Hydraulic losses in pipes


 Brook Robertson
 2 years ago
 Views:
Transcription
1 Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes Moody Chart Types of Fluid Flow Problems Minor losses Viscous flows in pipes Our intension here is generalized the onedimensional Bernoulli equation for viscous flow. When the viscosity of the fluid is taken into account total energy head H = v2 + p ρg + z is no longer constant along the pipe. In direction of flow, due to friction cause by viscosity of the fluid we have v2 1 + p 1 ρg + z 1 > v2 2 + p 2 ρg + z 2. So to restore the equality we must add some scalar quantity to the right side of this inequality 1 + p 1 ρg + z 1 = v2 2 + p 2 ρg + z 2 + h ls (1) This scalar quantity ls is called as hydraulic loss. The hydraulic loss between two different cross section along the pipe is equal to the difference of total energy for this cross section: h ls = H 1 H 2 (2) We must remember that always H 1 > H 2. In horizontal pipe when z 1 = z 2 and diameter of pipe is constant v 1 = hydraulic loss is equal to the head of pressure drop or head loss h L = p 1 p 2 ρg (3) Head loss is express by Darcy Weisbach equation: h L = f L D (4) 1
2 Figure 1: Pipe friction loss. For horizontal pipe, with constant diameter this loss may be measured by height of the pressure drop: p ρg = h We must remember that equation (4) is valid only for horizontal pipes. In general, with v 1 = but z 1 z 2, the head loss is given p 1 p 2 ρg = (z 2 z 1 )+ f L D (5) Part of the pressure change is due to elevation change and part is due to head loss associated with frictional effects, which are given in terms of the friction factor f that depends on Reynolds number and relative roughness f = ϕ(re, ε/d). It is not easy to determine the functional dependence of the friction factor on the Reynolds number and relative roughness (ε/d). Much of this information is a result of experiments conducted by J. Nikuradse in 1933 and amplified by many others since then. One difficulty lies in the determination of the roughness of the pipe. Nikuradse used artificially roughened pipes produced by gluing sand grains of known size onto pipe walls to produce pipes with sandpapertype surfaces. In commercially available pipes the roughness is not as uniform and well defined as in the artificially roughened pipes used by Nikuradse. However, it is possible to obtain a measure of the effective relative roughness of typical pipes and thus to obtain the friction factor. Figure (3)) shows the functional dependence of f on Re and and is called the Moody chart in honor of L. F. Moody, who, along with C. F. Colebrook, correlated the original data of Nikuradse in terms of the relative roughness of commercially available pipe materials. 1.1 Moody Chart The following characteristics are observed from the data of (3). For laminar flow, Re < 2300, f = 64/Re, which is independent of relative roughness. For very large Reynolds numbers, f = ϕ(ε/d) which is independent of the Reynolds number. For such flows, commonly termed completely turbulent flow, along the wall pipe, exists the laminar sublayer so thin that the surface roughness completely dominates the character of the flow near the wall. The gap in the figure for which no values of f are given, 2100 < Re < 4000, is a result of the fact that the flow in this transition range 2
3 Figure 2: Flow near rough and smooth walls may be laminar or turbulent (or an unsteady mix of both) depending on the specific circumstances involved. Note that even for smooth pipes the friction factor is not zero. That is, there is a head loss in any pipe, no matter how smooth the surface is made. This is a result of the noslip boundary condition that requires any fluid to stick to any solid surface it flows over. There is always some microscopic surface roughness that produces the noslip behavior (and thus f 0) on the molecular level, even when the roughness is considerably less than the viscous sublayer thickness. Such pipes are called hydraulically smooth. Various investigators have attempted to obtain an analytical expression for f = ϕ(re,ε/d). Note that the Moody chart