OPENCHANNEL FLOW. Free surface. P atm


 Virginia Edwards
 2 years ago
 Views:
Transcription
1 OPENCHANNEL FLOW Openchannel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface P atm
2 Classification of OpenChannel Flows Openchannel flows are characterized by the presence of a liquidgas interface called the free surface. Natural flows: rivers, creeks, floods, etc. Humanmade systems: freshwater aquaducts, irrigation, sewers, drainage ditches, etc. pp atm
3 Open channels Natural channels Artificial channels Open cross section Covered cross section
4 Total Head at A Cross Section: The total head at a cross section is: H z + P γ +α V av g where Htotal head Zelevation of the channel bottom P/g y the vertical depth of flow (provided that pressure distribution is hydrostatic) V /g velocity head αv /g EGL z y Q Datum x
5 Energy Grade Line & Hydraulic Grade Line in Open Channel Flow S f :the slope of energy grade line S w :the slope of the water surface S o :the slope of the bottom S f :the slope of energy grade line S w :the slope of the water surface
6 Comparison of Open Channel Flow and Pipe Flow V /g h f V /g V /g EGL P /γ EGL HGL V /g y HGL P /γ y Pipe centerline Channel bottom z z Datum line OpenChannel Flow z z Datum line Pipe Flow
7 Comparison of Open Channel Flow & Pipe Flow ) OCF must have a free surface ) A free surface is subject to atmospheric pressure 3) The driving force is mainly the component of gravity along the flow direction. 4) HGL is coincident with the free surface. 5) Flow area is determined by the geometry of the channel plus the level of free surface, which is likely to change along the flow direction and with as well as time. ) No free surface in pipe flow ) No direct atmospheric pressure, hydraulic pressure only. 3) The driving force is mainly the pressure force along the flow direction. 4) HGL is (usually) above the conduit 5) Flow area is fixed by the pipe dimensions The cross section of a pipe is usually circular..
8 Comparision of Open Channel Flow & Pipe Flow 6) The cross section may be of any from circular to irregular forms of natural streams, which may change along the flow direction and as well as with time. 6) The cross section of a pipe is usually circular 7) Relative roughness changes with the level of free surface 8) The depth of flow, discharge and the slopes of channel bottom and of the free surface are interdependent. 7) The relative roughness is a fixed quantity. 8) No such dependence.
9 Kinds of Open Channel Canal Flume Chute Drop Culvert OpenFlow Tunnel
10 Kinds of Open Channel CANAL is usually a long and mildsloped channel built in the ground.
11 Kinds of Open Channel FLUME is a channel usually supported on or above the surface of the ground to carry water across a depression.
12 Kinds of Open Channel CHUTE is a channel having steep slopes.
13 Kinds of Open Channel DROP is similar to a chute, but the change in elevation is affected in a short distance.
14 Kinds of Open Channel CULVERT is a covered channel flowing partly full, which is installed to drain water through highway and railroad embankments.
15 Kinds of Open Channel OPENFLOW TUNNEL is a comparatively long covered channel used to carry water through a hill or any obstruction on the ground.
16 Channel Geometry A channel built with constant cross section and constant bottom slope is called a PRISMATIC CHANNEL. Otherwise, the channel is NONPRISMATIC.
17 THE CHANNEL SECTION is the cross section of a channel taken normal to the direction of the flow. THE VERTICAL CHANNEL SECTION is the vertical section passing through the lowest or bottom point of the channel section. d The channel section (BB) y The vertical channel section (AA)
18 Geometric Elements of Channel Section THE DEPTH OF FLOW, y, is the vertical distance of the lowest point of a channel section from the free surface. y θ d h z θ Datum
19 Geometric Elements of Channel Section THE DEPTH OF FLOW SECTION, d, is the depth of flow normal to the direction of flow. y θ d θ is the channel bottom slope d ycosθ. h z Datum θ For mildsloped channels y d.
