# Appendix 4-C. Open Channel Theory

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 4-C-1 Appendix 4-C Open Channel Theory

2 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient 4-C-3 4.C.2.3 Total Energy Head 4-C-4 4.C.2.4 Steady and Unsteady Flow 4-C-6 4.C.2.5 Uniform Flow and Nonuniform Flow 4-C-6 4.C.2.6 Gradually Varied and Rapidly Varied 4-C-6 4.C.2.7 Froude Number 4-C-6 4.C.2.8 Critical Flow 4-C-7 4.C.2.9 Subcritical Flow 4-C-7 4.C.2.10 Supercritical Flow 4-C-7 4.C.2.11 Hydraulic Jump 4-C-7 4.C.2.12 Velocity Distribution 4-C-8 4.C.2.13 Standard Step Method 4-C-8 4.C.2.14 Standard Step Computation Worksheet 4-C-10 4.C.3 Flow Classification 4-C-13 4.C.4 Equations 4-C-13 4.C.4.1 Continuity Equation 4-C-13 4.C.4.2 Manning s Equation 4-C-14 4.C.4.3 Energy Equation 4-C-15 4.C.4.4 Shear Stress Equation 4-C-16

3 4-C-3 4.C.1 Open Channel Flow Theory Design analysis of both natural and artificial channels proceeds according to the basic principles of open channel flow (see Chow, 1970; Henderson, 1966). The basic principles of fluid mechanics -- continuity, momentum, and energy -- can be applied to open channel flow with the additional complication that the position of the free surface is usually one of the unknown variables. The determination of this unknown is one of the principle problems of open channel flow analysis and it depends on quantification of the flow resistance. Natural channels display a much wider range of roughness values than artificial channels. 4.C.2 Concepts 4.C.2.1. Specific Energy Specific energy, E, is defined as the energy head relative to the channel bottom. If the channel is not too steep (slope less than 10 percent) and the streamlines are nearly straight and parallel (so that the hydrostatic assumption holds), the specific energy, E, becomes the sum of the depth and velocity head: E = y + α (V 2 /2g) (4.C.1) Where: y = depth, feet α = velocity distribution coefficient (see Equation 4.C.2) V = mean velocity, fps g = gravitational acceleration, 32.2 ft./s 2 The velocity distribution coefficient is taken to have a value of one for turbulent flow in prismatic channels but may be significantly different than one in natural channels (see Equation 4.C.2). 4.C.2.2 Velocity Distribution Coefficient Due to the presence of a free surface and also due to friction along the channel boundary, the velocities in a channel are not uniformly distributed in the channel section. As a result of nonuniform distribution of velocities in a channel section, the velocity head of an open channel is usually greater than the average velocity head computed as (Q/A t ) 2 /2g. A weighted average value of the velocity head is obtained by multiplying the average velocity head, above, by a velocity distribution coefficient, α, defined as: n α = Σ(K 3 i /A 2 i )/(K 3 t /A 2 t ) i = 1 (4.C.2)

4 4-C-4 Where: K i = conveyance in subsection (see Equation 4.C.15) K t = total conveyance in section (see Equation 4.C.15) A i = cross-sectional area of subsection, sf A t = total cross-sectional area of section, sf n = number of subsections 4.C.2.3 Total Energy Head The total energy head is the specific energy head plus the elevation of the channel bottom with respect to some datum. The locus of the energy head from one cross section to the next defines the energy grade line. See Figure 4-C-1, Specific Energy and Discharge Diagram for Rectangular Channels, for a plot of the specific energy diagram.

5 4-C-5 (a) Specific Energy Diagram (b) Discharge Diagram Figure 4-C-1 Specific Energy and Discharge Diagram for Rectangular Channels (Adopted from Highways in the River Environment, 1990.)

6 4-C-6 4.C.2.4 Steady and Unsteady Flow A steady flow is one in which the discharge passing a given cross section is constant with respect to time. The maintenance of steady flow in any reach requires that the rates of inflow and outflow be constant and equal. When the discharge varies with time, the flow is unsteady. 4.C.2.5 Uniform Flow and Nonuniform Flow A nonuniform flow is one in which the velocity and depth vary in the direction of motion, while in uniform flow they remain constant. Uniform flow can only occur in a prismatic channel, which is a channel of constant cross section, roughness, and slope in the flow direction. Nonuniform flow can occur either in a prismatic channel or in a natural channel with variable properties. 4.C.2.6 Gradually Varied and Rapidly Varied A nonuniform flow in which the depth and velocity change gradually enough in the flow direction that vertical accelerations can be neglected is referred to as a gradually varied flow; otherwise, it is considered to be rapidly varied. 4.C.2.7 Froude Number The Froude number, Fr, is an important dimensionless parameter in open channel flow. It represents the ratio of inertial forces to gravitational forces and is defined by: Fr = V/[(gd/α).5 ] (4.C.3) Where: α = velocity distribution coefficient V = mean velocity = Q/A, fps g = acceleration of gravity, 32.2 feet/s 2 d = hydraulic depth = A/T, feet A = cross-sectional area of flow, sf T = channel top width at the water surface, feet Q = total discharge, cfs This expression for Froude number applies to any normal depth channel. For rectangular channels, the hydraulic depth is equal to the flow depth.