covers an extremely wide range in flow parameters. The nonlaminar region covers more than four orders of magnitude in Reynolds number from Re = to Re = Obviously, for a given pipe and fluid, typical values of the average velocity do not cover this range. However, because of the large variety in pipes D, fluids (ρ, and µ and and velocities (v), such a wide range in Re is needed to accommodate nearly all applications of pipe flow. Colebrook combined all data for transition and turbulent flow in smooth as well as rough pipes into the following relation known as Colebrook equation 1 f = 2.0 log ( ε/d Re f The Colebrook equation is implicit in f, and determination of friction factor requires tedious iteration. An approximate explicit relation for f is given by S.E. Haaland in 1983 as [ ( ) ] ε/d 1.11 = 1.8 log f Re + (7) 3.7 ) (6) 3
4 Figure 3: Friction factor as a function of Reynolds number and relative roughness for round pipes the Moody chart For hydraulically smooth pipe the friction factor is approximated by Blasius (1911) formula f = (100 Re) 1/4 (8) The next formula proposed by Aldsul(1952) gained some popularity in the engineering application due to its simplicity: f = 0,11( ε D + 68 Re )1/4 (9) It is clear that in order to use the Moody diagram we must be able to obtain values of surface roughness. These have been measured and tabulated (and sometimes plotted) for an extensive range of materials used in piping systems. Table 1 provides some representative values. Table 1. Surface roughness values for various engineering materials PIPING MATERIAL ROUGHNESS ε mm Cast iron 0.26 Commercial steel and wrought iron Concrete Drawn tubing Galvanized iron 0.15 Plastic,(and glass) 0.0 (smooth) Riveted steel
5 We must remember that the values in table typically used, are not actual measured ones, but are instead the result of data correlations constructed over a range of measurements. They are sometimes referred to as equivalent roughnesses; it is useful to consider them as simply representative values. 1.2 Types of Fluid Flow Problems In the design and analysis of piping systems that involve the use of the Moody chart, we usually encounter three types of problems: 1. Determining the pressure drop when the the pipe length and diameter are given for a specified flow rate ( or velocity) 2. Determining the flow rate when the the pipe length and diameter are given for a specified pressure drop 3. Determining the pipe diameter when the pipe length and flow rate are given for a specified pressure drop. Example 1. Oil, with ρ = 900kg/m3 and kinematic coefficient of viscosity ν = 0, 00001m2/s, flows at q v = 0,2m3/s through 500 m of 200mm diameter castiron pipe. Determine (a) the head loss and (b) the pressure drop if the pipe slopes down at 10 in the flow direction. Solution. First we compute the Reynolds number Re = V d/ν = 4 q v /(πdν) = 4 0,2/(3,14 0,2 0,00001) = Velocity is equal to v = q v /( πd2 4 ) = 6.4 m/s. Absolute roughness for ironcast pipe is ε = 0.26 mm. So relative roughness is ε = ε d = 0,0013. Now we are able to calculate using the formula(10) or Moody chart, friction factor f = 0,0225. Then the head loss is h f = f L d For inclined pipe the head loss is So pressure drop is = 0, , ,81 = 117 m h f = p ρg + z 1 z 2 = p ρg + Lsin10o. p = ρg(h f 500 sin 10 o ) = 900 9,81 (117 87) = Example 2. Oil, with ρ = 950 kg/m3 and = 2E 5 m2/s, flows through a 30 cmdiameter pipe 100 m long with a head loss of 8 m. The roughness ratio is ε/d = Find the average velocity and flow rate. Iterative Solution. To start we need to guess f. A good first guess is the fully rough value (wholly turbulent) for ε/d = from Moody chart. It is f Now from DarcyWeisbach formula (4) we have h f = f L D f =