20 Geometric Elements of Channel Section THE TOP WIDTH, T, is the width of the channel section at the free surface. THE WATER AREA, A, is the crosssectional area of the flow normal to the direction of flow. T THE WETTED PERIMETER, P, is the length of the line of intersection of the channel wetted surface with a crosssectional plane normal to the direction of flow. THE HYDRAULIC RADIUS, R A/P, A A(d) d P is the ratio of the water area to its wetted perimeter. THE HYDRAULIC DEPTH, D A/T, is the ratio of the water area to the top width.
21 Channel Geometry The wetted perimeter does not include the free surface. Examples of R for common geometries shown in Figure at the left.
22 Geometric elements for different channel cross sections rectangular trapezoidal triangular circular parabolic B B B B B b h m b h m h D θ h h flow area A bh ( b + mh)h θ sinθ D 8 mh ( ) 3 Bh wetted perimeter P + b + h + m b h h + m θ D B h B * hydraulic radius R h bh b + h ( b + mh) h b + h + m mh + m 4 sinθ D θ B h 3B + 8h * top width B b b + mh mh or ( sinθ / )D h ( D h) 3 Ah hydraulic depth D h h ( b + mh) h b + mh h θ sinθ sinθ / D 8 3 h * Valid for 0 < ξ where ξ 4h / B ξ > then P B / + ξ + / ξ ln ξ + + ξ If ( ) [ ( ) ( )]
23 Types of Flow Criterion: Change in flow depth with respect to time and space Steady flow ( y/ t0) OCF Time is a criterion Space is a criterion Unsteady flow ( y/ t 0) Uniform Flow ( y/ x0) Varied Flow ( y/ x 0) Uniform Flow ( y/ x0) Varied Flow ( y/ x 0) GVF RVF GVF RVF
24 Types of Flow Criterion: Change in discharge with respect to time and space OCF Time is a criterion Steady flow ( Q/ t0) Unsteady flow ( Q/ t 0) Space is a criterion Continuous Flow ( Q/ x0) Spatially Varied Flow ( Q/ x 0) Continuous Flow ( Q/ x0) SpatiallyVaried Flow ( Q/ x 0)
25 Classification of OpenChannel Flows Obstructions cause the flow depth to vary. Rapidly varied flow (RVF) occurs over a short distance near the obstacle. Gradually varied flow (GVF) occurs over larger distances and usually connects UF and RVF.
26 Steady nonuniform flow in a channel.
27 State of Flow Effect of viscosity: Re VR υ Note that R in Reynold number is Hydraulic Radius Laminar OCF, Re < 500 OCF Transitional OCF, 500 < Re < 000 Turbulent OCF, Re > 000
28 Effect of Gravity In openchannel flow the driving force (that is the force causing the motion) is the component of gravity along the channel bottom. Therefore, it is clear that, the effect of gravity is very important in openchannel flow. In an openchannel flow Froude number is defined as: F r Inertia Force Gravity Force, and F r V gd or F r V gd In an openchannel flow, there are three types of flow depending on the value of Froude number: F r > F r F r < Supercritical Flow Critical Flow Subcritical Flow
29 In wave mechanics, the speed of propagation of a small amplitude wave is called the celerity, C. If we disturb water, which is not moving, a disturbance wave occur, and it propagates in all directions with a celerity, C, as: C C C C gy C C For a rectangular channel, the hydraulic depth, Dy. Therefore, Froude number becomes: V V F r gy C
30 Now let us consider propagation of a small amplitude wave in a supercritical open channel flow: F r >, i.e; V > C C C Since V > C, it CANNOT propagate upstream it can propagate only towards downstream with a pattern as follows: V Disturbance will be felt only within this region This means the flow at upstream will not be affected. In other words, there is no hydraulic communication between upstream and downstream flow.
31 Now let us consider propagation of a small amplitude wave in a subcritical open channel flow: F r <, i.e; V < C C C Since V < C, it CAN propagate both upstream and downstream with a pattern as follows: V < C This means the flow at upstream and downstream will both be affected. In other words, there is hydraulic communication between upstream and downstream flow.