7 4-C-7 4.C.2.8 Critical Flow Critical flow occurs when the specific energy is a minimum. The variation of specific energy with depth at a constant discharge shows a minimum in the specific energy at a depth called critical depth at which the Froude number has a value of one. Critical depth is also the depth of maximum discharge when the specific energy is held constant. These relationships are illustrated in Figure 4-C-1, Specific Energy and Discharge Diagram for Rectangular Channels. During critical flow, the velocity head is equal to half the hydraulic depth. The general expression for flow at critical depth is: αq 2 /g = A 3 /T (4.C.4) Where: α = velocity distribution coefficient Q = total discharge, cfs g = gravitational acceleration, 32.2 feet/s 2 A = cross-sectional area of flow, sf T = channel top width at the water surface, feet When flow is at critical depth, Equation 4.C.4 must be satisfied, no matter what the shape of the channel. 4.C.2.9 Subcritical Flow Depths greater than critical occur in subcritical flow and the Froude number is less than one. In this state of flow, small water surface disturbances can travel both upstream and downstream, and the control is always located downstream. 4.C.2.10 Supercritical Flow Depths less than critical depth occur in supercritical flow and the Froude number is greater than one. Small water surface disturbances are always swept downstream in supercritical flow, and the location of the flow control is always upstream. 4.C.2.11 Hydraulic Jump A hydraulic jump occurs as an abrupt transition from supercritical to subcritical flow in the flow direction. There are significant changes in depth and velocity in the jump, and energy is dissipated. For this reason, the hydraulic jump is often employed under controlled situations and facilities to dissipate energy and control erosion at highway drainage structures. A hydraulic jump will not occur until the ratio of the flow depth y 1 in the approach channel to the flow depth y 2 in the downstream channel reaches a specific value that depends on the channel geometry. The depth before the jump is called the initial depth, y 1, and the depth after the jump is the conjugate depth, y 2. When a hydraulic jump is used as an energy dissipater, controls to create sufficient tailwater depth are often necessary to control the location of the jump and to ensure that a jump will occur during the desired range of

8 4-C-8 discharges. Sills can be used to control a hydraulic jump if the tailwater depth is less than the conjugate depth. If the tailwater depth is higher than the conjugate depth, a drop in the channel floor must be used in order to ensure a jump. 4.C.2.12 Velocity Distribution In stream channels, the transverse variation of velocity in any cross section is a function of subsection geometry and roughness and may vary considerably from one stage and discharge to another. It is important to know this variation for purposes of designing erosion control measures and locating relief openings in highway fills for example. The best method of establishing transverse velocity variations is by current meter measurements. If this is not possible, the normal depth method can be used by dividing the cross section into subsections of relatively uniform roughness and geometry. It is assumed that the energy grade line slope is the same across the cross section so that the total conveyance K t of the cross section is the sum of the subsection conveyances. The total discharge is then K t S 1/2 and the discharge in each subsection is proportional to its conveyance. The velocity in each subsection is obtained from the continuity equation, V = Q/A. 4.C.2.13 Standard Step Method The following discussion explains the theory behind the standard step method, beginning with the energy equation. The energy equation is: h 1 + α 1 (V 1 2 /2g) = h 2 + α 2 (V 2 2 /2g) + h L (4.C.5) Where: h 1 and h 2 are the upstream and downstream stages, respectively, feet α = velocity distribution coefficient V = mean velocity, fps h L = head loss due to local cross sectional changes (minor loss) as well as boundary resistance, feet The stage h is the sum of the elevation head z at the channel bottom and the pressure head, or depth of flow y, i.e., h = z+y. The energy equation is solved between successive stream reaches with nearly uniform roughness, friction slope, and cross-sectional properties. The total head loss is calculated from: h L = K m [(α 1 V 1 2 /2g) - (α 2 V 2 2 /2g)] + S f(avg) L (4.C.6) Where: K m = expansion or contraction loss coefficient S f(avg) = the mean slope of the energy grade line evaluated from Manning's equation and a selected averaging technique, feet/foot L = discharge-weighted or conveyance-weighted reach length, feet The standard step method solves these equations from cross section to cross section.

