sun Student Page Purpose To examine the path of the Sun across the sky at different times of the year from different locations on the Earth, and study its effects at different locations.

More information

Astronomy Review. Use the following four pictures to answer questions 1-4.

Astronomy Review. Use the following four pictures to answer questions 1-4. Astronomy Review Use the following four pictures to answer questions 1-4. 1. Put an X through the pictures that are NOT possible. 2. Circle the picture that could be a lunar eclipse. 3. Triangle the picture

More information

Earth Navigators Lesson Plan

Earth Navigators Lesson Plan Earth Navigators Lesson Plan LESSON TITLE: Season s Greetings GRADE LEVEL: 5-8 TOPIC/SUBJECT MATTER: Earth Science TIME ALLOTMENT: 1-2 Class periods OVERVIEW: This lesson uses video segments from the NATURE

More information

T he Earth orbits around the sun. It takes the Earth days one year to

T he Earth orbits around the sun. It takes the Earth days one year to Follow the Earth as it orbits the sun to learn what causes the changing seasons. Materials Reproducible pages 18 20 Scissors Tape Brad (paper fastener) Crayons, colored pencils, or markers (optional) Weather

More information

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

More information

8. Mercury, the planet nearest to the Sun, has extreme surface temperatures, ranging from 465 C in sunlight to 180 C in darkness.

8. Mercury, the planet nearest to the Sun, has extreme surface temperatures, ranging from 465 C in sunlight to 180 C in darkness. 6.E.1 Unit Test DO NOT WRITE ON THIS QUIZ!!! 1. The largest body in our solar system is Earth. the Sun. Jupiter. the Moon. 4. What do the four planets closest to the Sun have in common? Their solid, rocky

More information

4 3 Astronomy Recall that Earth is one of the many planets in the solar system that orbit the Sun.

4 3 Astronomy Recall that Earth is one of the many planets in the solar system that orbit the Sun. 4 3 Astronomy 4 3.1 Recall that Earth is one of the many planets in the solar system that orbit the Sun. Essential Question: What is in our solar system? Textbook Pages: 208 209 Sun central star in our

More information

Reason for the Seasons Notes

Reason for the Seasons Notes Reason for the Seasons Notes Seasons Vocabulary Seasons - Due to the tilt of earth as it travels around the Sun, we have spring, summer, fall, and winter. Source: http://www.srh.noaa.gov/abq/features/whatcausestheseasons/summersolstice2008.php

More information

C E C U R R I C U L U M I E N S C B L E I T A. i N T E G R A T I N G A R T S i n O N A T I D U C B L I P U. Student Learning Objectives:

C E C U R R I C U L U M I E N S C B L E I T A. i N T E G R A T I N G A R T S i n O N A T I D U C B L I P U. Student Learning Objectives: Day/Night (Rotation) E Q U I T A B L E S C I E N C E C U R R I C U L U M Lesson 1 i N T E G R A T I N G A R T S i n P U B L I C E D U C A T I O N NGSS Science Standard: 5-ESS1-2 Represent data in graphical

More information

Seasons (Observable Patterns)

Seasons (Observable Patterns) Seasons (Observable Patterns) E Q U I T A B L E S C I E N C E C U R R I C U L U M Lesson 3 i N T E G R A T I N G A R T S i n P U B L I C E D U C A T I O N NGSS Science Standard: 5-ESS1-2 Represent data

More information

Earth, Moon, and Sun Inquiry Template Eclipses

Earth, Moon, and Sun Inquiry Template Eclipses One Stop Shop For Educators The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved

More information

Grade 8 Science Curriculum Document: Third Nine Weeks, Unit 7 (12 days) Unit 7-Sun, Earth, Moon Systems

Grade 8 Science Curriculum Document: Third Nine Weeks, Unit 7 (12 days) Unit 7-Sun, Earth, Moon Systems Grade 8 Science Curriculum Document: Third Nine Weeks, Unit 7 (12 days) Unit 7-Sun, Earth, Moon Systems Enduring Understandings: The moon's orbit around the earth once in about 28 days changes what part

More information

Unit 2 - Quiz 2 2-D Models

Unit 2 - Quiz 2 2-D Models 2-D Models 1. If an observer on Earth views Polaris on the horizon, the observer is located at the A) Tropic of Cancer (23.5 N) B) North Pole (90 N) C) equator (0 ) D) Tropic of Capricorn (23.5 S) 2. At

