# Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Size: px
Start display at page:

Download "Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti"

Transcription

1 Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking the appropriate bubble for each question. Write your last and first name and Student ID on the `bubble sheet, and mark them in the bubbles. Use of textbook and class notes is allowed. There are a total of 39 questions. 1. How many arcseconds there are in 1 arcminute? A. 6 B. 24 C. 60 D. 360 E How is in relation to 1x10-5? A. larger B. the same C. smaller 3. What phase would the Earth appear to be in, if you were standing on the Moon at New Moon? A. Waxing gibbous B. Crescent C. Full D. New E. Only the Moon can show phases. 4. Friends tell you that they saw the constellation Orion high in the sky at 4 a.m. this morning. You are not interested in getting out of bed so early. How many months will you have to wait until Orion is in the same place of the sky at midnight? A. One month B. Two months C. Three months D. Four months E. Ten months 5. From the largest to the smallest, what is the correct order of the following distances? (ly=light year; AU=Astronomical Unit) A. 1 mm, 1 m, 1 ly, 1 AU B. 1 AU, 1 ly, 1 m, 1 mm C. 1 mm, 1 m, 1 AU, 1 ly D. 1 ly, 1 AU, 1 mm, 1 m E. 1 ly, 1 AU, 1 m, 1 mm

2 6. Gravity: A. is the attraction between all objects with mass B. is the result of the pressure of the atmosphere on us C. occurs between objects that are touching each other D. is the force larger objects exert on smaller ones E. is caused only by planets and the Sun 7. Low tide during New Moon occurs at: A. Midnight B. 6 am and 6 pm C. 6 pm D. Midnight and Noon E. Noon 8. If the Moon were two times closer to the Earth, the gravitational force between them would be: A. 4 times weaker than now B. 2 times weaker than now C. the same as now D. twice stronger than now E. 4 times stronger than now 9. The Sun appears in front of a different constellation each month due to: A. the Sun s motion around the center of the Mikly Way Galaxy B. the Earth s orbital motion around the Sun C. the precession of the rotation axis of the Earth D. the Earth s rotation on its axis E. the Moon s orbit around the Earth 10. What phase needs the Moon to be in, for a solar eclipse to occur? A. New B. First Quarter C. Full D. Third Quarter E. Gibbous Waning 11. Newton concluded that some force had to act on the Moon because A. a force is needed to keep the Moon in motion B. a force is needed to pull the Moon outward C. the Moon moved at a constant velocity D. a force is needed to pull the Moon away from a straight-line motion E. all of the above

3 12. A bunch of apples on a scale that measures their weight would read (relative to the weight you measure at home): A. less if it were accelerating upward in an elevator B. zero if it were free-falling from a cliff C. more if it were located on the Moon D. less if it were sitting in a stationary rocket on a launch pad at sea level. E. less if it were on the surface of the Sun (assuming it does not melt!) 13. Each day, from a point of Earth north of the equator, most stars appear to A. remain stationary overhead B. rise in the west and set in the east C. rise in the east and set in the west D. move to the south E. move to the north 14. If you measure the angle between zenith and Polaris to be 35 degrees, you must be located at: A. 35 degrees latitude North B. 55 degrees latitude North C. 0 degrees latitude D. 55 degrees latitude South E. 35 degrees latitude South 15. A cart of mass M is moving at constant speed v. Suddenly a weight of mass m drops on the cart. The momentum of the cart: A. increases B. decreases C. stays the same 16. Newton s Second Law expresses the fact that: applying a force to an object is likely to cause it to: A. move at constant velocity in proportion to its mass B. accelerate in a manner independent of its mass C. change the direction of motion in proportion to its mass D. move at a constant velocity independent of its mass E. accelerate in proportion to its mass 17. The third quarter Moon sets: A. at sunrise B. at about noon C. at sunset D. at about midnight E. every calendar month