6 f v = 0.471/0.014 = 5.8 m/s Re = vd/ν f new (87000) = v = 0.471/ = 4.91 m/s Re = vd/ν f new (73700) = v = 0.471/ = 4.84 m/s Re = vd/ν f(72600) = , so we can accept v = 4,84 m/s, q v = v( πd2 4 ) = 0,342 m3 /s. 1.3 Minor losses For any pipe system, in addition to the Moodytype friction loss computed for the length of pipe. Most pipe systems consist of considerably more than straight pipes. These additional components add to the overall head loss of the system. Such losses are generally termed minor losses, with the apparent implication being that the majority of the system loss is associated with the friction in the straight portions of the pipes, the major losses or local losses. In many cases this is true. In other cases the minor losses are greater than the major losses. The minor losses may raised by 1. Pipe entrance or exit 2. Sudden expansion or contraction 3. Bends, elbows, tees, and other fittings 4. Valves,open or partially closed 5. Gradual expansions or contractions The major losses may not be so minor; e.g., a partially closed valve can cause a greater pressure drop than a long pipe. The losses are commonly measured experimentally. The data, especially for valves, are somewhat dependent upon the particular manufacturers design. The most common method used to determine these head losses or pressure drops h L = p ρg = K L (10) where K L means (local) loss coefficient. Although K L is dimensionless, it is not correlated in the literature with the Reynolds number and roughness ratio but rather simply with the raw size of the pipe. Almost all data are reported for turbulentflow conditions. Example 3. Find (see figure 5.) 1. the discharge through the pipeline as in figure for H=10 m 2. determine the head loss H 1 for q v = 60 l/s. D = 0.15m, ε D = 0,0017, ν = 1, Solution. The energy equation applied between points 1 and 2 including all the losses, can be written as H 1 = v2 + f L D +(K 1 + K 2 + K 3 + K 4 ) v2 6
7 Figure 4: where K 1 = 0,5 is entrance loss coefficient,k 2,K 3 = 0,9 as a standard elbow, and K 4 = 10 for globe valve fully open. Putting the values tot the above formula one obtain H 1 = v2 (13,3+680 f) To start we need to guess f. A good first guess is the fully rough value (wholly turbulent) for ε/d = 0, 0017from Moody chart. It is f 0, 022. Now from DarcyWeisbach formula (4) we have 10 = v2 (13, ,022) = 2.63, Re = f 0,023 v = 2,6 m/s Re = vd/ν f new (380000) = 0,023 v = 2,6 m/s Re = vd/ν
8 Figure 5: Pipeline with minor losses We accepted v = 2,60 m/s, q v = v( πd2 4 ) = 45, m 3 /s. For the second part, with q v known, the solution is straightforward: = q v A = 0.06 π = 3.40 m/s, Re = , f = and H 1 = 3,42 (13, ,023) = 17,06 m 2 9,81 Example 4. Flow between two reservoirs. Water at 10 o C flow from a large reservoir to a small one through a 5cmdiameter cast iron piping system shown in figure (6). Determine the elevation z 1 for the flow rate of 6l/s. Figure 6: (Answer. 27,9 m) 8
9 During this course I will be used the following books: References [1] F. M. White, Fluid Mechanics, McGrawHill. [2] B. R. Munson, D.F Young and T. H. Okiisshi, Fundamentals of Fluid Mechanics, John Wiley and Sons, Inc.. [3] Y. Nakayama and R.F. Boucher, 1999.Intoduction to Fluid Mechanics, Butterworth Heinemann. [4] Y.A. Cengel and J. M. Cimbala, Fluid Mechanics, McGraw Hill. [5] J.M. McDonough, Lectures in Elementary Fluid Dynamics: Physics, Mathematics and Applications, University of Kentucky, Lexington. 9
Calibration and Uncertainties of Pipe Roughness Height
9 th IWA/IAHR Conerence on Urban Drainage Modelling Calibration and Uncertainties o Pipe Roughness Height Kailin Yang, Yongxin Guo, Xinlei Guo,Hui Fu and Tao Wang China Institute o Water Resources and
More informationHYDRAULIC ANALYSIS OF PIPE LINED WITH MADISON S 100% SOLIDS STRUCTURAL POLYURETHANE COATINGS
HYDRAULIC ANALYSIS OF PIPE LINED WITH MADISON S 100% SOLIDS STRUCTURAL POLYURETHANE COATINGS Shiwei William Guan, Ph.D. Vice President, R&D and International Business Madison Chemical Industries Inc. 490
More informationFREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES
FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the
More informationLecture 6  Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6  Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
More informationOUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS
Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid
More informationSpecial Linings for unusual service conditions. Please contact ACIPCO.