32 Now let us consider propagation of a small amplitude wave in a critical open channel flow: F r, i.e; V C C C Since V C, it can propagate only downstream with a pattern as follows: This means the flow at downstream will be affected.
33 State of Flow Effect of gravity: Fr V gd V < gd V gd V > gd D in Froude Number is Hydraulic Depth
34 Velocity Profiles In order to understand the velocity distribution, it is customary to plot the isovels, which are the equal velocity lines at a cross section. isovel
35 Velocity is zero on bottom and sides of channel due to noslip condition the maximum velocity is usually below the free surface. It is usually threedimensional flow. However, D flow approximation is usually made with good success for many practical problems.
36 Velocity Distribution The velocity distribution in an openchannel flow is quite nonuniform because of : Nonuniform shear stress along the wetted perimeter, Presence of free surface on which the shear stress is zero.
37 Uniform Flow in Channels Flow in open channels is classified as being uniform or nonuniform, depending upon the depth y. Depth in Uniform Flow is called normal depth y n Uniform depth occurs when the flow depth (and thus the average flow velocity) remains constant Common in long straight runs Average flow velocity is called uniformflow velocity V 0 Uniform depth is maintained as long as the slope, crosssection, and surface roughness of the channel remain unchanged. During uniform flow, the terminal velocity reached, and the head loss equals the elevation drop
38 Uniform Flow in Channels V z + y + z + y + g V g + h l velocity head α V g h V α g l S f x energy grade line S f x y hydraulic grade line y S o x Datum x S f S w S o
39 Nonuniform gradually varied flow. S f S w S o S f h l S f x
40 Chezy equation (768) DarcyWeisbach equation (840) Introduced by the French engineer Antoine Chezy in 768 while designing a canal for the watersupply system of Paris h L V f D g f LS f f f L 4R L 4R h h V g V g V C R S C Chezy coefficient h f V R hsf f V 8g 8g f R S h f where 60 m s < C < 50 m s 60 is for rough and 50 is for smooth also a function of R (like f in DarcyWeisbach) IMPORTANT: In Uniform Flow S f S o
41 Manning Equation for Uniform Flow V n R /3 S / o Discharge: Q VA Q n / 3 / AR So
42 Manning Equation (89) V n /3 R h S / f (SI System) Notes: The Manning Equation ) is dimensionally nonhomogeneous ) is very sensitive to n Is n only a function of roughness? NO! Dimensions of n?.49 V n /3 / R h Sf T /L /3 (English system)
43 Values of Manning n n n 0.03d 0.038d / 6 / 6 d in ft d in m d median size of bed material
44 Relation between Resistance Coefficients
45 Example A trapezoidal channel has a base width b 6 m and side slopes H:V. The channel bottom slope is So and the Manning roughness coefficient is n Compute a)the depth of uniform flow if Q. m3/s b)the state of flow y o y o b 6 m
46 Solution of Example a) Manning s equation is used for uniform flow; Q A n A b.y R o P b + / 3 S y o +.(y o o /) 6 + So n 0.04 Q. m3/s y o (b + y o y o ) y o b 6 m Y(m) A(m ) P(m) R(m) AR / y o AR /3 Qn S o y o (6 + y o ) y o (6 + y o 6 + y ) o / by trial & error y o.5 m
47 Solution of Example b) The state of flow Fr Vave, gd A D, T b + yo T A.5 (6+.5).5 m T 6+ x.5 9 m D.5 / 9.5 m V ave Q..076 A.5 Fr x.5 m/s < Subcritical