More information

Answers for the Study Guide: Sun, Earth and Moon Relationship Test

Answers for the Study Guide: Sun, Earth and Moon Relationship Test Answers for the Study Guide: Sun, Earth and Moon Relationship Test 1) It takes one day for the Earth to make one complete on its axis. a. Rotation 2) It takes one year for the Earth to make one around

More information

Earth in the Solar System

Earth in the Solar System Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

Page 1. Name: Questions 1 through 4 refer to the following: Questions 5 and 6 refer to the following:

Page 1. Name: Questions 1 through 4 refer to the following: Questions 5 and 6 refer to the following: Name: 3211-1 - Page 1 Questions 1 through 4 refer to the following: Questions 5 and 6 refer to the following: The diagram below represents a plastic hemisphere upon which lines have been drawn to show

More information

Study Guide: Sun, Earth and Moon Relationship Assessment

Study Guide: Sun, Earth and Moon Relationship Assessment I can 1. Define rotation, revolution, solstice and equinox. *Rotation and Revolution Review Worksheet 2. Describe why we experience days and years due to the rotation and r evolution of the Earth around

More information

Chapter 8, Astronomy

Chapter 8, Astronomy Chapter 8, Astronomy Model some of the ways in which scientists observe the planets. Relate evidence that Earth rotates and define revolution. Scientists use many tools to observe and study the universe.

More information

Earth & Moon Notes. Chapter 19

Earth & Moon Notes. Chapter 19 Earth & Moon Notes Chapter 19 Earth s Movement The Earth moves in 2 ways orotation orevolution The effects of the movements odays/nights oseasons Rotation Rotation is spinning of the earth on its axis

More information

The following words and their definitions should be addressed before completion of the reading:

The following words and their definitions should be addressed before completion of the reading: Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

More information

Earth, Moon, and Sun Interactions

Earth, Moon, and Sun Interactions Earth, Moon, and Sun Interactions Textbook pages 410 425 Section 12.1 Summary Before You Read For thousands of years, people believed that the Sun travelled around Earth. What observation did they base

More information

Science 1206 Unit 2: Weather Dynamics Worksheet 11: Seasons and the Angle of the Sun

Science 1206 Unit 2: Weather Dynamics Worksheet 11: Seasons and the Angle of the Sun Science 1206 Unit 2: Weather Dynamics Worksheet 11: Seasons and the Angle of the Sun Much of the Earth s weather, especially our changing seasons are caused by: 1) Tilt of the Earth - Earth is tilted at

More information

Moon phases eclipses and tides Practice Name

Moon phases eclipses and tides Practice Name Moon phases eclipses and tides Practice Name Base your answer to questions 1 and 2 on the diagram below, which shows Earth and the Moon in relation to the Sun. Positions A, B, C, and D show the Moon at

More information

Noon Sun Angle = 90 Zenith Angle

Noon Sun Angle = 90 Zenith Angle Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd

More information

Kinesthetic Astronomy: Longer Days, Shorter Nights

Kinesthetic Astronomy: Longer Days, Shorter Nights GRADE LEVEL 3 rd -8 th ; California Content Standards for 3 rd, 5 th, 6 th 8 th SUBJECTS Earth & Space Science, Using Models DURATION Preparation: 20 minutes Activity: 60 minutes SETTING Classroom Objectives

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

8.5: Motions of Earth, the Moon, and Planets pg. 320

8.5: Motions of Earth, the Moon, and Planets pg. 320 8.5: Motions of Earth, the Moon, and Planets pg. 320 Key Concepts: 1. Careful observation of the night sky can offer clues about the motion of celestial objects. 2. Celestial objects in the Solar System

More information

Grade 6 Science Space Unit Test

Grade 6 Science Space Unit Test Name: Grade 6 Science Space Unit Test 1. The Earth s axis in tilted 23.5 Section C Short Answer (Use complete sentences, and diagrams to help) 1. Explain the difference between the rotation and revolution.

More information

Unit One Organizer: The Stars and Our Solar System (Approximate Time: 7 Weeks)

Unit One Organizer: The Stars and Our Solar System (Approximate Time: 7 Weeks) The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Earth In Space Chapter 3

Earth In Space Chapter 3 Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the

More information

7th Grade Astronomy. Read and answer each question carefully. 1) When viewing a solar eclipse, what is the phase of the moon?

