# Chapter 8 Steady Incompressible Flow in Pressure Conduits

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 8 Steady Incompressible Flow in Pressure Conduits

2 Outline 8.1 Laminar Flow and turbulent flow Reynolds Experiment 8.2 Reynolds number 8.3 Hydraulic Radius 8.4 Friction Head Loss in Conduits of Constant Cross Section 8.5 Laminar flow in circular pipes 8.6 Characters of turbulent flow 8.7 Boundary Layers

3 Objectives Describe the appearance of laminar and turbulent flow. Compute Reynolds number and identify the type of flow. State the characteristics of laminar, turbulent and transitional flow. Define boundary layers.

4 Introduction In the earlier chapter, the basic equations of continuity, energy and momentum were introduced and applied to fluid flow cases where the assumption of frictionless flow (or ideal fluid flow) was made. It is now necessary to introduce concepts which enable the extension of the previous work to real fluids in which viscosity is accepted and frictional effects cannot be ignored. The concept of Reynolds number as an indication of flow type will be used extensively.

5 8.1 Laminar Flow and turbulent flow The flow of a fluid in a pipe may be laminar or turbulent. Osborne Reynolds first distinguished the two flows. Laminar flow: Fluid moves in smooth streamlines. Turbulent flow: Violent mixing, fluid velocity at a point varies randomly with time. Time dependence of fluid velocity at a point.

6 Reynolds Experiment Dye water Open to increase velocity Valve

7 Laminar flow Dye streak stable Low velocity Transition Turbulent flow Dye mixed up in the cross-section High velocity

8 Laminar: Transition: h f ν Turbulent : h f ν n 1.75 < n < 2 Point B higher critical point Point A lower critical point The point where flow transforms from laminar to turbulent is called the critical point.

9 Reynolds number Whether flow is laminar or turbulent depends on the dimensionless Reynolds Number (which is usually abbreviated Re) Where Re DV ρ = μ DV ν ρ = density, V = mean velocity, = D = diameter, μ=dynamic viscosity ν= kinematic viscosity ν = μ ρ

10 8.2 Critical Reynolds Number Point B occurs at about Re=4000,but it could be pushed to 5000, however at those valves the laminar flow is highly unstable. Point A Re=2000, below that value all flows are laminar any turbulence is damped by viscous friction. True critical Reynolds number Rec= 2000

11 What are the units of this Reynolds number? the Reynolds number, Re, is a non-dimensional number.

12 Pipe flow 2 πd A R = = 4 = χ πd d 4 d Re = ρvd μ > Re c = 2000 Turbulent flow

13 Open channel flow R A ( b + mh) h = = χ 2 b + 2h 1 + m b m h Re = ρ vr μ =Re > Re c = 500 Turbulent flow

14 Example If the pipe and the fluid have the following properties: We want to know the maximum velocity when the Re is 2000.

15 In laminar flow the motion of the particles of fluid is very orderly with all particles moving in straight lines parallel to the pipe walls. But what is fast or slow? And at what speed does the flow pattern change? And why might we want to know this?

16 What does this abstract number mean? It can be interpreted that when the inertial forces dominate over the viscous forces (when the fluid is flowing faster and Re is larger) then the flow is turbulent. When the viscous forces are dominant (slow flow, low Re) they are sufficient enough to keep all the fluid particles in line, then the flow is laminar.

17 ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] d d [ ] [ ] [ Re μ vl ρ T F μ Lv L v L μ y d d u Aμ T L v ρ L v L ρ x u Mu Ma F = = = = = = = = = Viscous force : Inertia force

18 8.3 Hydraulic Radius The hydraulic radius is the flow area divided by the wetted perimeter. R h = A P For a circular pipe flowing full. 2 πr r R h = = = 2 π r 2 D 4

19

20 8.4 Friction Head Losses Steady flow in a conduit of uniform cross section A (Not necessarily circular) For equilibrium in steady flow p1 A p2 A γlasin a τ PL = 0 0 p1 p2 PL ( z 1 + ) ( z2 + ) = τ 0 = γ γ γa h f F = ma = 0 h f sin = z z L 2 1 a L γ ( A / P) τ 0 = τ 0 L γr Applies to: any shape of uniform cross section ; laminar or turbulent flow = h

21 Question The water in a vertical pipe flows from the top down. There are two cross-sections with the distance l, their piezometric head difference h and the frictional losses between the two cross-section h f, then: A. h f =h; B. h f =h +l; C. h f =l -h; D. h f =l.

