# Module 2: Review of Fluid Mechanics Basic Principles for Water Resources Engineering. Basic Definitions. Basic Definitions.

Save this PDF as:

Size: px
Start display at page:

Download "Module 2: Review of Fluid Mechanics Basic Principles for Water Resources Engineering. Basic Definitions. Basic Definitions."

## Transcription

1 Module : Review of Fluid Mechanics Basic Principles for Water Resources Engineering Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Mass quantity of matter that a substance contains Weight effect of the force of gravity upon a substance Density mass of a substance per unit volume Viscosity measure of a fluid s resistance to flow Mass Density (density) (): For water at 4 o C, = 1000 kg/m 3 or 1.94 slugs/ft 3. Specific weight (γ): gravitational force per unit volume of water. For water at 4 o C, γ = 9810 N/m 3 or.4 lb/ft 3. γ = g where g = gravitational constant Specific Gravity: Density of substance Specific Gravity = Density of water γ = g specific gravity = Specific weight of a fluid is defined as the weight per unit volume and is related to density. Specific gravity of a fluid is the ratio of the density of the fluid to the density of pure water at standard conditions (such as at 15 o C). fluid H o C Hydraulics for Operators, Barbara Hauser, Lewis Publishers, Boca Raton, FL

2 Newton s equation of viscosity: dµ τ = µ dy Viscosity is the proportionality constant between shear stress and strain rate of a fluid element: Dynamic Viscosity (µ): ratio of the shear stress to the velocity gradient between two thin sheets of fluid Kinematic Viscosity (ν): ratio of the dynamic viscosity to the density Kinematic viscosity related to (dynamic) viscosity: µ ν = Fluid characterized by: Temperature, T Density, (units: mass/volume) Absolute/Dynamic Viscosity, µ (units: force-time/area) Fluid flow characterized by: Velocity, V (units: length/time) Kinematic Viscosity, ν (units: area/time) µ ν = Where ν = kinematic viscosity µ = absolute/dynamic viscosity = fluid density According to the table of the physical properties of water, the specific weight of water at 0 o C is 9789 N/m 3, what is its density? γ = g 4 1kg m/sec 998 N sec /m = N 3 = 998 kg/m N/m = 9.81 m/sec

3 Properties of Water in U.S. Customary (English) Units Properties of Water in SI (Metric) Units Temp. ( o F) Specific Weight γ (lb/ft 3 ) Mass Density (lb-sec /ft 4 or slugs/ft 3 ) Absolute Viscosity µ (x 10 5 lb-sec/ft ) Kinematic Viscosity ν (x10 5 sec/ft ) Vapor Pressure p v (psi) Temp. ( o C) Specific Weight γ (kn/m 3 ) Mass Density (kg/m 3 ) Absolute Viscosity µ (x 10 3 kg/m-sec or 10 3 N-sec/m ) Kinematic Viscosity ν (x10 m /sec) Vapor Pressure p v (kpa) From: George Tchobanoglous (Metcalf & Eddy, Inc.). Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc., New York, NY Table B-. Warren Viessman, Jr. and Mark J. Hammer. Water Supply and Pollution Control, Sixth Edition. Addison Wesley, Menlo Park, CA Table A.8. Larry W. Mays. Water Resources Engineering, 1st Edition. John Wiley & Sons, Inc. New York, NY. Table.1.1. From: George Tchobanoglous (Metcalf & Eddy, Inc.). Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc., New York, NY Table B-. Warren Viessman, Jr. and Mark J. Hammer. Water Supply and Pollution Control, Sixth Edition. Addison Wesley, Menlo Park, CA Table A.8. Larry W. Mays. Water Resources Engineering, 1st Edition. John Wiley & Sons, Inc. New York, NY. Table.1.1. Reynolds Number, Re or N R : Vd Vd N R = = µ ν Where V = fluid velocity D or d = diameter of equivalent pipe = fluid density µ = absolute viscosity ν = kinematic viscosity THE REYNOLDS NUMBER SHOULD BE DIMENSIONLESS: All units must cancel out!! Calculate the Reynolds number for the following water flow conditions: V = 0.10 ft/sec D = 1 inch Solution: Convert the pipe diameter to feet since V is in ft/sec. D = 1 inch/(1 in/ft) = ft Since T is not given, assume T = 70 o F, and look up the density, absolute viscosity, and kinematic viscosity at 70 o F. = 1.93 lb-sec /ft 4 µ =.050 x 10-5 lb-sec/ft ν = x 10-5 ft /sec 3