Linings Linings Along with technical and metallurgical advancement in piping materials, research on lining requirements for pipe and fittings has resulted in the development of linings to meet many different
More informationEnhancement of heat transfer of solar air heater roughened with circular transverse RIB
Enhancement of heat transfer of solar air heater roughened with circular transverse RIB Gurpreet Singh 1, Dr. G. S. Sidhu 2 Lala Lajpat Rai Institute of Engineering and Technology, Moga Punjab, India 1,2
More informationHEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS
HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS P.R.Hatwar 1, Bhojraj N. Kale 2 1, 2 Department of Mechanical Engineering Dr. Babasaheb Ambedkar College of Engineering & Research,
More informationExact solution of friction factor and diameter problems involving laminar flow of Bingham plastic fluids
Journal of etroleum and Gas Exploration Research (ISSN 766510) Vol. () pp. 0703, February, 01 Available online http://www.interesjournals.org/jger Copyright 01 International Research Journals Review
More informationINTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING
ISSN (ONLINE): 23213051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING Study of forced convection heat transfer With DAQ & ANSYS First Authors Moopanar karthikeyan 1, Raote
More informationJournal bearings/sliding bearings
Journal bearings/sliding bearings Operating conditions: Advantages:  Vibration damping, impact damping, noise damping  not sensitive for vibrations, low operating noise level  dust tight (if lubricated
More informationImproved fluid control by proper nonnewtonian flow modeling
Tekna Flow Assurance 2015, Larvik Improved fluid control by proper nonnewtonian flow modeling Stein Tore Johansen, SINTEF Sjur Mo, SINTEF A general wall friction model for a nonnewtonian fluid has been
More informationNumerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS
merical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS Abhilash Kumar 1, R. SaravanaSathiyaPrabhahar 2 Mepco Schlenk Engineering College, Sivakasi, Tamilnadu India 1,
More informationGOVERNMENT COLLEGE UNIVERSITY FAISALABAD BACHELORS DEGREE PROGRAM IN CIVIL ENGINEERING TECHNOLOGY SCHEME OF STUDIES SEMESTER1 Sr# Course Code Subject
GOVERNMENT COLLEGE UNIVERSITY FAISALABAD BACHELORS DEGREE PROGRAM IN CIVIL ENGINEERING TECHNOLOGY SCHEME OF STUDIES SEMESTER1 Sr# Course Code Subject Credit Hours Contact Hours Theory Practical Theory
More informationUsing CFD to improve the design of a circulating water channel
27 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational
More informationAPPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY CURVE ON HYPOTHETICAL WELLX
PROCEEDINGS, ThirtyThird Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 830, 008 SGPTR185 APPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY
More informationPRESSURE DROP ANALYSIS OF INLET PIPE WITH REDUCER AND WITHOUT REDUCER USING CFD ANALYSIS
International Journal of Mechanical Engineering (IJME) ISSN(P): 23192240; ISSN(E): 23192259 Vol. 4, Issue 3, Apr  May 2015, 8592 IASET PRESSURE DROP ANALYSIS OF INLET PIPE WITH REDUCER AND WITHOUT
More informationSelection and Determination of Tubing and Production Casing Sizes
CHAPTER 3 Selection and Determination of Tubing and Production Casing Sizes OUTLINE 3.1 Overview 3.2 Overview of Nodal Analysis 3.3 Selection and Determination of Tubing and Production Casing Sizes for
More informationApplication of CFD in Membrane Technique
Application of CFD in Membrane Technique Der Fakultät für Ingenieurwissenschaften, Abteilung Maschinenbau der Universität DuisburgEssen zur Erlangung des akademischen Grades DOKTORINGENIEUR genehmigte
More informationEXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS
INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY Vol.33 (2015), No.3, pp.158162 http://dx.doi.org/10.18280/ijht.330324 EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT
More informationPhysics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
More informationHeat Transfer Enhancement in a Heat Exchanger using Punched and Vcut Twisted Tape Inserts
Heat Transfer Enhancement in a Heat Exchanger using Punched and Vcut Twisted Tape Inserts Imran Quazi#1, Prof. V.R.Mohite#2 #1DPCOEMechanical Department, SPP University Pune, India imranqu azi198 7@gmail.com
More informationHEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
More informationCE 642 HYDRAULICS. Dr. Emre Can
CE 642 HYDRAULICS Dr. Emre Can 1 HYDRAULICS Tentative Course Outline Introduction Pipe Flow Open Channel Flows Uniform Flow NonUniform Flow Local Changes in Water Levels Channel Controls Sedimentation
More informationCHEMICAL ENGINEERING AND CHEMICAL PROCESS TECHNOLOGY  Vol. I  Interphase Mass Transfer  A. Burghardt
INTERPHASE MASS TRANSFER A. Burghardt Institute of Chemical Engineering, Polish Academy of Sciences, Poland Keywords: Turbulent flow, turbulent mass flux, eddy viscosity, eddy diffusivity, Prandtl mixing
More informationUnsteady Pressure Measurements
Quite often the measurements of pressures has to be conducted in unsteady conditions. Typical cases are those of the measurement of timevarying pressure (with periodic oscillations or step changes) the
More informationENHANCEMENT OF HEAT TRANSFER USING WIRE COIL INSERTS WITH CHORD RIBS
ENHANCEMENT OF HEAT TRANSFER USING WIRE COIL INSERTS WITH CHORD RIBS 1 P.S.Desale, 2 N.C.Ghuge 1 PG Student, Heat Power, MCERC, Nasik (India) 2 Asst. Prof., Mech. Dept., MCERC,Nasik(India) ABSTRACT From
More informationHEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT
HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT Rahul M. Gupta 1, Bhushan C. Bissa 2 1 Research Scholar, Department of Mechanical Engineering, Shri Ramdeobaba
