Size: px
Start display at page:

Transcription

1 Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The property of an object that causes this effect is called density. The density of an object depends on its mass and its volume. The mass is the amount of matter in the object. The volume is the amount of space that the object takes up in three dimensions. All the objects around you take up a certain amount of space, no matter what shape they are. They all have length, width, and depth so they take up space in three dimensions. These pictures show that every object has a volume that takes up 3-dimensional space. The volume of a wooden block, for instance is its length width height. For the block shown, the volume equals 5cm 5cm 4 cm = 100 cubic centimeters (cm 3 ). A mathematical equation for density is: Density = mass/volume or D = m/v. If something has a large mass compared to its volume, it has a high density. This is like a set of weights which can be small but heavy. 234 Middle School Chemistry Unit 2011 American Chemical Society

2 But if an object has a small mass compared to its volume it has a lower density. This is like an apple or a piece of wood which can seem light for its size. Different types of plastic, metal, wood, and other materials have different densities. The density of a material is based on the atoms or molecules the substance is made from. For example, a copper and an aluminum cube of the same volume feel very different when you hold them. The copper cube feels much heavier than the aluminum cube. If you put them on a balance, you see that the copper cube has more mass than the aluminum cube. Since the cubes have the same volume and the copper has a greater mass, the copper cube is more dense than the aluminum cube. This is true since D = m/v. If the cubes have the same volume, the one with the greater mass must be more dense. If you think about the atoms of the two metals, there can only be a couple of reasons why the copper is more dense than the aluminum: Copper atoms might have more mass than aluminum atoms. Copper atoms might be smaller than aluminum atoms so more can fit in the same volume. Copper atoms might be arranged differently than aluminum atoms so more can fit in the same volume. Either one or any combination of these explanations could be the reason why the copper cube has more mass. It turns out that copper and aluminum atoms are arranged about the same way but copper atoms are smaller and have more mass than aluminum atoms American Chemical Society Middle School Chemistry Unit 235

3 Therefore more can fit into the same volume and each one has more mass. This makes copper more dense than aluminum. A sample of a substance with a higher density will always have a greater mass than the same size sample of a substance with a lower density. For example, a sample of lead weighs more than the same size sample of wax. A small sample of a substance with a high density may weigh as much or more than a larger sample of a substance with a lower density. For example, a small piece of iron may weigh as much or more than a larger piece of plastic. A closer look at mass and volume In order to find the density of a substance, you need to measure the mass and the volume of a sample of the substance. Mass is the amount of matter in an object. People are often confused between the meaning of mass and weight. The meaning of mass and weight are different but they are related to each other. Let s say you have an object like a bowling ball. The bowling ball, like everything else, is made of a certain amount of matter. Let s call the amount of matter that makes up the bowling ball the mass of the bowling ball. You hook the bowling ball to a scale that shows that the amount of mass that makes up the bowling ball weighs 9 pounds. Then you do something unusual: You fly the bowling ball and the scale to the moon and hook the bowling ball to the same scale again. The moon has less gravity than Earth so the bowling ball is not pulled down as hard as it was on Earth. Let s say that on the moon, the scale shows that the mass that makes up the bowling ball weighs only 1.5 pounds. You know that the bowling ball itself didn t change. It is still made of the same amount of matter so it still has the same mass. The only thing that changed was the force of gravity pulling down on the bowling ball. So mass is a measure of the amount of matter that makes up an object. Weight is a measure of the force of gravity on a certain mass. So how can you measure the mass of an object by putting it on a scale? Since gravity is pulling down on the object, why doesn t a scale always measure weight? That is a great question and the answer has to do with how the scale is made. 236 Middle School Chemistry Unit 2011 American Chemical Society

4 When you put an object on a scale, of course the scale feels the effect of gravity but the scale is programmed or calibrated to do an internal calculation to factor out the effect of gravity and to display only the mass. The density of copper is greater than the density of plastic or wood If you compared the density of a copper cube and a plastic cube of the same volume, the copper is more dense. This is because copper is made from small massive atoms that are packed closely together. This gives copper a fairly high density. Plastics are made mostly of carbon and hydrogen which are not as massive for their size. They are connected together in long chains and not packed as tightly as the atoms in copper. This makes plastic less dense than copper. Wood is made of carbon, hydrogen, and oxygen atoms. These are pretty similar in size and mass to the atoms in plastics. Wood is also made mostly of long molecules that are arranged and packed together to make the structure of the wood American Chemical Society Middle School Chemistry Unit 237