4 Solution: Substituting: 4 (0.10 ft /sec)(0.083 ft)(1.93lb sec / ft ) 5.050x10 lb sec/ ft 784 OR (0.10 ft /sec)(0.083 ft) x10 ft /sec 784 Steady Flow assumes constant flow rate throughout the analysis. Flow velocity does not change with respect to time at a given location. Unsteady Flow does not assume a constant flow rate throughout the analysis. Flow velocity likely does change with respect to time at a given location. Can assume Steady Flow for the analyses performed in this class. Unsteady flow assumptions used for floodplain analysis, for example. Velocity Distribution in Pipe and Open-Channel Flow Streamlines paths of single fluid particles. 4

5 Laminar Flow Streamlines are parallel, smooth and predictable No mixing occurs between layers Reynolds number < 100 to 4000 What is the maximum velocity (ft/sec) for laminar flow (assuming 4000) in a 1-inch pipe (water is the fluid, 0 o F is the temperature)? Vd µ Substituting : 4 V (1inch)(1ft/1 in)(1.934 lb - sec /ft ) 4000 = x 10 lb - sec/ft V = 0.59 ft/ sec Maximum Velocity of Laminar Flow or Water in Circular Pipes ( N R = 4000) millimeters Diameter inches Maximum Velocity of Laminar Flow meters/sec feet/sec Turbulent Flow (calculated as steady flow although not) Streamlines are not parallel or predictable Mixing occurs across pipe diameter Reynolds number > 100 to 4000 Eddies may occur in flow profile Reference: McGhee, Chapter 3 5

6 Water flows full in a 5-foot diameter pipe at a velocity of 10 ft/sec. What is the Reynolds number? The temperature is 50 o F. From table, at 50 o F, ν = 1.41 x 10-5 ft /sec. VD ν (10 ft / sec)(5 ft) x10 ft / sec From: Introduction to Fluid Mechanics, Third Edition. James E. John and William L. Haberman. Prentice-Hall, Englewood Cliffs, NJ x10

### Min-218 Fundamentals of Fluid Flow

Excerpt from "Chap 3: Principles of Airflow," Practical Mine Ventilation Engineerg to be Pubished by Intertec Micromedia Publishing Company, Chicago, IL in March 1999. 1. Definition of A Fluid A fluid

### Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

### M6a: Open Channel Flow (Manning s Equation, Partially Flowing Pipes, and Specific Energy)

M6a: Open Channel Flow (, Partially Flowing Pipes, and Specific Energy) Steady Non-Uniform Flow in an Open Channel Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Continuity

### CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### ENSC 283 Introduction and Properties of Fluids

ENSC 283 Introduction and Properties of Fluids Spring 2009 Prepared by: M. Bahrami Mechatronics System Engineering, School of Engineering and Sciences, SFU 1 Pressure Pressure is the (compression) force

### NCEES Fundamentals of Engineering (FE) Examination Review Fluid Mechanics, Hydraulics and Hydrologic Systems

NCEES Fundamentals of Engineering (FE) Examination Review Fluid Mechanics, Hydraulics and Hydrologic Systems Instructor: Dr. Marcio H. Giacomoni 1 Introduction The FE examination is an 8-hour suppliedreference

### Notes on Polymer Rheology Outline

1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

### Airflow through Mine Openings and Ducts Chapter 5

Airflow through Mine Openings and Ducts Chapter 5 Fundamentals of Airflow Ventilation the application of the principles of fluid mechanics & thermodynamics to the flow of air in underground openings Fluid

### TYPES OF FLUID FLOW. Laminar or streamline flow. Turbulent flow

FLUID DYNAMICS We will deal with Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID

### CHAPTER ONE Fluid Fundamentals

CHPTER ONE Fluid Fundamentals 1.1 FLUID PROPERTIES 1.1.1 Mass and Weight Mass, m, is a property that describes the amount of matter in an object or fluid. Typical units are slugs in U.S. customary units,

### E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering

E 490 Fundamentals of Engineering Review Fluid Mechanics By M. A. Boles, PhD Department of Mechanical & Aerospace Engineering North Carolina State University Archimedes Principle and Buoyancy 1. A block

### Piping Hydraulic Line Design and Sizing Software KLM Technology Group

Piping Hydraulic Line Design and Sizing Software KLM Technology Group Practical Engineering Guidelines for Processing Plant Solutions #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor

### Pump Formulas Imperial and SI Units

Pump Formulas Imperial and Pressure to Head H = head, ft P = pressure, psi H = head, m P = pressure, bar Mass Flow to Volumetric Flow ṁ = mass flow, lbm/h ρ = fluid density, lbm/ft 3 ṁ = mass flow, kg/h

### CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

### For Water to Move a driving force is needed

RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

### OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### Pressure drop in pipes...

Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### 1. Introduction, fluid properties (1.1, and handouts)

1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Applications of fluid mechanics

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline

Introduction to Microfluidics Date: 2013/04/26 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics Microfluidics

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

### Basics and Concepts. 2.1 Introduction Force, Weight, and Mass Density Specific Gravity Pressure...

2 Fluids Basics and Concepts TOPIC PAGE 2.1 Introduction... 22 2.2 Force, Weight, and Mass... 22 2.3 Density... 23 2.4 Specific Gravity... 23 2.5 Pressure... 23 2.6 Temperature... 25 2.7 Viscosity... 26

### Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che

Fluid Dynamics Viscosity Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che che.rochester.eduedu 1 Chemical Engineering What do Chemical Engineers Do? Manufacturing

### Higher Technological Institute Civil Engineering Department. Lectures of. Fluid Mechanics. Dr. Amir M. Mobasher

Higher Technological Institute Civil Engineering Department Lectures of Fluid Mechanics Dr. Amir M. Mobasher 1/14/2013 Fluid Mechanics Dr. Amir Mobasher Department of Civil Engineering Faculty of Engineering

### FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

### Experiment 3 Pipe Friction

EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### Uniform Open Channel Flow and the Manning Equation. Uniform Open Channel Flow and the Manning Equation, Course #501. Presented by:

Uniform Open Channel Flow and the Manning Equation, Course #501 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com This course is intended for hydrologists, civil engineers,

### Fundamental Concepts in Fluid Mechanics

A significant portion of these notes summarizes various sections of Massey, but additional material from other sources is also included. Note that the notes are incomplete; they will be completed during

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 7. General Energy Equation

### US, Burma, Liberia are three countries that have not adopted the SI as the sole system of units (from Wikipedia)

1.2 System of Units A single system is efficient, convenient, economical, and makes sense. The US system units is difficult for the United States to give up because a lot of expert technical knowledge

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Fluid Mechanics Definitions

Definitions 9-1a1 Fluids Substances in either the liquid or gas phase Cannot support shear Density Mass per unit volume Specific Volume Specific Weight % " = lim g#m ( ' * = +g #V \$0& #V ) Specific Gravity

### Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

### Chapter 8 Steady Incompressible Flow in Pressure Conduits

Chapter 8 Steady Incompressible Flow in Pressure Conduits Outline 8.1 Laminar Flow and turbulent flow Reynolds Experiment 8.2 Reynolds number 8.3 Hydraulic Radius 8.4 Friction Head Loss in Conduits of

### Module 2 : Convection. Lecture 20a : Illustrative examples

Module 2 : Convection Lecture 20a : Illustrative examples Objectives In this class: Examples will be taken where the concepts discussed for heat transfer for tubular geometries in earlier classes will

### Chapter (1) Fluids and their Properties

Chapter (1) Fluids and their Properties Fluids (Liquids or gases) which a substance deforms continuously, or flows, when subjected to shearing forces. If a fluid is at rest, there are no shearing forces

### 3.1. C r. For a flat plate of bottom surface area A and separated by a film thickness, C, the force necessary to shear the fluid at some.