4 18. If the Sun were a grapefruit in this room, the nearest star (Proxima Centauri) would be: A. a soccer ball in Hawaii. B. another grapefruit on the West Coast. C. another grapefruit on the other side of campus. D. a peppercorn about 100 m away. E. a poppyseed about 15 m away. 19. The plane which contains the orbit of the Earth as it moves around the Sun is called A. zodiac B. ecliptic C. precession D. celestial equator E. equinox 20. In which situation would the tides be strongest: A. the Moon and the Sun are aligned in the same direction B. the Moon and the Sun are at 90 degrees C. the Moon and the Sun are at 45 degrees D. the Sun and all the other planets are opposite to each other respect to the Earth E. tides always have the same intensity 21. If the Sun shrunk to the size of the Earth, more than 100 times smaller, in radius, it would spin: A. 100 times slower B. (100) 2 times slower C. at the same rate, since it has the same mass D. (100) 2 times faster E. 100 times faster 22. A cannon ball is fired against a wall, and gets lodged into the wall. This means that its kinetic energy has been transformed into: A. potential energy B. mechanical energy C. thermal energy D. chemical energy E. the energy has been lost 23. Newton s Second Law expresses the fact that an acceleration decreases if the mass of a body increases, a=f/m. If you drop a large, massive stone and a small, light stone from a tower, the massive stone will reach the ground before the lighter stone (assume there is no air). A. true B. false

5 24. A lunar eclipse can only occur when the Moon is: A. Waxing B. Waning C. Full D. New E. Blue 25. Each day the Moon raises about: A. the same time B. it depends on the year C. it depends on the season D. about an hour earlier E. about an hour later 26. Due to tides raised on the Earth by the Moon, the Moon is gradually moving FURTHER away from the Earth. The average distance between the Earth and the Sun remains constant with time. How will solar eclipses be different in a distant future as a result of the increasing distance between the Earth and the Moon? A. Total solar eclipses will occur only at Full Moon B. Total solar eclipses will last considerably longer C. Total solar eclipses will no longer occur D. Total solar eclipses will only be visible from the Earth s Southern Hemisphere E. Total solar eclipses will occur at every New Moon 27. Which physical law describing gravitational motion can explain the fact that comets spend most of their time far away from the Sun and little time close to the Sun? A. Newton s First Law B. Newton s Third Law C. The Universal Law of Gravitation D. Kepler s Second Law E. Kepler s Third Law 28. Which object has the most kinetic energy? A. a 3 kg mass moving at 3 m/s B. a 5 kg mass moving at 2 m/s C. a 1 kg mass moving at 5 m/s D. a 25 kg mass moving at 1 m/s E. a 100 kg mass which is stationary 29. Acceleration is: A. the rate of speed of the body in motion B. the variation of velocity of a body C. the effect of gravity D. the result of Newton s Third Law E. what prevents planets from falling into the Sun

6 30. Galileo s observations showed that: A. Jupiter has moons going around it like a mini-solar System B. the Milky Way consists of billions of planets too faint to be seen with naked eyes C. the Earth was the center of the Solar System D. Saturn showed distinct phases like the Moon E. telescopes were not yet good enough to be useful 31. What causes seasons on the planet Earth? A. The periodic changes in the heat retention of the Earth s atmosphere. B. The elliptical orbit of the Moon C. The tilt of the Earth s axis D. The alignment of the solar and lunar cycles E. The Earth s elliptical orbit, which brings it closer and farther from the Sun 32. What is the period of a comet if its average orbital radius is 4 AU? A. 1 year B. 2 years C. 4 years D. 8 years E. 16 years 33. A comet has an elliptical orbit, and at its closest approach its distance from the Sun it is about half than the distance at the point of largest separation from the Sun. If its speed is 10 km/s at its largest separation, what would be its speed at the closest separation? A. 2 km/s B. 5 km/s C. 10 km/s D. 20 km/s E. 40 km/s 34. If the Earth s axis were tipped 35 degrees instead of 23.5 degrees, seasons on Earth would be A. much less severe B. much more severe C. much longer D. much shorter E. hotter in the Northern Hemisphere, colder in the Southern