7th Grade Astronomy. Read and answer each question carefully. 1) When viewing a solar eclipse, what is the phase of the moon? Read and answer each question carefully. 1) When viewing a solar eclipse, what is the phase of the moon? A) Waning gibbous B) Waxing gibbous C) New moon D) Full moon 2) In the picture shown, what is the

More information

Lab Activity on the Causes of the Seasons

Lab Activity on the Causes of the Seasons Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you

More information

What's Moving? Summary of Activity. Living Maya Time Website Connections. Objectives

What's Moving? Summary of Activity. Living Maya Time Website Connections. Objectives What's Moving? Summary of Activity This lesson is designed to help students make connections between the movements of the Sun in the sky, the Sun on the horizon, and how these apparent motions are caused

More information

Picture Match Words Fluctuate Atmosphere Hemisphere North Star Equator Revolve Fixed Latitude Curvature Solar energy

Picture Match Words Fluctuate Atmosphere Hemisphere North Star Equator Revolve Fixed Latitude Curvature Solar energy Picture Match Words Fluctuate Atmosphere Hemisphere North Star Equator Revolve Fixed Latitude Curvature Solar energy Picture Match Board Solar S So Sol Sola Solar North Star Spelling Pyramid Energy Hemisphere

More information

The Reasons for the Seasons

The Reasons for the Seasons Guiding Question: What causes the seasons on Earth? The Reasons for the Seasons Vocabulary astrolabe equinox rotate axis horizon solstice elliptical revolve (orbit) sundial Materials Exploration (per group)

More information

ESCI 110: Earth-Sun Relationships Page 4-1. Exercise 4. Earth-Sun Relationships and Determining Latitude

ESCI 110: Earth-Sun Relationships Page 4-1. Exercise 4. Earth-Sun Relationships and Determining Latitude ESCI 110: Earth-Sun Relationships Page 4-1 Introduction Exercise 4 Earth-Sun Relationships and Determining Latitude As the earth revolves around the sun, the relation of the earth to the sun affects the

More information

Modeling the Seasons Students model the seasons with their own earth globes.

Modeling the Seasons Students model the seasons with their own earth globes. Modeling the Seasons Students model the seasons with their own earth globes. Materials For the whole group, you ll need: a 150 200 watt light bulb (not frosted) or a flashlight a lamp or socket for the

More information

Earth-Sun Geometry. Introduction: Earth-Sun Geometry

Earth-Sun Geometry. Introduction: Earth-Sun Geometry Earth-Sun Geometry Readings: A&B: Ch. 2 (p. 42-50) CD Tutorial: Earth-Sun Geometry www: 2. Earth- Sun Geometry Topics 1. Introduction 2. Orbital Geometry a) Rotation b) revolution 3. Seasons a) Solstices

More information

Grade 9 - Space Exploration - Pre-Assessment

Grade 9 - Space Exploration - Pre-Assessment Purpose: This document is for grade 9 teachers to use as a pre-assessment for the Space Exploration unit. It assesses students understanding of the of the end of unit knowledge outcomes from the grade

More information

Noon Sun Angle = 90 Arc Distance

Noon Sun Angle = 90 Arc Distance Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd

More information

STAAR Science Tutorial 27 TEK 8.7A: Earth s Seasonal & Day-Night Cycles

STAAR Science Tutorial 27 TEK 8.7A: Earth s Seasonal & Day-Night Cycles ame: Teacher: Pd. Date: TAAR cience Tutorial 27 TEK 8.7A: Earth s easonal & Day-ight Cycles TEK 8.7A: Model and illustrate how the tilted Earth rotates on its axis, causing day and night, and revolves

More information

OBJECTIVE Students will reinforce their knowledge of the seasons by applying it to data of daylight hours for cities at various latitudes on Earth.