5 Because of the size, mass, and arrangement of its molecules, the density of wood is more similar to plastic than to copper. Finding volume using the water displacement method Sometimes finding the volume of an object is not as easy as simply using a metric ruler to measure its length, width, and height. Another method is the water displacement method. There are two basic ways of doing the water displacement method to find volume. Fill a graduated cylinder with water to a level that is high enough so that the object placed in the water will be submerged. Record the initial level of the water. Carefully place an object in the water and let it sink to the bottom. If it doesn t sink, push it down gently with something thin like a pencil point so that it is just under the surface. The water level will rise. Record the final water level. Subtract the initial water level from the final water level to calculate the volume of water that was displaced by the object. The volume of water displaced by an object equals the volume of the object. In this case the final water level (72 ml) - initial water level (60 ml) = 12 ml. Since a milliliter is the same as a cubic centimeter (cm 3 ), the volume of the object is 12 cm 3. Another water displacement method: Place a cup or beaker in a larger container. Fill the cup as full as possible until it is ready to overflow. Gently place an object in the water and let it sink to the bottom. If it doesn t sink, push it down gently with something thin like a pencil point so that the object is just under the surface. Some water will flow out of the cup and into the outer container. This water was displaced by the object. Carefully pour this water into a graduated cylinder to measure its volume. The volume of the displaced water equals the volume of the object. 238 Middle School Chemistry Unit 2011 American Chemical Society

6 The density of a substance is the same no matter what the size of the sample. This means that a big piece of wax, for example, has the same density as a small piece of the same wax. Take water for instance. 100 ml of water has a mass of 100 grams. Since density = mass/volume, this sample of water has a density of 100 grams/100 ml = 1 gram/ml = 1 g/cm ml of water has a mass of 50 grams. The density of this sample of water is 50 grams/50 ml = 1 gram/ cm 3. Water or any substance always has the same density no matter what the size of the sample. Density in sinking and floating The density of an object and the density of the liquid it is placed in determine whether an object will sink or float. Even though one object might be heavier than another, the heavy one might float and the lighter one might sink. An example is a piece of clay and a heavier wax candle placed in water. Even though the wax is heavier than the clay, the wax floats and the clay sinks. This is possible because its not the mass of the object that matters in sinking and floating but its density compared to the density of water. An object that is less dense than water will float. An object that is more dense than water will sink. This is why the clay sinks in water and the wax floats. The clay is more dense than water and the wax is less dense than water. Since water is more dense than wax, a volume of water has more mass than an equal volume of wax. You can prove this by putting a volume of wax and an equal volume of water on opposite ends of a balance. The balance will show that the water has a greater mass than the wax. This means that the water is more dense than the wax. This is why the wax floats. Wax is made of carbon and hydrogen atoms linked together into long molecules. These atoms are pretty light and the arrangement of the molecules makes wax less dense than water American Chemical Society Middle School Chemistry Unit 239

7 If you put a volume of clay and an equal volume of water on opposite ends of a balance, the balance will show that the clay has more mass. This means that the clay is more dense than the water. This is why the clay sinks. Clay is made from oxygen and heavier atoms like aluminum and silicon. The mass of these atoms and their arrangement make clay more dense than water. Liquids can sink and float in other liquids Sinking and floating applies to liquids too. You can test this by carefully placing different liquids together in a graduated cylinder. For example, if you add vegetable oil to water, the oil floats on the water. If you add isopropyl alcohol, the alcohol floats on the oil. This means that oil is less dense than water and alcohol is less dense than oil. The density of an object or the water it is placed in can be changed so that an object that normally sinks will float. If an object sinks in water, this means that the object is more dense than the water. There are two possible ways to make the object float. You can increase the density of the water so that the water becomes more dense than the object. Or you could increase the volume of the object so that the object becomes less dense than the water. If you put a slice of carrot in water, the carrot sinks. This is because the carrot is more dense than water. But if you dissolve something like salt in the water, the density of the water increases. This is because the mass of the water increases a lot and the volume does not increase as much. Since D=m/v, increasing mass a lot and volume just a little will result in an increase in density. If enough salt dissolves, the density of the water can be increased enough that the salt water will become more dense than the carrot and the carrot will float. 240 Middle School Chemistry Unit 2011 American Chemical Society