9 4-C-9 Guidance on the selection of expansion and contraction loss coefficients for bridges can be found in the HEC-RAS Hydraulic Reference Manual (USACE). Guidance on the design of transitions for culverts and the associated expansion and contraction loss coefficients can be found in HEC-14 (FHWA). The default values of the minor loss coefficient K m are 0.1 for contractions and 0.3 for expansions in HEC-RAS. The range of these coefficients, from ideal transitions to abrupt changes, are 0.1 to 0.5 for contractions and 0.3 to 1.0 for expansions, respectively. HEC-RAS calculates a discharge-weighted reach length, L, as: L = [(L lob Q lob(avg) + L ch Q ch(avg) + L rob Q rob(avg) )/(Q lob(avg) + Q ch(avg) + Q rob(avg) )] (4.C.7) Where: L lob, L ch, L rob = flow distance between cross-sections in the left overbank, main channel and right overbank, respectively, feet Q lob(avg), Q ch(avg), Q rob(avg) = arithmetic average of flows between cross section for the left overbank, main channel and right overbank, respectively, cfs HEC-RAS allows the user the following options for determining the friction slope, S f(avg) : Average conveyance equation S f(avg) = [(Q u + Q d )/(K u + K d )] 2 (4.C.8) Average friction slope equation S f(avg) = (S fu + S fd )/2 (4.C.9) Geometric mean friction slope equation S f(avg) = (S fu S fd ) 1/2 (4.C.10) Harmonic mean friction slope equation S f(avg) = (2S fu S fd )/(S fu + S fd ) (4.C.11) Where: Q u, Q d = discharge at the upstream and downstream cross sections, respectively, cfs K u, K d = conveyance at the upstream and downstream cross sections, respectively S fu, S fd = friction slope at the upstream and downstream cross sections, respectively, feet/foot The default option is the average conveyance equation in HEC-RAS.

10 4-C-10 4.C.2.14 Standard Step Computation Worksheet A sample worksheet is taken from "Hydrologic Engineering Methods For Water Resources Development - Volume 6, Water Surface Profiles," The Hydrologic Engineering Center, USACE, Davis, California. The worksheet is used in accordance with the concepts presented in Section Because of the large amount of calculation required, most designers will choose to use the HEC-RAS software. A convenient form for use in calculating water surface profiles is shown in Figure 4-C-2, Standard Step Computation Worksheet. In summary, Columns 2 and 4 through 12 are devoted to solving Manning's equation to obtain the energy loss due to friction, Columns 13 and 14 contain calculations for the velocity distribution across the section, Columns 15 through 17 contain the average kinetic energy, Column 18 contains calculations for "other losses" (expansion and contraction losses due to interchanges between kinetic and potential energies as the water flows), and Column 19 contains the computed change in water surface elevation. Conservation of energy is accounted for by proceeding from section to section down the computation form. Column 1 - CROSS SECTION NO. is the cross section identification number. Feet upstream from the mouth are recommended. Column 2 - ASSUMED is the water surface elevation which must agree with the resulting computed water surface elevation within inch, or some allowable tolerance, for trial calculations to be successful. Column 3 - COMPUTED is the rating curve value for the first section, but thereafter is the value calculated by adding WS to the computed water surface elevation for the previous cross-section. Column 4 - A is the cross section area. If the section is complex and has been subdivided into several parts (e.g., left overbank, channel, and right overbank) use one line of the form for each sub-section and sum to get A t, the total area of cross section. Column 5 - R is the hydraulic radius. Use the same procedure as for Column 4 if section is complex, but do not sum subsection values. Column 6 - R 2/3 is 2/3 power of hydraulic radius. Column 7 - n is Manning s roughness coefficient. Column 8 - K is conveyance and is defined as (C AR 2/3 /n) where C is 1.49 for English units (C is 1.0 for Metric units). If the cross section is complex, sum subsection K values to get K t. Column 9 - K t(avg) is average conveyance for the reach, and is calculated by 0.5(K td + K tu ) where subscripts D and U refer to downstream and upstream ends of the reach, respectively. Column 10 - S f(avg) is the average slope through the reach determined by (Q/K t(avg) ) 2. Column 11 - L is the discharge-weighted or conveyance-weighted reach length.

11 4-C-11 Column 12 - h f is energy loss due to friction through the reach and is calculated by h f = (Q/K t(avg) ) 2 L = S f(avg) L. Column 13 - (K 3 /A 2 ) is part of the expression relating distributed flow velocity to an average value. If the section is complex, calculate one of these values for each subsection and sum all subsection values to get a total. If one subsection is used, Column 13 is not needed and Column 14 equals one. Column 14 - α is the velocity distribution coefficient and is calculated by (K 3 /A 2 )/(K 3 t /A 2 t ) where the numerator is the sum of values in Column 13 and the denominator is calculated from K t and A t. Column 15 - V is the average velocity and is calculated by Q/A t. Column 16 - αv 2 /2g is the average velocity head corrected for flow distribution. Column 17 - (αv 2 / 2g) is the difference between velocity heads at the downstream and upstream sections. A positive value indicates velocity is increasing; therefore, use a contraction coefficient for "other losses." A negative value indicates the expansion coefficient should be used in calculating "other losses." Column 18 - h o is "other losses," and is calculated by multiplying either the expansion or contraction coefficient, K m, times the absolute value of Column 17. Column 19 - WS is the change in water surface elevation from the previous cross section. It is the algebraic sum of Columns 12, 17, and 18.