OBJECTIVE Students will reinforce their knowledge of the seasons by applying it to data of daylight hours for cities at various latitudes on Earth. Ages: 4 th grade high school Duration: 45 minutes Materials: 1 Student Graph sheet per group Colored pencils or markers Globe Table of Daylight Hours Across the Globe Index cards Tape ~ LPI EDUCATION/PUBLIC

More information

Name Homeroom. Science Quiz Day/Night, Sun s Energy, Seasons September 24, 2012

Name Homeroom. Science Quiz Day/Night, Sun s Energy, Seasons September 24, 2012 Name Homeroom Science Quiz Day/Night, Sun s Energy, Seasons September 24, 2012 1. The winter solstice occurs on either December 21 or 22, depending on the year. Which of the following statements best explains

More information

The Celestial Sphere. Chapter 1 Cycles of the Sky. Models and Science. Constellations 9/26/2013

The Celestial Sphere. Chapter 1 Cycles of the Sky. Models and Science. Constellations 9/26/2013 Chapter 1 Cycles of the Sky The Celestial Sphere A useful, spherical map of the sky, with the Earth in the center of a giant celestial sphere. Stars and planets are plotted on the sphere, at the same distance.

More information

Earth's Revolution and its Seasons

Earth's Revolution and its Seasons NAME PER PART 1 - Earth's Revolution: Earth's Revolution and its Seasons Examine the Figure 1 above. Answer these questions. 1. True/False: As Earth revolves around the Sun it is always tilted toward the

More information

Why Are There Seasons? A teacher-led demonstration for the whole class

Why Are There Seasons? A teacher-led demonstration for the whole class Why Are There Seasons? A teacher-led demonstration for the whole class Objective: Students will come to better understand that the seasons are caused by the tilt of the earth s axis and because our planet

More information

Moon Phases & Eclipses Notes

Moon Phases & Eclipses Notes Moon Phases & Eclipses Notes Melka 2014-2015 The Moon The Moon is Earth s one natural satellite. Due to its smaller size and slower speed of rotation, the Moon s gravity is 1/6 of the Earth s gravitational

More information

ASTRONOMY REVIEW Qs (2) (3) (4)

ASTRONOMY REVIEW Qs (2) (3) (4) 1. Which statement provides evidence that Earth revolves around the Sun? (1) Winds at different latitudes are curved different amounts by the Coriolis effect. (2) Different star constellations are visible

More information

Moon. & eclipses. Acting out celestial events. (oh my)

Moon. & eclipses. Acting out celestial events. (oh my) phasestides & eclipses Moon (oh my) Acting out celestial events Developed by: Betsy Mills, UCLA NSF GK-12 Fellow Title of Lesson: Moon Phases, Tides, & Eclipses (oh my)! Grade Level: 8 th grade Subject(s):

More information

Our Earth in Motion Understanding Time, Tides and Seasons

Our Earth in Motion Understanding Time, Tides and Seasons Our Earth in Motion Understanding Time, Tides and Seasons 2006 21 minutes Program Synopsis Why does the sun rise in the east? Why does the moon change shape? How do tides happen? This program explains

More information

Name: Section: Date: EXERCISE A: EARTH MOTIONS AND EARTH-SUN RELATIONS

Name: Section: Date: EXERCISE A: EARTH MOTIONS AND EARTH-SUN RELATIONS Name: Section: Date: EXERCISE A: EARTH MOTIONS AND EARTH-SUN RELATIONS REFERENCE: Textbook: Geosystems: An Introduction to Physical Geography Ch.1 Essentials of Geography and Ch.2 Solar Energy to Earth

More information

Reasons for the Seasons

Reasons for the Seasons Reviewing Content There are two main reasons for the seasons. The first is that Earth is tilted on its axis. This tilt causes sunlight to strike different parts of Earth in different ways. Sunlight hits

More information

Solar energy and the Earth s seasons

Solar energy and the Earth s seasons Solar energy and the Earth s seasons Name: Tilt of the Earth s axis and the seasons We now understand that the tilt of Earth s axis makes it possible for different parts of the Earth to experience different

More information

Science Standard II. Objectives 1 & 2. Notes on the Seasons. Background Information. Invitation to Learn. Connections

Science Standard II. Objectives 1 & 2. Notes on the Seasons. Background Information. Invitation to Learn. Connections Notes on the Seasons Science Standard II: Students will understand how Earth s tilt on its axis changes the length of daylight and creates the seasons. Objective 1: Describe the relationship between the

More information

Lesson 1 Earth s Motion

Lesson 1 Earth s Motion Lesson 1 Student Labs and Activities Page Launch Lab 8 Content Vocabulary 9 Lesson Outline 10 MiniLab 12 Content Practice A 13 Content Practice B 14 Math Skills 15 School to Home 16 Key Concept Builders

More information

The Earth's Orbit and the Reasons for Seasons

The Earth's Orbit and the Reasons for Seasons The Earth's Orbit and the Reasons for Seasons Many of our most interesting astronomical and meteorological phenomena derive from the particular nature of the Earth's orbit. Thus, understanding the size,

More information

.11 THE DAY. S it crosses the meridian at apparent noon. Before (ante) noon is thus a.m., while after (post) noon is p.m. FIGURE 7.