7 35. If the Earth had half its current mass, but same distance from the Sun, the gravitational pull of the Sun would be: A. 4 times the current pull B. twice the current pull C. the same as a current pull D. half the current pull E. ¼ the current pull 36. You are an astronaut returning to the Space Shuttle after fixing the International Space Station with a hammer. As you are jetting back to the shuttle, your lifeline breaks, your jets run out of fuel, your radio goes dead, and you miss the shuttle. To get back safely, you should: A. throw the hammer at the shuttle to get someone s attention B. throw the hammer away from the shuttle C. make a hammering motion in the direction of the shuttle D. make a hammering motion away from the shuttle E. use a swimming motion with your arms and legs. 37. The shuttle is now lifting off from its launch pad, after blasting propellant out of its thrusters. The force to lift the shuttle was provided by: A. the propellant releasing its chemical potential energy B. the propellant pushing against air molecules in the atmosphere C. the propellant pushing the shuttle up by heating and expanding the air beneath it D. the propellant accelerating down, giving a reaction thrust to the shuttle E. the propellant pushing the shuttle after hitting the ground and bouncing back 38. The difference between speed and velocity is: A. velocity is calculated using a physics equation B. velocity is the same as acceleration whereas speed is different C. velocity also includes a direction D. they are expressed in different units 39. In which of the following locations is the length of daylight 12 hours throughout the year? A. Only at the equator B. At latitudes closer than 23.5 degrees to the equator C. At latitudes greater than 47 degrees from the equator, north or south D. At latitudes between 23.5 and 47 degrees north or south E. Nowhere on Earth

8

9 Solutions: 1. C 2. A 3. C 4. B 5. E 6. A 7. B 8. E 9. B 10. A 11. D 12. B 13. C 14. B 15. C 16. E 17. B 18. B 19. B 20. A 21. E 22. C 23. B 24. C 25. E 26. C 27. D 28. A 29. B 30. A 31. C 32. D 33. D 34. B 35. D 36. B 37. D 38. C 39. A

### EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

### Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

### Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

### CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

### Name Class Date. true

Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

### Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

### 1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

### Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial

### Newton s Law of Gravity

Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

### Page. ASTRONOMICAL OBJECTS (Page 4).

Star: ASTRONOMICAL OBJECTS ( 4). Ball of gas that generates energy by nuclear fusion in its includes white dwarfs, protostars, neutron stars. Planet: Object (solid or gaseous) that orbits a star. Radius

### Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

### The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe

Football Review- Earth, Moon, Sun 1. During a total solar eclipse, when almost all of the Sun's light traveling to the Earth is blocked by the Moon, what is the order of the Earth, Sun, and Moon? A. Moon,

### Produced by Billy Hix and Terry Sue Fanning. As part of the TeachSpace Program. For more ideas and an image of the current phase of the moon, visit:

The Moon Phase Book Produced by Billy Hix and Terry Sue Fanning As part of the TeachSpace Program For more ideas and an image of the current phase of the moon, visit: www.teachspace.us Printing Date: 10/29/2010

### The changing phases of the Moon originally inspired the concept of the month

The changing phases of the Moon originally inspired the concept of the month Motions of the Moon The Moon is in orbit around the Earth, outside the atmosphere. The Moon `shines via reflected light (12%)

### Moon Phases & Eclipses Notes

Moon Phases & Eclipses Notes Melka 2014-2015 The Moon The Moon is Earth s one natural satellite. Due to its smaller size and slower speed of rotation, the Moon s gravity is 1/6 of the Earth s gravitational

### 8.5 Motions of Earth, the Moon, and Planets

8.5 Motions of, the, and Planets axis axis North Pole South Pole rotation Figure 1 s axis is an imaginary line that goes through the planet from pole-to-pole. orbital radius the average distance between