More informationContents. Microfluidics  Jens Ducrée Physics: Fluid Dynamics 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. InkJet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
More informationPeriod #16: Soil Compressibility and Consolidation (II)
Period #16: Soil Compressibility and Consolidation (II) A. Review and Motivation (1) Review: In most soils, changes in total volume are associated with reductions in void volume. The volume change of the
More informationHeat Transfer Analysis of Cylindrical Perforated Fins in Staggered Arrangement
International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 22783075, Volume2, Issue5, April 203 Heat Transfer Analysis of Cylindrical Fins in Staggered Arrangement Amol
More informationTheoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink
Theoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink Dr. B. S. Gawali 1, V. B. Swami 2, S. D. Thakre 3 Professor Dr., Department of Mechanical
More informationA COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER
A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER William Logie and Elimar Frank Institut für Solartechnik SPF, 8640 Rapperswil (Switzerland)
More informationRavi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***
Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 4896 www.ijera.com Vol. 3, Issue 3, MayJun 3, pp.76677 Analysis of
More informationIndexVelocity Rating Development for Rapidly Changing Flows in an Irrigation Canal Using Broadband StreamPro ADCP and ChannelMaster HADCP
IndexVelocity Rating Development for Rapidly Changing Flows in an Irrigation Canal Using Broadband StreamPro ADCP and ChannelMaster HADCP HENING HUANG, RD Instruments, 9855 Businesspark Avenue, San Diego,
More informationHydrant flow testing data provides important
feat40606.qxd 5/30/06 5:24 PM Page 44 The use of hydrant flow testing data to design automatic sprinkler systems has gotten easier thanks to new computer modeling software. By Dr. Sang H. Wong Hydrant
More informationExperimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U Cut And V Cut Twisted Tape Insert
Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U Cut And V Cut Twisted Tape Insert Premkumar M Abstract Experimental investigation of heat transfer and Reynolds number
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.
More informationCorrugated Tubular Heat Exchangers
Corrugated Tubular Heat Exchangers HEAT EXCHANGERS for the 21st CENTURY Corrugated Tubular Heat Exchangers (CTHE) Corrugated Tube Heat Exchangers are shell and tube heat exchangers which use corrugated
More informationComparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger
International Journal of Engineering Research and Technology. ISSN 09743154 Volume 6, Number 1 (2013), pp. 3340 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer
More informationHEAT TRANSFER ENHANCEMENT IN FIN AND TUBE HEAT EXCHANGER  A REVIEW
HEAT TRANSFER ENHANCEMENT IN FIN AND TUBE HEAT EXCHANGER  A REVIEW Praful Date 1 and V. W. Khond 2 1 M. Tech. Heat Power Engineering, G.H Raisoni College of Engineering, Nagpur, Maharashtra, India 2 Department
More informationTopic 8: Open Channel Flow
3.1 Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau Subject: Open Channel Hydraulics Topics Covered: 8. Open Channel Flow and Manning Equation 9. Energy,
More informationNUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES
NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES Abstract H. Raach and S. Somasundaram Thermal Process Engineering, University of Paderborn, Paderborn, Germany Turbulence
More informationGas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras. Module No  12 Lecture No  25
(Refer Slide Time: 00:22) Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras Module No  12 Lecture No  25 PrandtlMeyer Function, Numerical
More informationGuide on How to Develop a Small Hydropower Plant
ESHA 2004 Guide on How to Develop a Small Hydropower Plant The present document is an updated version developed by the Thematic Network on Small hydropower (TNSHP) of the Layman s Guidebook on how to develop
More informationUse of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands
Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of twophase flow regimes
More informationCFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER
International Journal of Advancements in Research & Technology, Volume 1, Issue2, July2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)
More informationInternational Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 09744290 Vol.7, No.6, pp 25802587, 20142015
International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 09744290 Vol.7, No.6, pp 25802587, 20142015 Performance Analysis of Heat Transfer and Effectiveness on Laminar Flow with Effect of
More informationLiquid Applied Internal Flow Coatings for Oil Transmission Lines
Liquid Applied Internal Flow Coatings for Oil Transmission Lines M R McDonnell E Wood Limited United Kingdom This paper will examine more closely the benefits to the Industry by lining Oil Pipelines. Introduction
More informationThe Suitability of CRA Lined Pipes for Flowlines Susceptible to Lateral Buckling SUT Global Pipeline Buckling Symposium, 23 24 February 2011
The Suitability of CRA Lined Pipes for Flowlines Susceptible to Lateral Buckling SUT Global Pipeline Buckling Symposium, 23 24 February 2011 Duncan Wilmot, Technical Manager, Cladtek International, Australia
More informationThe Influence of Aerodynamics on the Design of HighPerformance Road Vehicles
The Influence of Aerodynamics on the Design of HighPerformance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS
More informationRECYCLED MICRO HYDROPOWER GENERATION USING HYDRAULIC RAM PUMP (HYDRAM)
IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) Vol., Issue 3, Aug 23,  Impact Journals RECYCLED MICRO HYDROPOWER GENERATION USING HYDRAULIC RAM PUMP (HYDRAM) C.