22 Friction in circular conduits For circular pipes of constant cross-section 2 L V h f = f Darcy-Weisbach Equation D 2g L = pipe length D = pipe diameter V = pipe velocity f = friction factor

23 Friction in noncircular conduits Use D = 4R h in Darcy-Weisbach h f = f L D 2 V 2g = f L 4R h 2 V 2g With ρvd ρv. 4R Re = = μ μ

24 8.5 Laminar flow in circular pipes Hagen-Poiseuille law for laminar flow h f ~ V Equation involves no empirical coefficient Equation involves only fluid properties, g, and V

25 8.5 Laminar flow in circular pipes For laminar flow is circular pipes, the friction factor (f) is given below f 64 ν = = DV 64 Re Re = Reynolds number

26 Shear stress linear distribution Fig8.3 Velocity profile in laminar flow and distribution of shear stress

27 Shear Stress in Pipes A horizontal steady uniform flow in a circular pipe is shown in figure. Similarly: so or Physical meaning: For the uniform flow in a circular pipe, the shear stress is zero at the center of the pipe and increases linearly with the radius to a maximum τ 0 at the wall.

28 Velocity Distribution Laminar flow -- Newton s law of viscosity is valid: dv τ = μ dy dv dy dv dr = rγ dh = 2μ ds 2 dv dr rγ dh = 2 ds rγ dh dv = dr 2μ ds r γ dh V = + C 4μ ds 2 r = 0 γ dh r V 1 4μ ds r0 2 r V = Vmax 1 r0 r = 0 γ dh C 4μ ds 2 2 Velocity distribution in a pipe (laminar flow) is parabolic with maximum at center.

29 Example (8.6.2)

30 Question The shearing stress distribution over the cross-section of a flow in circle pipe is: A. constant over the whole cross-section; B. B. zero at the pipe axis and proportional to radius; C. zero on the pipe wall and increases linearly from the wall to the pipe axis; D. parabolic distribution.

31 Maximum Velocity The maximum velocity for laminar flows in a circular pipe is at the pipe center line. (r=0): u x max = ρgj 4μ r 2 0

32 Mean Velocity max )2 ( x r r x A x u r gj r rdr r r gj r rdr u A da u v = = = = = μ ρ π π μ ρ π π The mean velocity of the laminar flow in a circular pipe is half of the maximum velocity.

33 Question The velocity distribution of laminar flow in a circle pipe meets: A. symmetrical law B. linear change law C. parabolic law D. logarithmic curve law.

34 Question For the laminar flow in a circle pipe, if the velocity at pipe axis is 4m/s, then the mean velocity over the cross-section is: A. 4m/s; B. 3.2m/s; C. 2m/s; D. 1m/s.

35 8.6 Basic Theory of Turbulent Flow Almost all fluid flow which we encounter in daily life is turbulent. Typical examples are flow around (as well as in) cars, aeroplanes and buildings.

36 8.6.1 Characters of turbulent flow Irregularities randomness Deterministic approaches cannot be used (statistics)

37 Characters of turbulent flow (contd) Diffusivity mixing Increased momentum, heat and mass transfer

38 Characters of turbulent flow (contd) Energy consumption besides the energy consumption caused by viscosity, there is more energy consumption caused by turbulent shear stress.