### The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

### Lecture 13. Gravity in the Solar System

Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

### Chapter 5: Circular Motion, the Planets, and Gravity

Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but

### Answers for the Study Guide: Sun, Earth and Moon Relationship Test

Answers for the Study Guide: Sun, Earth and Moon Relationship Test 1) It takes one day for the Earth to make one complete on its axis. a. Rotation 2) It takes one year for the Earth to make one around

### Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME The Reason for Seasons Hypothesis check: How would seasons in the northern

### Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

### 4 Gravity: A Force of Attraction

CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

### 1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead

### Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Today FIRST HOMEWORK DUE NEXT TIME Seasons/Precession Recap Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy How do we mark the progression of the seasons? We define four special points: summer

### CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

### Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

### A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

### Motions of the Earth. Stuff everyone should know

Motions of the Earth Stuff everyone should know Earth Motions E W N W Noon E Why is there day and night? OR Why do the Sun and stars appear to move through the sky? Because the Earth rotates around its

### Relationship Between the Earth, Moon and Sun

Relationship Between the Earth, Moon and Sun Rotation A body turning on its axis The Earth rotates once every 24 hours in a counterclockwise direction. Revolution A body traveling around another The Earth

### Douglas Adams The Hitchhikers Guide to the Galaxy

There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.

### The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

### The following words and their definitions should be addressed before completion of the reading:

Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

### Periods of Western Astronomy. Chapter 1. Prehistoric Astronomy. Prehistoric Astronomy. The Celestial Sphere. Stonehenge. History of Astronomy

Periods of Western Astronomy Chapter 1 History of Astronomy Western astronomy divides into 4 periods Prehistoric (before 500 B.C.) Cyclical motions of Sun, Moon and stars observed Keeping time and determining

### Moon. & eclipses. Acting out celestial events. (oh my)

phasestides & eclipses Moon (oh my) Acting out celestial events Developed by: Betsy Mills, UCLA NSF GK-12 Fellow Title of Lesson: Moon Phases, Tides, & Eclipses (oh my)! Grade Level: 8 th grade Subject(s):

### Earth In Space Chapter 3

Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the

### STUDY GUIDE: Earth Sun Moon

The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

### The Moon. Nicola Loaring, SAAO

The Moon Nicola Loaring, SAAO Vital Statistics Mean distance from Earth Orbital Period Rotational Period Diameter 384,400 km 27.322 days 27.322 days 3476 km (0.272 x Earth) Mass 7.3477 10 22 kg (0.0123

### Explain the Big Bang Theory and give two pieces of evidence which support it.

Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

### Activities: The Moon is lit and unlit too

Activities: The Moon is lit and unlit too Key objectives: This activity aims to help student to: Identify the different phases of the Moon Know that the Moon does not produce its own light, but reflects

### Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

### Astrock, t he A stronomical Clock

Astrock, t he A stronomical Clock The astronomical clock is unlike any other clock. At first glance you ll find it has similar functions of a standard clock, however the astronomical clock can offer much

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

### Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### Week 1-2: Overview of the Universe & the View from the Earth

Week 1-2: Overview of the Universe & the View from the Earth Hassen M. Yesuf (hyesuf@ucsc.edu) September 29, 2011 1 Lecture summary Protein molecules, the building blocks of a living organism, are made

### CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015

CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015 *** Must See Event 2014 ***April 8 - Mars at Opposition. The red planet will be at its closest approach to Earth and its face will be fully illuminated

### Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC

Cycles in the Sky What is a Fun damental? Each Fun damental is designed to introduce your younger students to some of the basic ideas about one particular area of science. The activities in the Fun damental

### Phases of the Moon. Objective. Materials. Procedure. Name Date Score /20

Name Date Score /20 Phases of the Moon Objective Working with models for the Earth-Moon-Sun system, the student will simulate the phases the Moon passes through each month. Upon completion of this exercise,

### ASTRONOMY 161. Introduction to Solar System Astronomy

ASTRONOMY 161 Introduction to Solar System Astronomy Seasons & Calendars Monday, January 8 Season & Calendars: Key Concepts (1) The cause of the seasons is the tilt of the Earth s rotation axis relative

### Chapter 3 The Science of Astronomy

Chapter 3 The Science of Astronomy Days of the week were named for Sun, Moon, and visible planets. What did ancient civilizations achieve in astronomy? Daily timekeeping Tracking the seasons and calendar

### 2- The Top and bottom of the leaf is covered by thin layer of cells called epidermis that allow sunlight to easily pass into the middle of the leaf.