12 4-C-12 Figure 4-C-2 Standard Step Computation Worksheet

14 4-C-14 4.C.4.2 Manning's Equation For a given depth of flow in an open channel with a steady, uniform flow, the mean velocity, V, can be computed with Manning's equation: 1.49 V = ( ) R 2/3 S 1/2 (4.C.13) n Where: V = velocity, fps n = Manning's roughness coefficient R = hydraulic radius = A/P, feet P = wetted perimeter, feet S = slope of the energy gradeline, feet/foot. (Note: For steady uniform flow, S = channel slope, feet/foot) The selection of Manning's n is generally based on observation; however, considerable experience is essential in selecting appropriate n values. The selection of Manning's n is discussed in Section The range of n values for various types of channels and floodplains is given in Table 4-1. The continuity equation can be combined with Manning's equation to obtain the steady, uniform flow discharge as: Q = (1.49/n)AR 2/3 S 1/2 (4.C.14) For a given channel geometry, slope, and roughness, and a specified value of discharge Q, a unique value of depth occurs in steady, uniform flow. It is called normal depth and is computed from Equation 4.C.13 by expressing the area and hydraulic radius in terms of depth. The resulting equation may require a trial and error solution. See Section for a more detailed discussion of the computation of normal depth. If the normal depth is greater than critical depth, the slope is classified as a mild slope, while on a steep slope, the normal depth is less than critical depth. Thus, uniform flow is subcritical on a mild slope and supercritical on a steep slope. Conveyance In channel analysis, it is often convenient to group the channel properties in a single term called the channel conveyance K: K = (1.49/n)AR 2/3 (4.C.15) and then Equation 4.C.14 can be written as: Q = KS 1/2 (4.C.16)

16 4-C-16 The stage h is the sum of the elevation head z at the channel bottom and the pressure head, or depth of flow y, i.e., h = z + y. The terms in the energy equation are illustrated graphically in Figure 4-C-3. The energy equation states that the total energy head at an upstream cross section is equal to the energy head at a downstream section plus the intervening energy head loss. The energy equation can only be applied between two cross sections at which the streamlines are nearly straight and parallel so that vertical accelerations can be neglected (slopes approximately less than 10 percent). 4.C.4.4 Shear Stress Equation Shear stress is the longitudinal stress on a channel boundary produced by flowing water. Shear stress is important as it is a primary cause of channel bank erosion. The equation for shear stress is: τ O = γ RS f (4.C.18) Where: τ O = shear stress (lb./in. 2 or lb./ft. 2 ) γ = unit weight of water (62.4 lb./ft. 3 ) R = hydraulic radius of channel (ft.) S f = slope of energy grade line (ft./ft.) In wide channels, the hydraulic radius is approximately equivalent to water depth. For uniform flow, the channel slope equals the slope of the energy grade line.

### CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented

### Open Channel Flow 2F-2. A. Introduction. B. Definitions. Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow

Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow 2F-2 Open Channel Flow A. Introduction The beginning of any channel design or modification is to understand the hydraulics of the stream. The

### Topic 8: Open Channel Flow

3.1 Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau Subject: Open Channel Hydraulics Topics Covered: 8. Open Channel Flow and Manning Equation 9. Energy,

### STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL. OFFICE OF DESIGN, DRAINAGE SECTION November 2009 TALLAHASSEE, FLORIDA

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL OFFICE OF DESIGN, DRAINAGE SECTION TALLAHASSEE, FLORIDA Table of Contents Open Channel Handbook Chapter 1 Introduction... 1

### What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

### 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

### OPEN-CHANNEL FLOW. Free surface. P atm

OPEN-CHANNEL FLOW Open-channel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface

### Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient

Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient Open Channel Flow 1. Uniform flow - Manning s Eqn in a prismatic channel - Q, V, y, A, P, B, S and roughness are all constant

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

### 2O-1 Channel Types and Structures

Iowa Stormwater Management Manual O-1 O-1 Channel Types and Structures A. Introduction The flow of water in an open channel is a common event in Iowa, whether in a natural channel or an artificial channel.

### Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

### M6a: Open Channel Flow (Manning s Equation, Partially Flowing Pipes, and Specific Energy)

M6a: Open Channel Flow (, Partially Flowing Pipes, and Specific Energy) Steady Non-Uniform Flow in an Open Channel Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Continuity

### Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507. Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.

Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Many examples of open channel flow can be approximated

### CITY UTILITIES DESIGN STANDARDS MANUAL

CITY UTILITIES DESIGN STANDARDS MANUAL Book 2 (SW) SW9 June 2015 SW9.01 Purpose This Chapter provides information for the design of open channels for the conveyance of stormwater in the City of Fort Wayne.

### Chapter 7 Ditches and Channels

Chapter 7 Ditches and Channels TABLE OF CONTENTS CHAPTER 7 - DITCHES AND CHANNELS... 7-1 7.1 Introduction... 7-1 7.2 Design Policy... 7-2 7.2.1 Federal Policy... 7-2 7.2.2 Commonwealth of Virginia Policy...