39 What is the origin of turbulence? Turbulence often originates as an instability of laminar flow For example pipe flow starts to become turbulent at Re (the increasing Re pipe flow)

40 8.6.2 Fluctuation and Time-Average of Turbulent Flow Quantities In turbulent flow we usually divide the variables in one time-averaged part, which is independent of time (when the mean flow is steady), and one fluctuating part.

41 u x = u x u x time-average velocity u x u x 1 = T = u T 0 x u x dx u x

42 Decomposition of properties Consider the turbulent velocity at a point: The velocity is decomposed into a mean, u, and a fluctuating component, u

43 Decomposition of properties cont d Similarly for all fluid properties: We determine the time average at a fixed point as: It is important that the integral is taken over sufficiently long time interval for the average to be independent of the time overall steady state flow! If this condition is met the average of the fluctuating components is zero:

44 Turbulent Shear Stress Consider turbulent flow in a horizontal pipe, and the upward eddy motion of fluid particles in a layer of lower velocity to an adjacent layer of higher velocity through a differential area da Then the turbulent shear stress can be expressed as

45 8.6.3 Turbulent Shear Stress The turbulent shear stress consists of two parts: the laminar component, and the turbulent component, The velocity profile is approximately parabolic in laminar flow, it becomes flatter or fuller in turbulent flow. The fullness increases with the Reynolds number, and the velocity profile becomes more nearly uniform, however, that the flow speed at the wall of a stationary pipe is always zero (no-slip condition).

46 Turbulent Shear Stress Experimental results show that is usually a negative quantity. Terms such as or are called Reynolds stresses or turbulent stresses. Many semi-empirical formulations have been developed that model the Reynolds stress in terms of average velocity gradients. Such models are called turbulence models. Momentum transport by eddies in turbulent flows is analogous to the molecular momentum diffusion.

47 8.7 Boundary Layers Very thin region near solid surfaces, where flow and surface interact through viscous forces Although it accounts for a very small region in space, it is extremely important in applications involving fluid flows Boundary layers can be laminar and turbulent!!

48 Boundary layers

49 y U free stream laminar to turbulent transition edge of boundary layer x laminar turbulent δ(x) x cr Fig Schematic of boundary layer flow over a flat plate

50 the characteristics of boundary layer The boundary layer thickness δ grows continuously from the start of the fluid-surface contact, e.g. the leading edge. It is a function of x, not a constant. Velocity profiles and shear stress τ are f(x,y). The flow will generally be laminar starting from x = 0. The flow will undergo laminar-to-turbulent transition if the streamwise dimension is greater than a distance x cr corresponding to the location of the transition Reynolds number Re c. Outside of the boundary layer region, free stream conditions exist where velocity gradients and therefore viscous effects are typically negligible.

51 Reynolds number defined as where Re x = ρ U x μ = U x υ ρ = fluid density; μ = fluid dynamic viscosity ν= fluid kinematic viscosity; U = characteristic flow velocity x = characteristic flow dimension

52 thickness of the boundary layer We define the thickness of this boundary layer as the distance from the wall to the point where the velocity is 99% of the free stream velocity, the velocity in the middle of the pipe or river.

53 Plane boundary layers build-up Definition of boundary layer thickness

### Civil Engineering Hydraulics Mechanics of Fluids. Flow in Pipes

Civil Engineering Hydraulics Mechanics of Fluids Flow in Pipes 2 Now we will move from the purely theoretical discussion of nondimensional parameters to a topic with a bit more that you can see and feel

### Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

### 4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

### Viscous flow in pipe

Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### Fluid flow in circular and noncircular pipes is commonly encountered in

cen72367_ch08.qxd 11/4/04 7:13 PM Page 321 FLOW IN PIPES CHAPTER 8 Fluid flow in circular and noncircular pipes is commonly encountered in practice. The hot and cold water that we use in our homes is pumped

### Experiment 3 Pipe Friction

EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

### ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### 1.4 Review. 1.5 Thermodynamic Properties. CEE 3310 Thermodynamic Properties, Aug. 26,

CEE 3310 Thermodynamic Properties, Aug. 26, 2011 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

### A Guide to Calculate Convection Coefficients for Thermal Problems Application Note

A Guide to Calculate Convection Coefficients for Thermal Problems Application Note Keywords: Thermal analysis, convection coefficients, computational fluid dynamics, free convection, forced convection.