8 Why do heavy boats float? Why can boats float when they are made out of material that is more dense than water? An object made from dense material can float if its volume is made large enough. Here s an example: If you have a cube of clay that is 3 cm on each side, the cube has a volume of 3 cm 3 cm 3 cm = 27 cm 3. Let s say that the cube has a mass of 60 grams. The density of the clay cube is 60 g/27 cm 3 = 2.2 g/cm 3. Since the density of water is 1 g/cm 3, the clay cube sinks. [Picture] But you can take the same cube of clay and press it down into a thin pancake and form it into a bowl that is like half a sphere. If it has a diameter of 8 cm, the clay bowl will have a volume of about 134 cm 3 or more than four times the volume of the cube. The density of the bowl is now 60 g/ 134 cm 3 =.45 g/cm 3. The density of the clay itself does t change but the density of the object does. The increase in the volume of the object decreases the density so that the density of the bowl is less than the density of water so the bowl floats. The temperature of a substance affects its density. When a substance like a solid or a liquid is heated, its molecules move faster and get slightly further apart. The substance still has the same mass but it takes up a larger volume. Since D=m/v, a larger volume results in a decreased density. This can be shown pretty easily with liquids. If hot water is carefully placed on cold water, the hot water floats because it is less dense than the cold water. When water is cooled, its molecules move slower and get a little closer together. The water still has the same mass but it takes up a smaller volume. Since D=m/v, a smaller volume results in an increased density. If cold water is placed on hot water, the cold water sinks because it is more dense than the hot water. Ice is less dense than liquid water. Normally, when a liquid is cooled, its molecules slow down and the attractions between molecules bring them closer together. But water is different. When water gets below 4 C, its molecules actually begin getting a little further apart as they orient themselves into the crystal structure of ice. Since the mass does not change but the ice occupies a larger volume than the water, the density of ice is less than the density of water. This is why ice floats in water American Chemical Society Middle School Chemistry Unit 241

### Test Bank - Chapter 3 Multiple Choice

Test Bank - Chapter 3 The questions in the test bank cover the concepts from the lessons in Chapter 3. Select questions from any of the categories that match the content you covered with students. The

### Chapter 3, Lesson 4: Density: Sink and Float for Solids

Chapter 3, Lesson 4: Density: Sink and Float for Solids Key Concepts The density of an object determines whether it will float or sink in another substance. An object will float if it is less dense than

### LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Set-up and Materials for Experiment

Set-up and Materials for Experiment 1 OVERVIEW The mass density of a substance is a measure of the mass that that substance contains in a given volume. Mathematically is written: ρ = m V ( Density = Volume

### Buoyant Force and Archimedes Principle

Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring

### DETERMINING THE DENSITY OF LIQUIDS & SOLIDS

DETERMINING THE DENSITY OF LIQUIDS & SOLIDS 17 Density, like color, odor, melting point, and boiling point, is a physical property of matter. Therefore, density may be used in identifying matter. Density

Chapter 1 Student Reading Chemistry is the study of matter You could say that chemistry is the science that studies all the stuff in the entire world. A more scientific term for stuff is matter. So chemistry

### Density. Density is how concentrated or compact matter is.

Density Density is how concentrated or compact matter is. Packing snow into snowballs increases its density. You are squeezing large amounts of matter into small volumes of space. Equation for Density

### Density Lab. If you get stuck or are uncertain, please ask questions and/or refer to the hints at the end of the lab. Name: Section: Due Date:

Name: Section: Due Date: Lab 01B-1 If you get stuck or are uncertain, please ask questions and/or refer to the hints at the end of the lab. Density Lab Density is an important concept in oceanography,

Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

### Science - 7 th grade - Matter - Density - Science Process, Inquiry

Science - 7 th grade - Matter - Density - Science Process, Inquiry Overview The main idea associated with these activities is density. Density, as it is developed within these activities threads most closely

### 10 g 5 g? 10 g 5 g. 10 g 5 g. scale

The International System of Units, or the SI Units Vs. Honors Chem 1 LENGTH In the SI, the base unit of length is the Meter. Prefixes identify additional units of length, based on the meter. Smaller than

### The Properties of Water (Instruction Sheet)

The Properties of Water (Instruction Sheet) Property : High Polarity Activity #1 Surface Tension: PILE IT ON. Materials: 1 DRY penny, 1 eye dropper, water. 1. Make sure the penny is dry. 2. Begin by estimating