### Chapter 13 OPEN-CHANNEL FLOW

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

### Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

### 21. Channel flow III (8.10 8.11)

21. Channel flow III (8.10 8.11) 1. Hydraulic jump 2. Non-uniform flow section types 3. Step calculation of water surface 4. Flow measuring in channels 5. Examples E22, E24, and E25 1. Hydraulic jump Occurs

### CHAPTER 3 STORM DRAINAGE SYSTEMS

CHAPTER 3 STORM DRAINAGE SYSTEMS 3.7 Storm Drains 3.7.1 Introduction After the tentative locations of inlets, drain pipes, and outfalls with tail-waters have been determined and the inlets sized, the next

### Design Charts for Open-Channel Flow HDS 3 August 1961

Design Charts for Open-Channel Flow HDS 3 August 1961 Welcome to HDS 3-Design Charts for Open-Channel Flow Table of Contents Preface DISCLAIMER: During the editing of this manual for conversion to an electronic

### Chapter 9. Steady Flow in Open channels

Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows

### LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number

LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number Open channel flow must have a free surface. Normally free water surface is subjected to atmospheric

### CHAPTER 5 OPEN CHANNEL HYDROLOGY

5.4 Uniform Flow Calculations 5.4.1 Design Charts CHAPTER 5 OPEN CHANNEL HYDROLOGY Following is a discussion of the equations that can be used for the design and analysis of open channel flow. The Federal

### CHAPTER 4 OPEN CHANNEL HYDRAULICS

CHAPTER 4 OPEN CHANNEL HYDRAULICS 4. Introduction Open channel flow refers to any flow that occupies a defined channel and has a free surface. Uniform flow has been defined as flow with straight parallel

### Performing a Steady Flow Analysis

C H A P T E R 7 Performing a Steady Flow Analysis This chapter discusses how to calculate steady flow water surface profiles. The chapter is divided into two parts. The first part discusses how to enter

### Package rivr. October 16, 2015

Type Package Package rivr October 16, 2015 Title Steady and Unsteady Open-Channel Flow Computation Version 1.1 Date 2015-10-15 Author Michael C Koohafkan [aut, cre] Maintainer Michael C Koohafkan

### 1 Fundamentals of. open-channel flow 1.1 GEOMETRIC ELEMENTS OF OPEN CHANNELS

1 Fundamentals of open-channel flow Open channels are natural or manmade conveyance structures that normally have an open top, and they include rivers, streams and estuaries. n important characteristic

### Part 654 Stream Restoration Design National Engineering Handbook

United States Department of Agriculture Natural Resources Conservation Service Stream Restoration Design Chapter 6 Issued August 007 Cover photo: Stream hydraulics focus on bankfull frequencies, velocities,

### CIVE2400 Fluid Mechanics Section 2: Open Channel Hydraulics

CIVE400 Fluid Mechanics Section : Open Channel Hydraulics. Open Channel Hydraulics.... Definition and differences between pipe flow and open channel flow.... Types of flow.... Properties of open channels...

### CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

### HEC-RAS River Analysis System

Table of Contents US Army Corps of Engineers Hydrologic Engineering Center HEC-RAS River Analysis System Hydraulic Reference Manual Version 4.1 January 010 Approved for Public Release. Distribution Unlimited

### Civil Engineering Hydraulics Open Channel Flow. Adult: Where s your costume? What are you supposed to be?

Civil Engineering Hydraulics Calvin: Trick or treat! Adult: Where s your costume? What are you supposed to be? Calvin: I m yet another resource-consuming kid in an overpopulated planet, raised to an alarming

### M6b: Water Surface Profiles and Hydraulic Jumps

Example.0 (Chin 006): Constriction in Channel M6b: Water Surface Profiles and Hdraulic Jumps Robert Pitt Universit of Alabama and Shirle Clark Penn State - Harrisburg A rectangular channel.0 m wide carries.0

### Note: first and second stops will be reversed. Bring clothing and shoes suitable for walking on rough ground.

Open Channel Page 1 Intro check on laboratory results Field Trip Note: first and second stops will be reversed Irrigation and Drainage Field Trip Bring clothing and shoes suitable for walking on rough

### CHAPTER 860 OPEN CHANNELS

HIGHWAY DESIGN MANUAL 860-1 CHAPTER 860 OPEN CHANNELS Topic 861 - General Index 861.1 - Introduction An open channel is a conveyance in which water flows with a free surface. Although closed conduits such

### HEC-RAS. River Analysis System. Applications Guide. Version 4.1 January 2010. US Army Corps of Engineers Hydrologic Engineering Center CPD-70

US Army Corps of Engineers Hydrologic Engineering Center HEC-RAS HEC-RAS River Analysis System Applications Guide Version 4.1 January 2010 Approved for Public Release. Distribution Unlimited CPD-70 REPORT

### EVALUATION OF UNSTEADY OPEN CHANNEL FLOW CHARACTERISTICS OVER A CRUMP WEIR

EVALUATION OF UNSTEADY OPEN CHANNEL FLOW CHARACTERISTICS OVER A CRUMP WEIR Mohd Adib Mohd Razi, Dwi Tjahjanto, Wan Afnizan Wan Mohamed, Siti Norashikin Binti Husin Department of Water Resource and Environmental

### CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 1100 ADDITIONAL HYDRAULIC STRUCTURES

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 1100 ADDITIONAL HYDRAULIC STRUCTURES TABLE OF CONTENTS Page 1101 INTRODUCTION 1102 1102 CHANNEL DROPS

### SECTION 5 - STORM DRAINS

Drainage Criteria Manual SECTION 5 - STORM DRAINS 5.1.0 GENERAL This The purpose of this section discusses briefly is to consider the hydraulic aspects of storm drains and their appurtenances in a storm

### EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015

EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 Normal and Critical Depths Q1. If the discharge in a channel of width 5 m is 20 m 3 s 1 and Manning s n is 0.02 m 1/3 s, find: (a) the normal depth and Froude number

### Calculating resistance to flow in open channels

Alternative Hydraulics Paper 2, 5 April 2010 Calculating resistance to flow in open channels http://johndfenton.com/alternative-hydraulics.html johndfenton@gmail.com Abstract The Darcy-Weisbach formulation

### CHAPTER 4 STORM DRAINAGE SYSTEMS

CHAPTER 4 STORM DRAINAGE SYSTEMS 4.1 Overview... 4-1 4.1.1 Introduction... 4-1 4.1.2 Inlet Definition... 4-1 4.1.3 Criteria... 4-1 4.2 Pavement Drainage... 4-2 4.2.1 Introduction... 4-2 4.2.2 Storm Drain

### Experiment (13): Flow channel

Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

### DESIGN MANUAL CHAPTER 7: Energy Dissipation

DESIGN MANUAL CHAPTER 7: Energy Dissipation 7.0 ENERGY DISSIPATION... 7-1 7.1 SYMBOLS AND DEFINITIONS... 7-1 7.2 DESIGN CRITERIA... 7-2 7.2.1 GENERAL CRITERIA... 7-2 7.2.2 EROSION HAZARDS... 7-2 7.2.3

### Open Channel Flow Measurement Weirs and Flumes

Open Channel Flow Measurement Weirs and Flumes by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here Measuring the flow rate of water in an open channel typically involves some type of

### Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978)

Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978) I. An Example Culvert Design Design a concrete culvert using the

### Urban Hydraulics. 2.1 Basic Fluid Mechanics

Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able

### 1. Carry water under the canal 2. Carry water over the canal 3. Carry water into the canal

Lecture 21 Culvert Design & Analysis Much of the following is based on the USBR publication: Design of Small Canal Structures (1978) I. Cross-Drainage Structures Cross-drainage is required when a canal

### Basic Hydraulic Principles

CHAPTER 1 Basic Hydraulic Principles 1.1 General Flow Characteristics In hydraulics, as with any technical topic, a full understanding cannot come without first becoming familiar with basic terminology

### Exercise (4): Open Channel Flow - Gradually Varied Flow

Exercise 4: Open Channel Flow - Gradually Varied Flow 1 A wide channel consists of three long reaches and has two gates located midway of the first and last reaches. The bed slopes for the three reaches

### Guo, James C.Y. (2004). Design of Urban Channel Drop Structure, J. of Flood Hazards News, December,

Guo, James C.. (004). esign of Urban Channel rop Structure, J. of Flood azards News, ecember, Guo, James C.., (009) Grade Control for Urban Channel esign, submitted to Elsevier Science, J. of ydro-environmental

### Storm Drainage Systems 11.9-1

Storm Drainage Systems 11.9-1 11.9 Gutter Flow Calculations 11.9.1 Introduction Gutter flow calculations are necessary in order to relate the quantity of flow (Q) in the curbed channel to the spread of

### Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati. Module No. # 02 Uniform Flow Lecture No.

Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 02 Uniform Flow Lecture No. # 04 Computation of Uniform Flow (Part 02) Welcome to this

### Basic Hydrology. Time of Concentration Methodology

Basic Hydrology Time of Concentration Methodology By: Paul Schiariti, P.E., CPESC Mercer County Soil Conservation District What is the Time of Concentration? The time it takes for runoff to travel from

### Travel Time. Computation of travel time and time of concentration. Factors affecting time of concentration. Surface roughness

3 Chapter 3 of Concentration and Travel Time Time of Concentration and Travel Time Travel time ( T t ) is the time it takes water to travel from one location to another in a watershed. T t is a component

### ...Eq(11.6) The energy loss in the jump is dependent on the two depths y 1 and y 2 3 = E =...Eq(11.7)

. Open Channel Flow Contd.5 Hydraulic Jump A hydraulic jump occurs when water in an open channel is flowing supercritical and is slowed by a deepening of the channel or obstruction in the channel. The

### Scattergraph Principles and Practice Practical Application of the Froude Number to Flow Monitor Data

Scattergraph Principles and Practice Practical Application of the Froude Number to Flow Monitor Data Kevin L. Enfinger, P.E. and Patrick L. Stevens, P.E. ADS Environmental Services 4940 Research Drive