Final exam summary sheet Topic 5, lesson 2 How leaf is adapted to carry on photosynthesis? 1- Waxy layer called the cuticle cover the leaf slow the water loss. 2- The Top and bottom of the leaf is covered

### Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley

Chapter 1: Our Place in the Universe Topics Our modern view of the universe The scale of the universe Cinema graphic tour of the local universe Spaceship earth 1.1 A Modern View of the Universe Our goals

### Gravity. in the Solar System. Beyond the Book. FOCUS Book

FOCUS Book Design a test to find out whether Earth s gravity always pulls straight down. A pendulum is a weight that hangs from a string or rod that can swing back and forth. Use string and metal washers

### Chapter 5 Astronomy 110 Motions of the Sun and the Moon 1

Chapter 5 Positions of the Sun and Moon Objects in our Solar System appear to move over the course of weeks to months because they are so close. This motion caused ancient astronomers to use the name planets,

### The following questions refer to Chapter 19, (PAGES 259 278 IN YOUR MANUAL, 7 th ed.)

GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Locating the Planets (Chapter 19) and the Moon and Sun (Chapter 21) For this assignment you will require: a calculator, colored pencils, a metric

### Educator Guide to S LAR SYSTEM. 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org

Educator Guide to S LAR SYSTEM 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org Pre-Visit Activity: Orbital Paths Materials: Plastic Plate Marble Scissors To Do: 1. Put the plate on a flat

### Phases of the Moon. The next phase, at about day 10, we can see roughly three quarters of the moon. This is called the waxing gibbous phase.

Phases of the Moon Though we can see the moon s size change throughout the month, it is really always the same size. Yet we see these different sizes or moon phases at regular intervals every month. How

### Activity 3: Observing the Moon

Activity 3: Observing the Moon Print Name: Signature: 1.) KEY. 2.). 3.). 4.). Activity: Since the dawn of time, our closest neighbor the moon has fascinated humans. In this activity we will explore the

### Stellarium a valuable resource for teaching astronomy in the classroom and beyond

Stellarium 1 Stellarium a valuable resource for teaching astronomy in the classroom and beyond Stephen Hughes Department of Physical and Chemical Sciences, Queensland University of Technology, Gardens

### 1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

### Phases of the Moon. --demonstrate the ability to apply an in-depth understanding of moon phases to real life situations

6 th Grade Standard I Rubric Phases of the Moon --demonstrate the ability to apply an in-depth understanding of moon phases to real life situations --demonstrate an understanding of different reasons why

### Chapter 25.1: Models of our Solar System

Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### Section 1 Gravity: A Force of Attraction

Section 1 Gravity: A Force of Attraction Key Concept Gravity is a force of attraction between objects that is due to their masses. What You Will Learn Gravity affects all matter, including the parts of

Energy What is Energy? Energy is the ability to do work. Any object that has energy has the ability to create force. Energy is one of the fundamental building blocks of our universe. Energy appears in

### EARTH'S MOTIONS. 2. The Coriolis effect is a result of Earth's A tilted axis B orbital shape C revolution D rotation

EARTH'S MOTIONS 1. Which hot spot location on Earth's surface usually receives the greatest intensity of insolation on June 21? A Iceland B Hawaii C Easter Island D Yellowstone 2. The Coriolis effect is

### Homework Assignment #7: The Moon

Name Homework Assignment #7: The Moon 2008 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Chapter 21 Origins of Modern Astronomy Motions of the

### Science in the Elementary and Middle School

15-0 Science in the Elementary and Middle School Naturally Occurring Inquiry Process, Which Can Be Made More Effective With Experience Uses Observable Data Science Search for Regularity Involves Information

### From Aristotle to Newton

From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers

### Introduction to the Solar System

Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

### Celestial Observations

Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

### Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.)