More informationGrant Agreement No. 228296 SFERA. Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME. Capacities Specific Programme
Grant Agreement No. 228296 SFERA Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME Capacities Specific Programme Research Infrastructures Integrating Activity  Combination of
More informationGas Well Deliverability Testing
Gas Well Deliverability Testing What is deliverability testing? The "deliverability" of a gas well can be defined as the well's capacity to produce against the restrictions of the well bore and the system
More informationMODELING, SIMULATION AND DESIGN OF CONTROL CIRCUIT FOR FLEXIBLE ENERGY SYSTEM IN MATLAB&SIMULINK
MODELING, SIMULATION AND DESIGN OF CONTROL CIRCUIT FOR FLEXIBLE ENERGY SYSTEM IN MATLAB&SIMULINK M. Pies, S. Ozana VSBTechnical University of Ostrava Faculty of Electrotechnical Engineering and Computer
More informationWe can display an object on a monitor screen in three different computermodel forms: Wireframe model Surface Model Solid model
CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant
More informationTurbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine
HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK
More informationSteady Heat Conduction
Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long
More informationCFD Analysis Of MultiPhase Flow And Its Measurements
IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE) eissn: 22781684,pISSN: 2320334X, Volume 9, Issue 4 (Nov.  Dec. 2013), PP 3037 CFD Analysis Of MultiPhase Flow And Its Measurements C
More information2. CHRONOLOGICAL REVIEW ABOUT THE CONVECTIVE HEAT TRANSFER COEFFICIENT
ANALYSIS OF PCM SLURRIES AND PCM EMULSIONS AS HEAT TRANSFER FLUIDS M. Delgado, J. Mazo, C. Peñalosa, J.M. Marín, B. Zalba Thermal Engineering Division. Department of Mechanical Engineering University of
More informationTuning of the Pressure Equation in the Natural Gas Transmission Network
Tuning of the Pressure Equation in the Natural Gas Transmission Network Naser.HajiAliAkbari The Petroleum University of Technology (Iran) Iran, Ahwaz, The Petroleum University of Technology R. Mosaiebi
More informationSEISMIC DAMAGE ESTIMATION PROCEDURE FOR WATER SUPPLY PIPELINES
SEISMIC DAMAGE ESTIMATION PROCEDURE FOR WATER SUPPLY PIPELINES Ryoji ISOYAMA 1, Eisuke ISHIDA 2, Kiyoji YUNE 3 And Toru SHIROZU 4 SUMMARY This paper presents a practical procedure for estimating damage
More informationExperimental Investigation on Turbulent Flow Heat Transfer Enhancement in a Horizontal Circular Pipe using internal threads of varying depth
IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE) eissn: 22781684 Volume 5, Issue 3 (Jan.  Feb. 2013), PP 2328 Experimental Investigation on Turbulent Flow Heat Transfer Enhancement in a
More informationFluid Mechanics, Heat Transfer and Thermodynamic Issues of Micropipe Flows
24 Fluid Mechanics, Heat Transfer and Thermodynamic Issues of Micropipe Flows A. Alper Ozalp Department of Mechanical Engineering, Uludag University, Turkey 1. Introduction Once the notion is aspired to
More informationAP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
More informationKeywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction
Heat transfer augmentation in rectangular channel using four triangular prisms arrange in staggered manner Manoj Kumar 1, Sunil Dhingra 2, Gurjeet Singh 3 1 Student, 2,3 Assistant Professor 1.2 Department
More informationPipeline Replacement using Relining
Pipeline Replacement using Relining Mark Heathcote, March 2006 Relining of old pipeline systems is becoming an increasingly attractive option to asset owners and operators as an effective alternative to
More informationDependency of heat transfer rate on the Brinkman number in microchannels
Dependency of heat transfer rate on the Brinkman number in microchannels Hee Sung Park Stokes Institute, University of Limerick, Limerick, Ireland Abstract Heat generation from electronics increases with
More informationThe Unique Accelabar Flow Meter
The Unique Accelabar Flow Meter The Accelabar is a new and unique flow meter that combines two differential pressure technologies to produce operating ranges never before attainable in a single flow meter.