### Chapter 8. Viscous Flow in Pipes

Chapter 8 Viscous Flow in Pipes 8.1 General Characteristics of Pipe Flow We will consider round pipe flow, which is completely filled with the fluid. 8.1.1 Laminar or Turbulent Flow The flow of a fluid

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

### 1. Introduction, fluid properties (1.1, and handouts)

1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Applications of fluid mechanics

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

### FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

### Fundamentals of Fluid Mechanics

Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

### CHAPTER 4 FLOW IN CHANNELS

CHAPTER 4 FLOW IN CHANNELS INTRODUCTION 1 Flows in conduits or channels are of interest in science, engineering, and everyday life. Flows in closed conduits or channels, like pipes or air ducts, are entirely

### CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

### Chapter 13 OPEN-CHANNEL FLOW

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

### Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

### CH-205: Fluid Dynamics

CH-05: Fluid Dynamics nd Year, B.Tech. & Integrated Dual Degree (Chemical Engineering) Solutions of Mid Semester Examination Data Given: Density of water, ρ = 1000 kg/m 3, gravitational acceleration, g

### ME19b. SOLUTIONS. Feb. 11, 2010. Due Feb. 18

ME19b. SOLTIONS. Feb. 11, 21. Due Feb. 18 PROBLEM B14 Consider the long thin racing boats used in competitive rowing events. Assume that the major component of resistance to motion is the skin friction

### 5.2 Rotational Kinematics, Moment of Inertia

5 ANGULAR MOTION 5.2 Rotational Kinematics, Moment of Inertia Name: 5.2 Rotational Kinematics, Moment of Inertia 5.2.1 Rotational Kinematics In (translational) kinematics, we started out with the position

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### Bead moving along a thin, rigid, wire.

Bead moving along a thin, rigid, wire. odolfo. osales, Department of Mathematics, Massachusetts Inst. of Technology, Cambridge, Massachusetts, MA 02139 October 17, 2004 Abstract An equation describing

### Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

### Introduction to COMSOL. The Navier-Stokes Equations

Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

### Blasius solution. Chapter 19. 19.1 Boundary layer over a semi-infinite flat plate

Chapter 19 Blasius solution 191 Boundary layer over a semi-infinite flat plate Let us consider a uniform and stationary flow impinging tangentially upon a vertical flat plate of semi-infinite length Fig

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### 11 Navier-Stokes equations and turbulence

11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### EXAMPLE: Water Flow in a Pipe

EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along

### Natural Convection. Buoyancy force

Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

### Urban Hydraulics. 2.1 Basic Fluid Mechanics

Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able

### Lecture 8 - Turbulence. Applied Computational Fluid Dynamics

Lecture 8 - Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence

### Distinguished Professor George Washington University. Graw Hill

Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

### Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

### HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

### 1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

### Chapter 1. Governing Equations of Fluid Flow and Heat Transfer

Chapter 1 Governing Equations of Fluid Flow and Heat Transfer Following fundamental laws can be used to derive governing differential equations that are solved in a Computational Fluid Dynamics (CFD) study

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.