48 FloodPlain
49 Compound Channel
50 Generalized section representation actual cross section compoundcomposite cross section.
51 Composite Section A channel section, which is composed, of different roughness along the wetted perimeter is called composite section. For such sections an equivalent Manning roughness can be defined as n eq n i P P i i n, P n i, P i Pavlovski' F n F i i s eq. Q A n eq R / 3 S f
52 Compound Channel is the channel for which the cross section is composed of several distinct subsections 3
53 Discharge computation in Compound Channels To compute the discharge, the channel is divided into 3 subsections by using vertical interfaces as shown in the figure: Then the discharge in each subsection is computed separately by using the Manning equation. In computation of wetted perimeter, watertowater contact surfaces are not included. II n m I III m n n 3 Q i A n i i A P i i / 3 S o i,,3 Q total 3 i Q i
54 Example Determine the discharge passing through the cross section of the compound channel shown below. The Manning roughness coefficients are n 0.0, n 0.03 and n The channel bed slope for the whole channel is So n II m I III n 3 m n 0m 4m 5m 4m 0m
55 Solution of Example Divide the channel into 3 subsections by using vertical interfaces as shown in the figure: II n m I III m n n 3 0m 4m 5m 4m 0m Q Q i total Ai A i ni Pi 3 Q i i / 3 S o i,,3
56 Example For the main channel (subsection I): The main channel is a composite channel too. Therefore, we need to find an equivalent value of n. n n n A P 5 + x Q eq eq eq n P i i P i n 5 + n / * + n (5 + 3)* + (3*) 3m m /3 3 5 * / (0.0) m 3 / s 5 + 5( ) /
57 Example For the subsection II: A P Q 0 * m m / m 3 / s For the subsection III: A 3 (0 + ) * 0.5 m P Q m / m 3 / s Q 3 total Q + Q + Q m / s
58 Energy Concept Component of energy equation ) z is the elevation head ) y is the gage pressure headpotential head 3) V /g is the dynamic headkinetic head V g y S f x V g EGL HGL H z + y + V g y S o x x
59 Continuity and Energy Equations D steady continuity equation can be expressed as V A VA x D steady energy equation between two stations V g V g z + y + z + y + + h l Head loss h L h l S f x V V y + y + + (Sf So) x g g The change in elevation head can be written in terms of the bed slope θ (z z ) S o x
60 Example 3 Water flows under a sluice gate in a horizontal rectangular channel of m wide. If the depths of flow before and after the gate are 4 m, and 0.50 m, compute the discharge in the channel. y 4 m y 0.50 m b m x
61 Solution: The energy equation between sections () and () is: H H +h f The head loss between sections () and () can be neglected. Therefore: Choose the channel bottom as datum. Then z z 0, α g V +α + y z g V +α + y z Substituting above and Q V * (b*y) energy equation between sections () and () becomes: ) ( y ) ( y y b g Q y b g Q + + s g Q y y y y gb Q / 8.35 m solving for Q *43
62 EXAMPLE 4 Water flow with a velocity of 3 m/s, and a depth of 3 m in a rectangular channel of m wide. Then there is an upward step of 30 cm as shown in figure below. Compute the depth of flow over the step. Datum y 3 m V 3 m/s z0.30 () () Energy Eq. Between Sections () & (): y? m z + y + Q gb y z + y + Q gb y Q V ( by ) V ( by ) m 3 / s 3+ 8 g y + 8 g. y Ë y y The last equation contains only one unknown: y. However, it is a third degree polynomial of y.
63 Y y This polynomial has three possible solutions: Y () m Y ().66 m Y (3) m Negative depth is not acceptable But both.5 m and.66 m depths are quite possible. Which one will occur on the step???? Nor Energy equation neither continuity equation will help to decide. Luckily, in 9, Bakhmeteff introduced the concept of SPECIFIC ENERGY, which is the key to even the most complex openchannel flow phenomena.