More informationEco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351R1D1. 13 January 2015
EcoPelmet Pty Ltd c/ Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW
More informationEXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE
EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE B. Sreedhara Rao 1, Varun S 2, MVS Murali Krishna 3, R C Sastry 4 1 Asst professor, 2 PG Student,
More informationWC flushing cistern single or dual flush 0.13 0.05 2 to fill in 2 minutes WC trough cistern 0.15 per WC 0.10 2 Wash basin tap size 1 2
HAC_C0.qxd 7/4/08 9: Page 74 Chapter Pipe sizing Pipes and fittings should be sized so that the flow rates for individual drawoffs are equal to the design flow rates shown in table.. During simultaneous
More informationSlope and Rate of Change
Chapter 1 Slope and Rate of Change Chapter Summary and Goal This chapter will start with a discussion of slopes and the tangent line. This will rapidly lead to heuristic developments of limits and the
More informationAN ANALYTICAL MODEL FOR WATER PROFILE CALCULATIONS IN FREE SURFACE FLOWS THROUGH ROCKFILLS
JOURNAL OF THEORETICAL AND APPLIED MECHANICS 53, 1, pp. 209215, Warsaw 2015 DOI: 10.15632/jtampl.53.1.209 AN ANALYTICAL MODEL FOR WATER PROFILE CALCULATIONS IN FREE SURFACE FLOWS THROUGH ROCKFILLS Amel
More informationPeter M. Arronax Consultants, Ltd. 1954 S. Quid Street, Captainee, MO 61057
Peter M. Arronax Consultants, Ltd. 1954 S. Quid Street, Captainee, MO 61057 To: Mr. J. A. Mesmason, Crew Chief Nautilus Salvage, Inc., 20000 Buena Vista Avenue, Vulcania, Hawaii 96807 From: J. Liu, T.
More informationComparison of CFD models for multiphase flow evolution in bridge scour processes
Comparison of CFD models for multiphase flow evolution in bridge scour processes A. BayónBarrachina, D. Valero, F.J. Vallès Morán, P. A. LópezJiménez Dept. of Hydraulic and Environmental Engineering
More informationDRAINAGE CRITERIA MANUAL (V. 2) CULVERTS CONTENTS
DRAINAGE CRITERIA MANUAL (V. 2) CONTENTS Section Page CU 1.0 INTRODUCTION AND OVERVIEW... 1 1.1 Required Design Information... 3 1.1.1 Discharge... 4 1.1.2 Headwater... 4 1.1.3 Tailwater... 5 1.1.4 Outlet
More informationIntegration of a fin experiment into the undergraduate heat transfer laboratory
Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. AbuMulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA Email: mulaweh@engr.ipfw.edu
More informationENERGY EFFICIENCY ENHANCEMENT IN THE HOT ROLLING MILL
Materials Science and Engineering, Volume 3, No. 2. (2014), pp. 43 50. ENERGY EFFICIENCY ENHANCEMENT IN THE HOT ROLLING MILL ERIKA KUN 1 TAMÁSNÉ SZEMMELVEISZ 2 Hungarian steel producer ISD Dunaferr Ltd.