### Chapter 10. Open- Channel Flow

Updated: Sept 3 2013 Created by Dr. İsmail HALTAŞ Created: Sept 3 2013 Chapter 10 Open- Channel Flow based on Fundamentals of Fluid Mechanics 6th EdiAon By Munson 2009* *some of the Figures and Tables

### ENERGY DISSIPATION CHAPTER 7

CHAPTER 7 ENERGY DISSIPATION 7.1 Overview... 7-1 7.2 Design Criteria... 7-1 7.2.1 General Criteria... 7-1 7.2.2 Erosion Hazards... 7-1 7.2.3 Recommended Dissipators... 7-1 7.3 Riprap Aprons... 7-2 7.3.1

### STORM DRAINS CHAPTER 7

CHAPTER 7 Chapter 7 - Storm Drains A storm drain is a drainage system that conveys water or stormwater, consisting of two or more pipes in a series connected by one or more structures. Storm drains collect

### Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

### Lecture 24 Flumes & Channel Transitions. I. General Characteristics of Flumes. Flumes are often used:

Lecture 24 Flumes & Channel Transitions I. General Characteristics of Flumes Flumes are often used: 1. Along contours of steep slopes where minimal excavation is desired 2. On flat terrain where it is

### CHAPTER II UNIFORM FLOW AND ITS FORMULAS MODULE 1. This experiment was designed to observe the characteristics of uniform flow in

CHAPTER II UNIFORM FLOW AND ITS FORMULAS MODULE 1 2.1 Introduction and Objective This experiment was designed to observe the characteristics of uniform flow in the teaching flume and to utilize the common

### Environmental Data Management Programs

Hydrologic Engineering Centre (HEC) Software CD Collection of programs, developed by the U.S. Army Corps of Engineers Environmental Data Management Programs Name: HEC-DSS Package Purpose: Data Storage

### ENV5056 Numerical Modeling of Flow and Contaminant Transport in Rivers. Equations. Asst. Prof. Dr. Orhan GÜNDÜZ

ENV5056 Numerical Modeling of Flow and Contaminant Transport in Rivers Derivation of Flow Equations Asst. Prof. Dr. Orhan GÜNDÜZ General 3-D equations of incompressible fluid flow Navier-Stokes Equations

### Emergency Spillways (Sediment basins)

Emergency Spillways (Sediment basins) DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short-Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] [1]

### CHAPTER IX HYDRAULICS AND DRAINAGE

CHAPTER IX HYDRAULICS AND DRAINAGE 9-04.1 GENERAL. Providing for the control of erosion is a necessary part of the complete design of any highway construction project. These provisions must include measures

### Module 9: Basics of Pumps and Hydraulics Instructor Guide

Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine

### HYDROGRAPH ROUTING. E. Input data needed for channel routing include the inflow hydrograph and the channel characteristics

HYDROGRAPH ROUTING. Introduction A. Two Types of Hydrograph Routing. Storage or Reservoir Routing. Channel Routing B. Reservoir Routing is used to determine the peak-flow attenuation that a hydrograph

### 6-1 Introduction. 1. Storm drain that does not require pressure testing. 2. Lateral that does not require pressure testing.

Chapter 6 Storm Drains 6-1 Introduction A storm drain (storm sewer) is a network of pipes that conveys surface drainage from a surface inlet or through a manhole, to an outfall. Storm drains are defined

### USSD Workshop on Dam Break Analysis Applied to Tailings Dams

USSD Workshop on Dam Break Analysis Applied to Tailings Dams Antecedents Newtonian / non-newtonian flows Available models that allow the simulation of non- Newtonian flows (tailings) Other models used

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### Lecture 6. Jump as energy dissipation Control of jump.

Lecture 6 Jump as energy dissipation Control of jump. Jump as energy dissipation The high energy loss that occurs in a hydraulic jump has led to its adoption as a part of high energy dissipater system

### Spreadsheet Use for Partially Full Pipe Flow Calculations

Spreadsheet Use for Partially Full Pipe Flow Calculations Course No: C02-037 Credit: 2 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY

### Chapter 9 Hydraulic Structures

Chapter 9 Hydraulic Structures Contents 1.0 Structures in Streams... 1 2.0 Grade Control Structures... 2 2.1 Overview... 2 2.2 Simplified Design Procedures for Drop Structures... 4 2.2.1 Introduction...