. hapter Fluid Properties The objective of this hapter is to introduce you to some of the most important fluid properties that affect the performance of hydraulic circuits and to some of the equations

### Viscous flow in pipe

Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### hose-to-hose coupling pump-to-hose coupling

pipe_02 A homeowner plans to pump water from a stream in their backyard to water their lawn. A schematic of the pipe system is shown in the figure. 3 m 1 m inlet pipe-to-pump coupling stream re-entrant

### Course 2 Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving

Course Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving 1 Basic Algebra Computations 1st degree equations - =0 Collect numerical values on one side and unknown to the otherside

### Performance 4. Fluid Statics, Dynamics, and Airspeed Indicators

Performance 4. Fluid Statics, Dynamics, and Airspeed Indicators From our previous brief encounter with fluid mechanics we developed two equations: the one-dimensional continuity equation, and the differential

### CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

### APPLIED FLUID MECHANICS. TUTORIAL No.6 DIMENSIONAL ANALYSIS. When you have completed this tutorial you should be able to do the following.

APPLIED FLUID MECHANICS TUTORIAL No.6 DIMENSIONAL ANALYSIS When you have completed this tutorial you should be able to do the following. Explain the basic system of dimensions. Find the relationship between

### L r = L m /L p. L r = L p /L m

NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,

### INTERIM UNITS OF MEASURE As suggested by Federal Standard 376B January 27, 1993. hectare (ha) Hundred for traffic buttons.

SI - The Metrics International System of Units The International System of Units (SI) is a modernized version of the metric system established by international agreement. The metric system of measurement

### Applied Fluid Mechanics

Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

### Dimensional Analysis, hydraulic similitude and model investigation. Dr. Sanghamitra Kundu

Dimensional Analysis, hydraulic similitude and model investigation Dr. Sanghamitra Kundu Introduction Although many practical engineering problems involving fluid mechanics can be solved by using the equations

### Appendix 4-C. Open Channel Theory

4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

### Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

### Chapter Six. Non-Newtonian Liquid

Chapter Six Non-Newtonian Liquid For many fluids a plot of shear stress against shear rate does not give a straight line. These are so-called Non-Newtonian Fluids. Plots of shear stress against shear rate

### = 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

### ME19b. SOLUTIONS. Feb. 11, 2010. Due Feb. 18

ME19b. SOLTIONS. Feb. 11, 21. Due Feb. 18 PROBLEM B14 Consider the long thin racing boats used in competitive rowing events. Assume that the major component of resistance to motion is the skin friction

### Fundamentals of Fluid Mechanics

Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

### Urban Hydraulics. 2.1 Basic Fluid Mechanics

Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able

### Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids 13-1 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can

### Oil and Gas Pipeline Design, Maintenance and Repair

Oil and Gas Pipeline Design, Maintenance and Repair Dr. Abdel-Alim Hashem Professor of Petroleum Engineering Mining, Petroleum & Metallurgical Eng. Dept. Faculty of Engineering Cairo University aelsayed@mail.eng.cu.edu.eg

### Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 22 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 22 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. So

### W i f(x i ) x. i=1. f(x i ) x = i=1

Work Force If an object is moving in a straight line with position function s(t), then the force F on the object at time t is the product of the mass of the object times its acceleration. F = m d2 s dt

### Darcy Friction Factor Formulae in Turbulent Pipe Flow

Darcy Friction Factor Formulae in Turbulent Pipe Flow Jukka Kiijärvi Lunowa Fluid Mechanics Paper 110727 July 29, 2011 Abstract The Darcy riction actor in turbulent pipe low must be solved rom the Colebrook

### Civil Engineering Hydraulics Mechanics of Fluids. Flow in Pipes

Civil Engineering Hydraulics Mechanics of Fluids Flow in Pipes 2 Now we will move from the purely theoretical discussion of nondimensional parameters to a topic with a bit more that you can see and feel