### What s in a Mole? Molar Mass

LESSON 10 What s in a Mole? Molar Mass OVERVIEW Key Ideas Lesson Type Lab: Groups of 4 Chemists compare moles of substances rather than masses because moles are a way of counting atoms. When considering

### Buoyancy. What floats your boat?

Buoyancy What floats your boat? Sink or float? Test The cube sinks to the bottom. WHY? Weight Due to the pulling force of gravity both the cube and the water have the property of weight. Gravity Gravity

### Student Exploration: Archimedes Principle

Name: Date: Student Exploration: Archimedes Principle Vocabulary: Archimedes principle, buoyant force, density, displace, mass, volume, weight Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

### Chemical Changes. Measuring a Chemical Reaction. Name(s)

Chemical Changes Name(s) In the particle model of matter, individual atoms can be bound tightly to other atoms to form molecules. For example, water molecules are made up of two hydrogen atoms bound to

### Key. Name: OBJECTIVES

Name: Key OBJECTIVES Correctly define: observation, inference, classification, percent deviation, density, rate of change, cyclic change, dynamic equilibrium, interface, mass, volume GRAPHICAL RELATIONSHIPS

### Chapter 5, Lesson 3 Why Does Water Dissolve Salt?

Chapter 5, Lesson 3 Why Does Water Dissolve Salt? Key Concepts The polarity of water molecules enables water to dissolve many ionically bonded substances. Salt (sodium chloride) is made from positive sodium

### Density and Archimedes Principle

Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated

### Write True or False in the space provided.

CP Physics -- Exam #7 Practice Name: _ Class: Date: Write True or False in the space provided. 1) Pressure at the bottom of a lake depends on the weight density of the lake water and on the volume of the

### Multiple Choice For questions 1-10, circle only one answer.

Test Bank - Chapter 1 The questions in the test bank cover the concepts from the lessons in Chapter 1. Select questions from any of the categories that match the content you covered with students. The

### Three Methods for Calculating the Buoyant Force Gleue: Physics

Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed

### Chapter 1: Chemistry: Measurements and Methods

Chapter 1: Chemistry: Measurements and Methods 1.1 The Discovery Process o Chemistry - The study of matter o Matter - Anything that has mass and occupies space, the stuff that things are made of. This

### Buoyancy and Archimedes Principle. Buoyancy and Archimedes Principle Assume block is in equilibrium.

Assume block is in equilibrium. Then upward forces must equal downward forces. Upward force: pressure from fluid Downward force: atmospheric pressure plus weight Therefore In this case, the object is less

### Measurement of Length, Mass, Volume and Density

Measurement of Length, Mass, Volume and Density Experimental Objective The objective of this experiment is to acquaint you with basic scientific conventions for measuring physical quantities. You will

### First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5

First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5 Physical Science Overview Materials (matter) come in different forms. Water can be rain falling (liquid)

Grade 8 Activity Keep Your Head Above Water Do things that float behave differently in salt and fresh water? What lets them float, and when do they sink? Concepts Water has physical properties of density

### Written By Kelly Lundstrom & Kennda Lynch January 31, 2012 Milk Dye ACTIVITY PLAN

Milk Dye ACTIVITY PLAN Objective: Students will use the scientific method to test the difference between using whole milk and skim milk in this milk and food dye experiment. Students will explore ideas

### Density and Archimedes Principle

Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated

### Fluids I. Level : Conceptual Physics/Physics I. Q1) Order the following materials from lowest to greatest according to their densities.

Fluids I Level : Conceptual Physics/Physics I Teacher : Kim 1. Density One of the properties of any substances (solids, liquids and gases) is the measure of how tightly the material is packed together.