### Period #16: Soil Compressibility and Consolidation (II)

Period #16: Soil Compressibility and Consolidation (II) A. Review and Motivation (1) Review: In most soils, changes in total volume are associated with reductions in void volume. The volume change of the

### Hydraulics Guide. Table 1: Conveyance Factors (English Units)... 7 Table 2: Conveyance Factors (Metric Units)... 8

Table of Contents 1.1 Index of Tables... 1 1. Index of Figures... 1 1.3 Overview of Hydraulic Considerations... 1.4 Discharge Curves... 1.5 Conveyance Method... 5 1.6 Flow Velocity Considerations... 9

### Broad Crested Weirs. I. Introduction

Lecture 9 Broad Crested Weirs I. Introduction The broad-crested weir is an open-channel flow measurement device which combines hydraulic characteristics of both weirs and flumes Sometimes the name ramp

### Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

### Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

### CHAPTER 5 OPEN-CHANNEL FLOW

CHAPTER 5 OPEN-CHANNEL FLOW 1. INTRODUCTION 1 Open-channel flows are those that are not entirely included within rigid boundaries; a part of the flow is in contract with nothing at all, just empty space

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### Lecture 25 Design Example for a Channel Transition. I. Introduction

Lecture 5 Design Example for a Channel Transition I. Introduction This example will be for a transition from a trapezoidal canal section to a rectangular flume section The objective of the transition design

### FUNDAMENTALS OF FLUID MECHANICS Chapter 10 Flow in Open Channels

FUNDAMENTALS OF FLUID MECHANICS Chapter 10 Flow in Open Channels Jyh-Cherng Shieh Department of Bio-Industrial Mechatronics Engineering National Taiwan University 1 MAIN TOPICS General Characteristics

### Evaluation of Open Channel Flow Equations. Introduction :

Evaluation of Open Channel Flow Equations Introduction : Most common hydraulic equations for open channels relate the section averaged mean velocity (V) to hydraulic radius (R) and hydraulic gradient (S).

### FLOODPLAIN DELINEATION IN MUGLA-DALAMAN PLAIN USING GIS BASED RIVER ANALYSIS SYSTEM

FLOODPLAIN DELINEATION IN MUGLA-DALAMAN PLAIN USING GIS BASED RIVER ANALYSIS SYSTEM Dr. Murat Ali HATİPOĞLU Fatih KESKİN Kemal SEYREK State Hydraulics Works (DSI), Investigation and Planning Department

### 2D Modeling of Urban Flood Vulnerable Areas

2D Modeling of Urban Flood Vulnerable Areas Sameer Dhalla, P.Eng. Dilnesaw Chekol, Ph.D. A.D. Latornell Conservation Symposium November 22, 2013 Outline 1. Toronto and Region 2. Evolution of Flood Management

### CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 800 STORM SEWER SYSTEMS TABLE OF CONTENTS

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 800 STORM SEWER SYSTEMS TABLE OF CONTENTS 801 INTRODUCTION 803 802 DESIGN PARAMETERS 804 802.1 - Allowable

### Rational Method Hydrologic Calculations with Excel. Rational Method Hydrologic Calculations with Excel, Course #508. Presented by:

Rational Method Hydrologic Calculations with Excel, Course #508 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Calculation of peak storm water runoff rate from a drainage

### Investigation of Effect of Changes in Dimension and Hydraulic of Stepped Spillways for Maximization Energy Dissipation

World Applied Sciences Journal 8 (): 6-67, 0 ISSN 88-495 IDOSI Publications, 0 DOI: 0.589/idosi.wasj.0.8.0.49 Investigation of Effect of Changes in Dimension and Hydraulic of Stepped Spillways for Maximization

### DRAINAGE CRITERIA MANUAL (V. 2) CULVERTS CONTENTS

DRAINAGE CRITERIA MANUAL (V. 2) CONTENTS Section Page CU 1.0 INTRODUCTION AND OVERVIEW... 1 1.1 Required Design Information... 3 1.1.1 Discharge... 4 1.1.2 Headwater... 4 1.1.3 Tailwater... 5 1.1.4 Outlet

### CHAPTER 11 ENERGY DISSIPATORS

CHAPTER 11 ENERGY DISSIPATORS TABLE OF CONTENTS 11.1 INTRODUCTION...2 11.2 DESIGN CRITERIA...2 11.2.1 Dissipator Type Selection...2 11.2.2 Design Limitations...5 11.2.3 Design Options...5 11.2.4 Related

### 8.1.3 General Design Guidelines. The following guidelines shall be used when designing inlets along a street section:

. Introduction Presented in this chapter are the criteria and methodology for design and evaluation of storm sewer inlets located in Town of Castle Rock. The review of all planning submittals will be based

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### MODELING FLUID FLOW IN OPEN CHANNEL WITH CIRCULAR CROSS SECTION DADDY PETER TSOMBE MASTER OF SCIENCE. (Applied Mathematics)

MODELING FLUID FLOW IN OPEN CHANNEL WITH CIRCULAR CROSS SECTION DADDY PETER TSOMBE MASTER OF SCIENCE (Applied Mathematics) JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY 2011 Modeling fluid flow

### Sanitary Sewer Design and Modeling Workshop

Sanitary Sewer Design and Modeling Workshop Featuring Bentley Systems SewerGEMS Slavco Velickov, PhD Bentley Systems Scope Steady hydraulics Model building Unsteady hydraulics Hydrology Dry weather loading

### Using GIS Data With HEC-RAS

C H A P T E R 14 Using GIS Data With HEC-RAS HEC-RAS has the ability to import three-dimensional (3D) river schematic and cross section data created in a GIS or CADD system. While the HEC- RAS software