Chapter 9. Steady Flow in Open channels
Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Openchannel flows
More informationOpen Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology
M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction
More informationChapter 13 OPENCHANNEL FLOW
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGrawHill Companies, Inc. Permission required
More informationAppendix 4C. Open Channel Theory
4C1 Appendix 4C Open Channel Theory 4C2 Appendix 4.C  Table of Contents 4.C.1 Open Channel Flow Theory 4C3 4.C.2 Concepts 4C3 4.C.2.1 Specific Energy 4C3 4.C.2.2 Velocity Distribution Coefficient
More informationOpen channel flow Basic principle
Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure
More informationWhat is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)
OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure
More informationM6a: Open Channel Flow (Manning s Equation, Partially Flowing Pipes, and Specific Energy)
M6a: Open Channel Flow (, Partially Flowing Pipes, and Specific Energy) Steady NonUniform Flow in an Open Channel Robert Pitt University of Alabama and Shirley Clark Penn State  Harrisburg Continuity
More informationCHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow
CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented
More information2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT
2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the
More informationFloodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient
Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient Open Channel Flow 1. Uniform flow  Manning s Eqn in a prismatic channel  Q, V, y, A, P, B, S and roughness are all constant
More informationCEE 370 Fall 2015. Laboratory #3 Open Channel Flow
CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a Vnotch weir and a hydraulic jump. Introduction:
More informationLECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number
LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number Open channel flow must have a free surface. Normally free water surface is subjected to atmospheric
More informationChapter 10. Open Channel Flow
Updated: Sept 3 2013 Created by Dr. İsmail HALTAŞ Created: Sept 3 2013 Chapter 10 Open Channel Flow based on Fundamentals of Fluid Mechanics 6th EdiAon By Munson 2009* *some of the Figures and Tables
More informationExperiment (13): Flow channel
Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and
More informationTopic 8: Open Channel Flow
3.1 Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau Subject: Open Channel Hydraulics Topics Covered: 8. Open Channel Flow and Manning Equation 9. Energy,
More informationCHAPTER 4 OPEN CHANNEL HYDRAULICS
CHAPTER 4 OPEN CHANNEL HYDRAULICS 4. Introduction Open channel flow refers to any flow that occupies a defined channel and has a free surface. Uniform flow has been defined as flow with straight parallel
More informationChapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations
Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.
More informationLecture 24 Flumes & Channel Transitions. I. General Characteristics of Flumes. Flumes are often used:
Lecture 24 Flumes & Channel Transitions I. General Characteristics of Flumes Flumes are often used: 1. Along contours of steep slopes where minimal excavation is desired 2. On flat terrain where it is
More informationOpen Channel Flow 2F2. A. Introduction. B. Definitions. Design Manual Chapter 2  Stormwater 2F  Open Channel Flow
Design Manual Chapter 2  Stormwater 2F  Open Channel Flow 2F2 Open Channel Flow A. Introduction The beginning of any channel design or modification is to understand the hydraulics of the stream. The
More informationHydraulic Jumps and Nonuniform Open Channel Flow, Course #507. Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.
Hydraulic Jumps and Nonuniform Open Channel Flow, Course #507 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Many examples of open channel flow can be approximated
More informationSTATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL. OFFICE OF DESIGN, DRAINAGE SECTION November 2009 TALLAHASSEE, FLORIDA
STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL OFFICE OF DESIGN, DRAINAGE SECTION TALLAHASSEE, FLORIDA Table of Contents Open Channel Handbook Chapter 1 Introduction... 1
More informationLecture 25 Design Example for a Channel Transition. I. Introduction
Lecture 5 Design Example for a Channel Transition I. Introduction This example will be for a transition from a trapezoidal canal section to a rectangular flume section The objective of the transition design
More information2O1 Channel Types and Structures
Iowa Stormwater Management Manual O1 O1 Channel Types and Structures A. Introduction The flow of water in an open channel is a common event in Iowa, whether in a natural channel or an artificial channel.
More informationCIVE2400 Fluid Mechanics Section 2: Open Channel Hydraulics
CIVE400 Fluid Mechanics Section : Open Channel Hydraulics. Open Channel Hydraulics.... Definition and differences between pipe flow and open channel flow.... Types of flow.... Properties of open channels...
More informationNote: first and second stops will be reversed. Bring clothing and shoes suitable for walking on rough ground.