.11 THE DAY. S it crosses the meridian at apparent noon. Before (ante) noon is thus a.m., while after (post) noon is p.m. FIGURE 7. Confirming Pages UNIT 7 PA RT I The Time of Day From before recorded history, people have used events in the heavens to mark the passage of time. The day was the time interval from sunrise to sunrise,

More information

Lesson 4 The Seasons. There are 5 major zones on the earth.

Lesson 4 The Seasons. There are 5 major zones on the earth. In this lesson I will talk about what causes our four seasons, spring, summer, fall, and winter. I will cover this by telling some of the myths about what many think are the cause of our seasons and then

More information

Mystery Class Planning Packet #2 Discovering Time Clues

Mystery Class Planning Packet #2 Discovering Time Clues Mystery Class Planning Packet #2 Discovering Time Clues 1 Teacher s Practice Packet #2: Discovering Time Clues Includes: Overview and Essential Question Page 2 Teacher Background Information The Science

More information

ASTRONOMY 161. Introduction to Solar System Astronomy

ASTRONOMY 161. Introduction to Solar System Astronomy ASTRONOMY 161 Introduction to Solar System Astronomy Seasons & Calendars Monday, January 8 Season & Calendars: Key Concepts (1) The cause of the seasons is the tilt of the Earth s rotation axis relative

More information

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Purpose To help students understand how solar radiation varies (duration and intensity) during

More information

Solstice and Equinox Curriculum 45 to 60 minutes for 6 th -8 th grades

Solstice and Equinox Curriculum 45 to 60 minutes for 6 th -8 th grades Solstice and Equinox Curriculum 45 to 60 minutes for 6 th -8 th grades Notice This lesson plan was created by Digitalis Education Solutions, Inc. (DigitalisEducation.com) and is provided free of charge

More information

Name Period Date Unit 5 Test: Earth-Sun-Moon System. 1. The diagram below shows the relative positions of Earth and the Moon and rays of sunlight.

Name Period Date Unit 5 Test: Earth-Sun-Moon System. 1. The diagram below shows the relative positions of Earth and the Moon and rays of sunlight. Name Period Date Unit 5 Test: Earth-Sun-Moon System Multiple Choice: 30 questions at 2 points each (60 points) 1. The diagram below shows the relative positions of Earth and the Moon and rays of sunlight.

More information

Today. Appearance of the Sky. Orientation. Motion of sky. Seasons. Precession. Phases of the Moon

Today. Appearance of the Sky. Orientation. Motion of sky. Seasons. Precession. Phases of the Moon Today Appearance of the Sky Orientation Motion of sky Seasons Precession Phases of the Moon The Appearance of the Sky The Local Sky An object s altitude (above horizon) and direction (along horizon) specify

More information

The Reasons for the Seasons

The Reasons for the Seasons The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch

More information

Rotation of the Earth

Rotation of the Earth Earth rotates from West to East Axis of Rotation Why does the Sun appear to rise in the east and set in the west? link to animation by Barth Van Bossuyt 2011 Rotation of the Earth Rotation is the spin

More information

Sun Earth Relationships

Sun Earth Relationships 1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

More information

Virtual Library Lesson: Rotation vs. Revolution

Virtual Library Lesson: Rotation vs. Revolution Rotation vs. Revolution Lesson Overview Students will observe flash animations of a celestial body rotating and revolving, side by side. They will discuss and make observations as a small group, and will

More information

6 th Grade Standard I Rubric

6 th Grade Standard I Rubric 6 th Grade Standard I Rubric STANDARD I: Students will understand that the appearance of the Moon changes in a predictable cycle as it orbits Earth and as Earth rotates on its axis. Objective 1: Explain

More information

Astronomy Ranking Task: The Seasons

Astronomy Ranking Task: The Seasons Exercise #1 Description: The figure below shows the Earth in its nearly (but not quite) circular orbit around the Sun, and the Earth-Sun distance for each season. A. Ranking Instructions: For a person