### Viscous Flow in Pipes

Viscous Flow in Pipes Excerpted from supplemental materials of Prof. Kuang-An Chang, Dept. of Civil Engin., Texas A&M Univ., for his spring 2008 course CVEN 311, Fluid Dynamics. (See a related handout

### 1.4 Review. 1.5 Thermodynamic Properties. CEE 3310 Thermodynamic Properties, Aug. 26,

CEE 3310 Thermodynamic Properties, Aug. 26, 2011 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

### Strength and Durability for Life HYDRAULICS. Hydraulic Analysis of Ductile Iron Pipe

Strength and Durability for Life HYDRAULICS Hydraulic Analysis of Last Revised: August 2016 Head Loss Friction head loss or drop in pressure in a pipeline is an everyday concern for the water works engineer.

### EXAMPLE: Water Flow in a Pipe

EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along

### 5.3.2 The container marking shall contain the following information:

1 of 5 2/4/2013 3:19 PM Committee Input No. 57-NFPA 59-2012 [ Section No. 5.3.2 ] 5.3.2 The container marking shall contain the following information: (1) Name and address of the container supplier or

### Heat Transfer From A Heated Vertical Plate

Heat Transfer From A Heated Vertical Plate Mechanical and Environmental Engineering Laboratory Department of Mechanical and Aerospace Engineering University of California at San Diego La Jolla, California

### CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

### A=b h= 83 in. 45ft. ft. = ft.2

The Easiest Way to Convert Units in an Algebraic Equation Physics professors teach you to convert everything into standard SI units, solve the problem, and hope the units come out right. In Chemistry and

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### Chapter 8 Fluid Flow

Chapter 8 Fluid Flow GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it in an operational

### Technical Bulletin TB8102 Rupture Disc Sizing

Technical Bulletin TB8102 Rupture Disc Sizing The objective of this bulletin is to provide detailed guidance for sizing rupture discs using standard methodologies found in ASME Section VIII Div. 1, API

### Introduction to Engineering Calculations

Introduction to Engineering Calculations We usually deal with chemical manufacturing processes, genetic engineering, Semicondcutor manufacturing, pollution control, etc. We will see the basic princiles

### CONTROL VALVE PRESSURE DROP AND SIZING

CONTENT Chapter Description Page I Purpose of Control Valve II Type and Main Components of Control Valve 3 III Power 5 IV. Pressure Drop Across Control Valve 7 V. Symbols and Units 10 VI. Unit Conversion

### Drill Bit Nozzle Pressure Loss

AADE-10-DF-HO-26 Drill Bit Nozzle Pressure Loss [EXPLOITATION OF FINAGLE FACTOR TECHNOLOGY] Leon Robinson, Retired Copyright 2010, AADE This paper was prepared for presentation at the 2010 AADE Fluids

### HWR 431 / 531 HYDROGEOLOGY LAB SECTION LABORATORY 2 DARCY S LAW

HWR 431 / 531 HYDROGEOLOGY LAB SECTION LABORATORY 2 DARCY S LAW Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed

### 4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

### Basic Fluid Mechanics. Prof. Young I Cho

Basic Fluid Mechanics MEM 220 Prof. Young I Cho Summer 2009 Chapter 1 Introduction What is fluid? Give some examples of fluids. Examples of gases: Examples of liquids: What is fluid mechanics? Mechanics

### The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as:

12.001 LAB 3C: STOKES FLOW DUE: WEDNESDAY, MARCH 9 Lab Overview and Background The viscosity of a fluid describes its resistance to deformation. Water has a very low viscosity; the force of gravity causes

### Chapter 13 OPEN-CHANNEL FLOW

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### Hydraulic losses in pipes

Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor

### Chapter 1. Governing Equations of Fluid Flow and Heat Transfer

Chapter 1 Governing Equations of Fluid Flow and Heat Transfer Following fundamental laws can be used to derive governing differential equations that are solved in a Computational Fluid Dynamics (CFD) study