### ALPERTON COMMUNITY SCHOOL MATHS FACULTY ACHIEVING GRADE A/A* EXAM PRACTICE BY TOPIC

ALPERTON COMMUNITY SCHOOL MATHS FACULTY ACHIEVING GRADE A/A* EXAM PRACTICE BY TOPIC WEEK Calculator paper Each set of questions is followed by solutions so you can check & mark your own work CONTENTS TOPIC

### POTATO FLOAT. Common Preconceptions:

POTATO FLOAT Unit: Salinity Patterns & the Water Cycle l Grade Level: Middle l Time Required: 30 min. (in class) after solutions are prepared by the teacher l Content Standard: NSES Physical Science, properties

### SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

### EXERCISE # 1.Metric Measurement & Scientific Notation

EXERCISE # 1.Metric Measurement & Scientific Notation Student Learning Outcomes At the completion of this exercise, students will be able to learn: 1. How to use scientific notation 2. Discuss the importance

### Performing Calculatons

Performing Calculatons There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations of them,

### Chapter 2 Measurement and Problem Solving

Introductory Chemistry, 3 rd Edition Nivaldo Tro Measurement and Problem Solving Graph of global Temperature rise in 20 th Century. Cover page Opposite page 11. Roy Kennedy Massachusetts Bay Community

### Eighth Grade, Density To Float or Not to Float? 2004 Colorado Unit Writing Project 1

Density To Float or Not to Float? That is the Question! Grade Level or Special Area: Eighth Grade Science Written by: Aida Peterson, Clear Lake Middle School, Denver, Colorado Length of Unit: Twelve lessons

### Archimedes Principle. Biological Systems

Archimedes Principle Introduction Many of the substances we encounter in our every day lives do not have rigid structure or form. Such substances are called fluids and can be divided into two categories:

### Solids, Liquids, and Gases

Solids, Liquids, and Gases nd Intended for Grade: 2 Grade Subject: Science Description: Activities to help students understand solids, liquids, gases, and the changes between these states. Objective: The

### EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes

EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes Give the symbol for each of the following metric units and state the quantity measured by each unit: (a) gigameter (b) kilogram (c) centiliter (d) microsecond

### SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,

### Organic Chemistry Calculations

Organic Chemistry Calculations There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations

### Density: Sea Water Mixing and Sinking

Density: Sea Water Mixing and Sinking Unit: Salinity Patterr~s & the Water Cycle I Grade Level: Middle or High I Time Required: two 45 minute class periods I Content Standard: NSES Physical Science, properties

### Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle

Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when

### Name Date Hour. Buoyancy

Name Date Hour Buoyancy Consider: If I gave you an object that you had never seen before and it was made of unknown material and then asked you whether or not it would float in water, what would you base

### Chapter 6, Lesson 4: Temperature and the Rate of a Chemical Reaction

Chapter 6, Lesson 4: Temperature and the Rate of a Chemical Reaction Key Concepts Reactants must be moving fast enough and hit each other hard enough for a chemical reaction to take place. Increasing the

### Oxygen Give and Take. Correlation to National Science Education Standards

Chemistry and Environmental Sciences Oxygen Give and Take Summary This is a series of three activities followed by a worksheet. The concepts taught include gas production (O 2 and CO 2 ), chemical reactions,

### KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

### Characteristics of the. thermosphere

Characteristics of the Atmosphere. If you were lost in the desert, you could survive for a few days without food and water. But you wouldn't last more than five minutes without the ' Objectives Describe

### CALCULATING THE SIZE OF AN ATOM

Ch 100: Fundamentals of Chemistry 1 CALCULATING THE SIZE OF AN ATOM Introduction: The atom is so very small that only highly sophisticated instruments are able to measure its dimensions. In this experiment

### Teacher Information Lesson Title: Density labs

Teacher Information Lesson Title: Density labs Lesson Description: These labs are hands on exercises that will allow the students to measure and calculate the densities of different types of objects. The

T ABLE OF CONTENTS ABOUT DELTA SCIENCE MODULES Program Introduction................... iii Teacher s Guide..................... iv Delta Science Readers............... vi Equipment and Materials Kit.........

### UNIT (1) MEASUREMENTS IN CHEMISTRY

UNIT (1) MEASUREMENTS IN CHEMISTRY Measurements are part of our daily lives. We measure our weights, driving distances, and gallons of gasoline. As a health professional you might measure blood pressure,

### Lesson 2 The Buoyant Force

Lesson 2 Student Labs and Activities Page Launch Lab 26 Content Vocabulary 27 Lesson Outline 28 MiniLab 30 Content Practice A 31 Content Practice B 32 School to Home 33 Key Concept Builders 34 Enrichment

### Hot Leaks. See how the temperature of liquids changes the way they flow.

P h y s i c s Q u e s t A c t i v i t i e s Activity 2 1 Hot Leaks See how the temperature of liquids changes the way they flow. Safety: This experiment requires using the hot water tap and straight pins.