More information

Arctic Circle (66.5 N)

Arctic Circle (66.5 N) The Sun and Solar Energy The sun is one of the two primary sources of energy on the Earth (stored energy from the molten core being the other). As such, understanding the sun is important to the performance

More information

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

More information

Chapter 2 Review Clickers. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Chapter 2 Review Clickers. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc. Review Clickers The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself The sky is divided into 88 zones called a) degrees. b) tropics. c) constellations. d) signs. The sky is divided

More information

2. EARTH AND THE SEASONS

2. EARTH AND THE SEASONS 2. EARTH AND THE SEASONS EQUIPMENT 12-inch diameter globe with tilted rotation axis and hour circle 12-inch diameter ring light Ring light stand and clamp Dark-colored towel Protractor with attached string

More information

A model of the Earth and Moon

A model of the Earth and Moon A model of the Earth and Moon Background Information This activity demonstrates the relative sizes of the Earth and Moon and the distance between them. The Moon is our nearest neighbour. It orbits the

More information

Misconceptions in Astronomy in WA High School students (in preparation)

Misconceptions in Astronomy in WA High School students (in preparation) Misconceptions in Astronomy in WA High School students (in preparation) Michael Todd Department of Imaging and Applied Physics, Curtin University of Technology The purpose of this study was to examine

More information

Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy. Solar Power. Courseware Sample 86352-F0 Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

More information

As shown in Figure 1, each hemisphere s summer is warmer than in winter because

As shown in Figure 1, each hemisphere s summer is warmer than in winter because The Reason for the Seasons The Earth s seasons are caused by the tilt of the Earth s axis, NOT the differences in distance from the Sun, which are extremely small. The Earth s axis is tilted 23.45 degrees

More information

Astronomy 101 Lab: Seasons

Astronomy 101 Lab: Seasons Name: Lecture Instructor: Astronomy 101 Lab: Seasons Pre-Lab Assignment: In class, we've talked about the cause of the seasons. In this lab, you will use globes to study the relative positions of Earth

More information

CHAPTER 3. The sun and the seasons. Locating the position of the sun

CHAPTER 3. The sun and the seasons. Locating the position of the sun zenith 90 summer solstice 75 equinox 52 winter solstice 29 altitude angles observer Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST

More information

Phases of the Moon. The next phase, at about day 10, we can see roughly three quarters of the moon. This is called the waxing gibbous phase.

Phases of the Moon. The next phase, at about day 10, we can see roughly three quarters of the moon. This is called the waxing gibbous phase. Phases of the Moon Though we can see the moon s size change throughout the month, it is really always the same size. Yet we see these different sizes or moon phases at regular intervals every month. How

More information

Exploration of the Solar System

Exploration of the Solar System Exploration of the Solar System I. Phases of the Moon all about perspective. In this section you will use WWT to explore how the moon appears to change phases from our vantage point on Earth over the course

More information

Celestial Observations

Celestial Observations Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

More information

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons? Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

More information

MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond

MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond 1 MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond Jeni Gonzales e-mail: JeniLG7@aol.com SED 5600 Dr. Michael Peterson December 18, 2001 1 2 Unit Plan: Multi-level- Earth, Moon, and Beyond Theme:

More information

Shadows, Angles, and the Seasons

Shadows, Angles, and the Seasons Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center

More information

December brings the winter solstice, the day with

December brings the winter solstice, the day with Activities inspired by children s literature Sunrise, Sunset, and Shadows By Christine Anne Royce December brings the winter solstice, the day with the shortest amount of sunlight for the northern hemisphere.

More information

Why Is the Moon Upside Down?

Why Is the Moon Upside Down? CONNECTED, LEVEL 3 2013, Food for Thought Why Is the Moon Upside Down? by Trish Puharich Overview This article explore how three friends made observations of the phases of the Moon from different locations.

More information

Phases, Eclipses, and Tides

Phases, Eclipses, and Tides Earth, Moon, and Sun Guided Reading and Study Phases, Eclipses, and Tides This section explains what causes phases of the moon, what causes eclipses, and what causes the tides. Use Target Reading Skills

More information

5- Minute Refresher: Daily Observable Patterns in the Sky

5- Minute Refresher: Daily Observable Patterns in the Sky 5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and

More information

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

More information