Fluid Mechanics FE Review Carrie (CJ) McClelland, P.E. cmcclell@mines.edu Fluid Mechanics FE Review These slides contain some notes, thoughts about what to study, and some practice problems. The answers

### CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

### For Water to Move a driving force is needed

RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

### Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

### ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2

ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2 1 M. Tech Scholar, 2 Associate Professor Department of Mechanical Engineering, Bipin

### Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

### Aids needed for demonstrations: viscous fluid (water), tubes (pipes), injections, paper, stopwatches, vessels,, weights

1 Viscous and turbulent flow Level: high school (16-17 years) hours (2 hours class teaching, 2 hours practical excercises) Content: 1. Viscous flow 2. Poiseuille s law 3. Passing from laminar to turbulent

### CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and

### Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

### I-campus project School-wide Program on Fluid Mechanics Modules on High Reynolds Number Flows K. P. Burr, T. R. Akylas & C. C. Mei

1 I-campus project School-wide Program on Fluid Mechanics Modules on High Reynolds Number Flows K. P. Burr, T. R. Akylas & C. C. Mei CHAPTER TWO TWO-DIMENSIONAL LAMINAR BOUNDARY LAYERS 1 Introduction.

### Hydraulic losses in pipes

Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor

### Fluent Software Training TRN Boundary Conditions. Fluent Inc. 2/20/01

Boundary Conditions C1 Overview Inlet and Outlet Boundaries Velocity Outline Profiles Turbulence Parameters Pressure Boundaries and others... Wall, Symmetry, Periodic and Axis Boundaries Internal Cell

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### Heat transfer in Flow Through Conduits

Heat transfer in Flow Through Conduits R. Shankar Suramanian Department of Chemical and Biomolecular Engineering Clarkson University A common situation encountered y the chemical engineer is heat transfer

### Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

### * Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No.

* Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B PPT No. 17 Biot Savart s Law A straight infinitely long wire is carrying

### Basic Fluid Dynamics

Basic Fluid Dynamics Yue-Kin Tsang February 9, 2011 1 ontinuum hypothesis In the continuum model of fluids, physical quantities are considered to be varying continuously in space, for example, we may speak

### Experiment (13): Flow channel

Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

### Introduction to basic principles of fluid mechanics

2.016 Hydrodynamics Prof. A.H. Techet Introduction to basic principles of fluid mechanics I. Flow Descriptions 1. Lagrangian (following the particle): In rigid body mechanics the motion of a body is described

### Macroscopic Balances for Nonisothermal Systems

Transport Phenomena Macroscopic Balances for Nonisothermal Systems 1 Macroscopic Balances for Nonisothermal Systems 1. The macroscopic energy balance 2. The macroscopic mechanical energy balance 3. Use

### Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

### OPEN-CHANNEL FLOW. Free surface. P atm

OPEN-CHANNEL FLOW Open-channel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface

### The First Law of Thermodynamics: Closed Systems. Heat Transfer

The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy gained

### Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

### FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES

FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the

### Physics 126 Practice Exam #3 Professor Siegel

Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force

### Applied Fluid Mechanics

Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

### Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

### Exemplar Problems Physics

Chapter Eight GRAVITATION MCQ I 8.1 The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration

### A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

### Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

### Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis

Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 99 107 (2009) 99 Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis M. E. Sayed-Ahmed

### Commercial CFD Software Modelling

Commercial CFD Software Modelling Dr. Nor Azwadi bin Che Sidik Faculty of Mechanical Engineering Universiti Teknologi Malaysia INSPIRING CREATIVE AND INNOVATIVE MINDS 1 CFD Modeling CFD modeling can be

### There are a number of criteria to consider when designing canals Below is a list of main criteria, not necessarily in order of importance:

Lecture 15 Canal Design Basics I. Canal Design Factors There are a number of criteria to consider when designing canals Below is a list of main criteria, not necessarily in order of importance: 1. Flow

### Pressure drop in pipes...

Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### 15. The Kinetic Theory of Gases

5. The Kinetic Theory of Gases Introduction and Summary Previously the ideal gas law was discussed from an experimental point of view. The relationship between pressure, density, and temperature was later

### CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

### Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

### Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

### Physics 41 HW Set 1 Chapter 15

Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

### Chapter 9. Steady Flow in Open channels

Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows

### Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

### Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

### LECTURE 6: Fluid Sheets

LECTURE 6: Fluid Sheets The dynamics of high-speed fluid sheets was first considered by Savart after his early work on electromagnetism with Biot, and was subsequently examined in a series of papers by