### The Earth, Sun, and Moon

reflect The Sun and Moon are Earth s constant companions. We bask in the Sun s heat and light. It provides Earth s energy, and life could not exist without it. We rely on the Moon to light dark nights.

### Activity P13: Buoyant Force (Force Sensor)

Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI-6746) 1 Mass and Hanger Set (ME-9348) 1 Base and Support Rod (ME-9355) 1 Ruler, metric 1 Beaker,

### Classifying Matter. reflect. look out!

reflect Do you know what air, water, and an apple all have in common? They are all examples of matter. Matter is a word we use a lot in science. It means stuff. All of the stuff in the world that has mass

### NaCl Lattice Science Activities

NaCl Lattice Science Activities STEM: The Science of Salt Using a Salt Lattice Model Teacher Notes Science Activities A Guided-Inquiry Approach Using the 3D Molecular Designs NaCl Lattice Model Classroom

### 1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

### Density Determinations and Various Methods to Measure

Density Determinations and Various Methods to Measure Volume GOAL AND OVERVIEW This lab provides an introduction to the concept and applications of density measurements. The densities of brass and aluminum

### Mineral Identification

Mineral Identification Name Notes Page Objectives Explain which mineral properties are most important in identification. Explain how to identify minerals by their properties. Classify some common minerals

### Hands-On Labs SM-1 Lab Manual

EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

### 2. Room temperature: C. Kelvin. 2. Room temperature:

Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational

### Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions

### CHAPTER 2: MEASUREMENT AND PROBLEM SOLVING

CHAPTER 2: MEASUREMENT AND PROBLEM SOLVING Problems: 1-64, 69-88, 91-120, 123-124 2.1 Measuring Global Temperatures measurement: a number with attached units When scientists collect data, it is important

### Chapter 2, Lesson 5: Changing State Melting

Chapter 2, Lesson 5: Changing State Melting Key Concepts Melting is a process that causes a substance to change from a solid to a liquid. Melting occurs when the molecules of a solid speed up enough that

### EXPERIMENT 4 THE DETERMINATION OF THE CALORIC CONTENT OF A CASHEW NUT

EXPERIMENT 4 THE DETERMINATION OF THE CALORIC CONTENT OF A CASHEW NUT Textbook reference: pp103-105 Purpose: In this Activity, students determine how many calories are released per gram when cashews burn

### Molar Mass of Butane

Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures

### The Structure of Water Introductory Lesson

Dana V. Middlemiss Fall 2002 The Structure of Water Introductory Lesson Abstract: This is an introduction to the chemical nature of water and its interactions. In particular, this lesson will explore evaporation,

### Date R. Mirshahi. Forces are all around us. Without forces, nothing can move and no work can be done.

Name Date R. Mirshahi Forces and Movement: Balanced and Unbalanced Forces Forces are all around us. Without forces, nothing can move and no work can be done. There are different types of forces. Some forces

### Chapter 4, Lesson 5: Energy Levels, Electrons, and Ionic Bonding

Chapter 4, Lesson 5: Energy Levels, Electrons, and Ionic Bonding Key Concepts The attractions between the protons and electrons of atoms can cause an electron to move completely from one atom to the other.

### Grade 8 Science Chapter 9 Notes

Grade 8 Science Chapter 9 Notes Force Force - Anything that causes a change in the motion of an object. - usually a push or a pull. - the unit for force is the Newton (N). Balanced Forces - forces that

### Buoyancy Boats Florida Sunshine State Science Standards: Objectives Engage: Explore:

Buoyancy Boats Florida Sunshine State Science Standards: SC.C.2.3.1 The student knows that many forces act at a distance. SC.C.2.3.2 The student knows common contact forces. SC.C.2.3.3 The student knows

### SUGGESTED ACTIVITIES

SUGGESTED ACTIVITIES (Thermal Energy) From Invitations to Science Inquiry 2 nd Edition by Tik L. Liem: Activity Page Number Concept Warm a Bottle by Shaking 184 Heat, Friction The Confused Bottles 206

### Minnesota Comprehensive Assessments-Series III

Not for student use. Minnesota Comprehensive Assessments-Series III Science Item Sampler Script Grade 8 S ARE NOT SECURE TEST MATERIALS. THIS ITEM SAMPLER SCRIPT MAY BE COPIED OR DUPLICATED. MINNESOTA