More informationSANITARY SEWER SPECIFICATIONS
SANITARY SEWER SPECIFICATIONS OCTOBER 2003 HARVESTMONROVIA WATER, SEWER, AND FIRE PROTECTION AUTHORITY SECTION 1.00 1.10 Purpose The purpose of this document is to assemble the sewer specifications, policies,
More informationHEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS
HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS J.Kalil basha 1,G.Karthikeyan 2, S.Karuppusamy 3 1,2 Assistant Professor, Dhanalakshmi Srinivasan
More information240EQ014  Transportation Science
Coordinating unit: 240  ETSEIB  Barcelona School of Industrial Engineering Teaching unit: 713  EQ  Department of Chemical Engineering Academic year: Degree: 2015 MASTER'S DEGREE IN CHEMICAL ENGINEERING
More informationINTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)
INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume
More informationLiner system design for tailings impoundments and heap leach pads
Liner system design for tailings impoundments and heap leach pads John F. Lupo, Ph.D., P.E. AMEC E&E TAILINGS & MINE WASTE 08, VAIL Liner Systems Liner systems Environmental containment of process solutions
More informationEnergy Efficient Process Heating: Insulation and Thermal Mass
Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock Department of Mechanical and Aerospace Engineering University of Dayton 300 College Park Dayton, OH 454690210
More informationMathematical Modeling and Engineering Problem Solving
Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with
More informationUltrasonic Detection Algorithm Research on the Damage Depth of Concrete after Fire Jiangtao Yu 1,a, Yuan Liu 1,b, Zhoudao Lu 1,c, Peng Zhao 2,d
Advanced Materials Research Vols. 368373 (2012) pp 22292234 Online available since 2011/Oct/24 at www.scientific.net (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.368373.2229
More informationThe Influence of Aerodynamics on the Design of HighPerformance Road Vehicles
The Influence of Aerodynamics on the Design of HighPerformance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS
More informationAIR SYSTEM BASICS. form the groundwork for the design, installation, operation, troubleshooting of these systems. Air duct Manometer
... AIR SYSTEM BASICS One of the fundamental concepts that apply to air systems is the fluid mechanics of conveying air. This article presents the basic principles that form the groundwork for the design,
More informationCFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION
CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION Nadir Yilmaz, Geoffrey E. Trapp, Scott M. Gagan, Timothy R. Emmerich Department of Mechanical Engineering, New Mexico Institute of Mining
More informationHigh Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur
High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 Onedimensional Gas Dynamics (Contd.) We
More informationScalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =
Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx
More informationA. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic
AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of MultiElement Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty
More informationCO 2 41.2 MPa (abs) 20 C
comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle
More informationBending, Forming and Flexing Printed Circuits
Bending, Forming and Flexing Printed Circuits John Coonrod Rogers Corporation Introduction: In the printed circuit board industry there are generally two main types of circuit boards; there are rigid printed
More informationAmir Bashirzadeh Tabrizi, Nassir Gifani. TOOSSAB Consulting Engineers Company email: bashirzadeh@hotmail.com, nssrgifani@gmail.com.
International Renewable Energy Congress November 57, 2010 Sousse, Tunisia Economical and Environmental Effects of Pressure Reducer Valve Substituting by Small Hydro PowerPlants in Gravity Water Transmission
More informationOPTIMISE TANK DESIGN USING CFD. Lisa Brown. Parsons Brinckerhoff
OPTIMISE TANK DESIGN USING CFD Paper Presented by: Lisa Brown Authors: Lisa Brown, General Manager, Franz Jacobsen, Senior Water Engineer, Parsons Brinckerhoff 72 nd Annual Water Industry Engineers and
More informationFormula. = base of natural logarithms. = friction factor of the ropes in the grooves. = angle of wrap of the ropes on the traction sheave (radians).
Formula It is generally accepted that the maximum available traction is dependent upon three major factors: i) angle of wrap of the ropes around the traction sheave; ii) shape of groove profile; and iii)
More informationCollision of a small bubble with a large falling particle
EPJ Web of Conferences 67, 212 (214) DOI: 1.11/ epjconf/ 21467212 C Owned by the authors, published by EDP Sciences, 214 Collision of a small bubble with a large falling particle Jiri Vejrazka 1,a, Martin
More informationESSENTIAL COMPUTATIONAL FLUID DYNAMICS
ESSENTIAL COMPUTATIONAL FLUID DYNAMICS Oleg Zikanov WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE xv 1 What Is CFD? 1 1.1. Introduction / 1 1.2. Brief History of CFD / 4 1.3. Outline of the Book / 6 References
More information