Scale of the Solar System Scale of the Universe How big is Earth compared to our solar system? How far away are the stars? How big is the Milky Way Galaxy? How big is the Universe? How do our lifetimes

### ASTR 115: Introduction to Astronomy. Stephen Kane

ASTR 115: Introduction to Astronomy Stephen Kane ASTR 115: Introduction to Astronomy Textbook: The Essential Cosmic Perspective, 7th Edition Homework will be via the Mastering Astronomy web site: www.pearsonmastering.com

RETURN TO THE MOON Lesson Plan INSTRUCTIONS FOR TEACHERS Grade Level: 9-12 Curriculum Links: Earth and Space (SNC 1D: D2.1, D2.2, D2.3, D2.4) Group Size: Groups of 2-4 students Preparation time: 1 hour

### The Sun-Earth-Moon System. Unit 5 covers the following framework standards: ES 9, 11 and PS 1. Content was adapted the following:

Unit 5 The Sun-Earth-Moon System Chapter 10 ~ The Significance of Earth s Position o Section 1 ~ Earth in Space o Section 2 ~ Phases, Eclipses, and Tides o Section 3 ~ Earth s Moon Unit 5 covers the following

### Appropriate space vocabulary for Primary School

Appropriate space vocabulary for Primary School Stuff Looks like Gas Dust Rock Liquid Fatter (moon) Thinner (moon) Faster Slower Hot Cold Material Shape Straight at (an object) Direct (light) Indirect

### Essential Question. Enduring Understanding

Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons

### The ecliptic - Earth s orbital plane

The ecliptic - Earth s orbital plane The line of nodes descending node The Moon s orbital plane Moon s orbit inclination 5.45º ascending node celestial declination Zero longitude in the ecliptic The orbit

### Gravity? Depends on Where You Are!

Gravity? Depends on Where You Are! Overview Gravity is one of the fundamental concepts of Physics. It is an abstract concept that benefits from activities that help illustrate it. This lesson plan involves

### Note S1: Eclipses & Predictions

The Moon's Orbit The first part of this note gives reference information and definitions about eclipses [14], much of which would have been familiar to ancient Greek astronomers, though not necessarily

### What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating

What are Tides? Tides are very long-period waves that move through the oceans as a result of the gravitational attraction of the Moon and the Sun for the water in the oceans of the Earth. Tides start in

### Class 2 Solar System Characteristics Formation Exosolar Planets

Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

### Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

### Practice TEST 2. Explain your reasoning

Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

### TIDES. 1. Tides are the regular rise and fall of sea level that occurs either once a day (every 24.8 hours) or twice a day (every 12.4 hours).

TIDES What causes tides? How are tides predicted? 1. Tides are the regular rise and fall of sea level that occurs either once a day (every 24.8 hours) or twice a day (every 12.4 hours). Tides are waves

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

### Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005

Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital

### The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html

The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.

### The Gravitational Field

The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř jan.hrncir@gfxs.cz Martin Klejch martin.klejch@gfxs.cz F. X. Šalda Grammar School, Liberec

### Sun Earth Relationships

1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

### Which month has larger and smaller day time?

ACTIVITY-1 Which month has larger and smaller day time? Problem: Which month has larger and smaller day time? Aim: Finding out which month has larger and smaller duration of day in the Year 2006. Format

### How Rockets Work Newton s Laws of Motion

How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

### Rising and Setting of the Moon

Rising and Setting of the Moon Activity UCIObs 6 Grade Level: 3 5 Source: Copyright (2009) by Tammy Smecker-Hane. Contact tsmecker@uci.edu with questions. Standards: This activity addresses these California