### Sorting Materials into Groups

Sorting Materials into Groups 4 CHAPTER Tips and Tricks Objects around us have different shapes, colours and uses. They are made up of one or more materials such as paper, glass, plastic, cloth, wood,

### 7. separated equivalent groups to show repeated subtraction as a model for division.

unit 3 Matter Prior Knowledge The student has 1. measured length and area in the English and metric systems 2. measured time 3. added and subtracted with regrouping and renaming 4. used a calculator to

### Greatest Discoveries With Bill Nye: Chemistry Teacher s Guide

Teacher s Guide Grade Level: 6 8 Curriculum Focus: Physical Science Lesson Duration: Two class periods Program Oxygen and Atoms Explore atomic and molecular structure and see how oxygen was first isolated.

### Chapter 3. Flotation. ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Buoyancy

ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 Flotation Buoyancy Buoyancy arises from the fact that fluid pressure increases with depth and from the fact that the

### TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

### Concept Questions Archimedes Principle. 8.01t Nov 24, 2004

Concept Questions Archimedes Principle 8.01t Nov 24, 2004 Pascal s Law Pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and the walls of the containing vessel

### The Analytical Balance

Chemistry 119: Experiment 1 The Analytical Balance Operation of the Single-Pan Analytical Balance Receive instruction from your teaching assistant concerning the proper operation of the Sartorius BP 210S

### PROPERTIES OF MATTER

PROPERTIES OF MATTER Produced By Dr. Brian A. Jerome, Ph.D. Written and Directed By Dr. Brian A. Jerome, Ph.D. Study Guide Written By Dr. Brian A. Jerome, Ph.D. Published & Distributed by AGC/UNITED LEARNING

### Physical and Chemical Properties of Matter

Physical and Chemical Properties of Matter What is matter? Anything that has mass and takes up space Chemical or Physical Property? Physical properties of matter: characteristics that can be observed or

### Chemical Building Blocks: Chapter 3: Elements and Periodic Table

Name: Class: Date: Chemical Building Blocks: Chapter 3: Elements and Periodic Table Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

### Unit A: Studying Materials Scientifically

ITEM BANKS Unit A: Studying Materials Scientifically Multiple choice: Circle the best answer. 1. What safety rules should you always follow while doing a science laboratory? a. Wear safety goggles at all

### Order of the Weather Experiments

Order of the Weather Experiments 1. Staying Dry Towel in bottle--student i. Magic Air Pushing the stick down-- Student ii. Air Power Water in funnel--teacher 2. Tipping the Scale Weighing air--student

### Chapter 4 Practice Quiz

Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:

### Activity P13: Buoyant Force (Force Sensor)

July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS

### SAM Teachers Guide Heat and Temperature

SAM Teachers Guide Heat and Temperature Overview Students learn that temperature measures average kinetic energy, and heat is the transfer of energy from hot systems to cold systems. They consider what

### What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage

Unit Grades K-3 Awareness Teacher Overview What is energy? Energy makes change; it does things for us. It moves cars along the road and boats over the water. It bakes a cake in the oven and keeps ice frozen

### Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions

2.1 Solutes & Solvents Vocabulary: Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions solvent the larger part of a solution - the part of a solution into which the solutes dissolve solute the smaller

### Mixtures. reflect. How is seawater different from pure water? How is it different from rocky soil?

reflect Everything around us is made out of tiny bits of matter. These particles may combine in different ways to produce new materials. Sometimes we need to separate the parts of a material. If we know

### MSCOPE Final Project Report Melanie Hopkins, Mary Leighton, Roscoe Nicholson, and Panos Oikonomou. Sink or Swim. Photo: M.

MSCOPE Final Project Report Melanie Hopkins, Mary Leighton, Roscoe Nicholson, and Panos Oikonomou Sink or Swim Type of Project: Facilitated activity with optional demonstration Target Museum: SciTech Hands-On

### States of Matter Unit 4 th Grade

States of Matter Unit 4 th Grade Learning Standards 12.4.14 Understand that matter is usually found in 3 states: liquid, solid, and gas and be able to identify the properties of each. Understand that water

### Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

### Buoyant Force and Archimedes' Principle

Buoyant Force and Archimedes' Principle Introduction: Buoyant forces keep Supertankers from sinking and party balloons floating. An object that is more dense than a liquid will sink in that liquid. If