Open Channel Page 1 Intro check on laboratory results Field Trip Note: first and second stops will be reversed Irrigation and Drainage Field Trip Bring clothing and shoes suitable for walking on rough
More information1 Fundamentals of. openchannel flow 1.1 GEOMETRIC ELEMENTS OF OPEN CHANNELS
1 Fundamentals of openchannel flow Open channels are natural or manmade conveyance structures that normally have an open top, and they include rivers, streams and estuaries. n important characteristic
More informationFUNDAMENTALS OF FLUID MECHANICS Chapter 10 Flow in Open Channels
FUNDAMENTALS OF FLUID MECHANICS Chapter 10 Flow in Open Channels JyhCherng Shieh Department of BioIndustrial Mechatronics Engineering National Taiwan University 1 MAIN TOPICS General Characteristics
More informationCivil Engineering Hydraulics Open Channel Flow. Adult: Where s your costume? What are you supposed to be?
Civil Engineering Hydraulics Calvin: Trick or treat! Adult: Where s your costume? What are you supposed to be? Calvin: I m yet another resourceconsuming kid in an overpopulated planet, raised to an alarming
More informationDesign Charts for OpenChannel Flow HDS 3 August 1961
Design Charts for OpenChannel Flow HDS 3 August 1961 Welcome to HDS 3Design Charts for OpenChannel Flow Table of Contents Preface DISCLAIMER: During the editing of this manual for conversion to an electronic
More informationCITY UTILITIES DESIGN STANDARDS MANUAL
CITY UTILITIES DESIGN STANDARDS MANUAL Book 2 (SW) SW9 June 2015 SW9.01 Purpose This Chapter provides information for the design of open channels for the conveyance of stormwater in the City of Fort Wayne.
More informationExercise (4): Open Channel Flow  Gradually Varied Flow
Exercise 4: Open Channel Flow  Gradually Varied Flow 1 A wide channel consists of three long reaches and has two gates located midway of the first and last reaches. The bed slopes for the three reaches
More informationCHAPTER II UNIFORM FLOW AND ITS FORMULAS MODULE 1. This experiment was designed to observe the characteristics of uniform flow in
CHAPTER II UNIFORM FLOW AND ITS FORMULAS MODULE 1 2.1 Introduction and Objective This experiment was designed to observe the characteristics of uniform flow in the teaching flume and to utilize the common
More informationLecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978)
Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978) I. An Example Culvert Design Design a concrete culvert using the
More informationEXAMPLES (OPENCHANNEL FLOW) AUTUMN 2015
EXAMPLES (OPENCHANNEL FLOW) AUTUMN 2015 Normal and Critical Depths Q1. If the discharge in a channel of width 5 m is 20 m 3 s 1 and Manning s n is 0.02 m 1/3 s, find: (a) the normal depth and Froude number
More informationPackage rivr. October 16, 2015
Type Package Package rivr October 16, 2015 Title Steady and Unsteady OpenChannel Flow Computation Version 1.1 Date 20151015 Author Michael C Koohafkan [aut, cre] Maintainer Michael C Koohafkan
More information21. Channel flow III (8.10 8.11)
21. Channel flow III (8.10 8.11) 1. Hydraulic jump 2. Nonuniform flow section types 3. Step calculation of water surface 4. Flow measuring in channels 5. Examples E22, E24, and E25 1. Hydraulic jump Occurs
More informationCHAPTER 5 OPEN CHANNEL HYDROLOGY
5.4 Uniform Flow Calculations 5.4.1 Design Charts CHAPTER 5 OPEN CHANNEL HYDROLOGY Following is a discussion of the equations that can be used for the design and analysis of open channel flow. The Federal
More informationCHAPTER ONE Fluid Fundamentals
CHPTER ONE Fluid Fundamentals 1.1 FLUID PROPERTIES 1.1.1 Mass and Weight Mass, m, is a property that describes the amount of matter in an object or fluid. Typical units are slugs in U.S. customary units,
More informationBackwater Rise and Drag Characteristics of Bridge Piers under Subcritical
European Water 36: 735, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru
More informationBasic Hydraulic Principles
CHAPTER 1 Basic Hydraulic Principles 1.1 General Flow Characteristics In hydraulics, as with any technical topic, a full understanding cannot come without first becoming familiar with basic terminology
More information...Eq(11.6) The energy loss in the jump is dependent on the two depths y 1 and y 2 3 = E =...Eq(11.7)
. Open Channel Flow Contd.5 Hydraulic Jump A hydraulic jump occurs when water in an open channel is flowing supercritical and is slowed by a deepening of the channel or obstruction in the channel. The
More informationMODELING FLUID FLOW IN OPEN CHANNEL WITH CIRCULAR CROSS SECTION DADDY PETER TSOMBE MASTER OF SCIENCE. (Applied Mathematics)
MODELING FLUID FLOW IN OPEN CHANNEL WITH CIRCULAR CROSS SECTION DADDY PETER TSOMBE MASTER OF SCIENCE (Applied Mathematics) JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY 2011 Modeling fluid flow
More information1. Carry water under the canal 2. Carry water over the canal 3. Carry water into the canal
Lecture 21 Culvert Design & Analysis Much of the following is based on the USBR publication: Design of Small Canal Structures (1978) I. CrossDrainage Structures Crossdrainage is required when a canal
More informationCalculating resistance to flow in open channels
Alternative Hydraulics Paper 2, 5 April 2010 Calculating resistance to flow in open channels http://johndfenton.com/alternativehydraulics.html johndfenton@gmail.com Abstract The DarcyWeisbach formulation
More informationEVALUATION OF UNSTEADY OPEN CHANNEL FLOW CHARACTERISTICS OVER A CRUMP WEIR
EVALUATION OF UNSTEADY OPEN CHANNEL FLOW CHARACTERISTICS OVER A CRUMP WEIR Mohd Adib Mohd Razi, Dwi Tjahjanto, Wan Afnizan Wan Mohamed, Siti Norashikin Binti Husin Department of Water Resource and Environmental
More informationBroad Crested Weirs. I. Introduction
Lecture 9 Broad Crested Weirs I. Introduction The broadcrested weir is an openchannel flow measurement device which combines hydraulic characteristics of both weirs and flumes Sometimes the name ramp
More informationUrban Hydraulics. 2.1 Basic Fluid Mechanics
Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able
More informationChapter 7 Ditches and Channels
Chapter 7 Ditches and Channels TABLE OF CONTENTS CHAPTER 7  DITCHES AND CHANNELS... 71 7.1 Introduction... 71 7.2 Design Policy... 72 7.2.1 Federal Policy... 72 7.2.2 Commonwealth of Virginia Policy...
More informationHydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati. Module No. # 02 Uniform Flow Lecture No.
Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 02 Uniform Flow Lecture No. # 04 Computation of Uniform Flow (Part 02) Welcome to this
More informationStorm Drainage Systems 11.91
Storm Drainage Systems 11.91 11.9 Gutter Flow Calculations 11.9.1 Introduction Gutter flow calculations are necessary in order to relate the quantity of flow (Q) in the curbed channel to the spread of
More informationCHAPTER 860 OPEN CHANNELS
HIGHWAY DESIGN MANUAL 8601 CHAPTER 860 OPEN CHANNELS Topic 861  General Index 861.1  Introduction An open channel is a conveyance in which water flows with a free surface. Although closed conduits such
More informationCLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 1100 ADDITIONAL HYDRAULIC STRUCTURES
CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 1100 ADDITIONAL HYDRAULIC STRUCTURES TABLE OF CONTENTS Page 1101 INTRODUCTION 1102 1102 CHANNEL DROPS
More informationHydraulics Laboratory Experiment Report
Hydraulics Laboratory Experiment Report Name: Ahmed Essam Mansour Section: "1", Monday 25 pm Title: Flow in open channel Date: 13 November2006 Objectives: Calculate the Chezy and Manning coefficients
More informationTHE UNIVERSITY OF TRINIDAD & TOBAGO
THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL ASSESSMENT/EXAMINATIONS APRIL 2014 Course Code and Title: Programme: Date and Time: Duration: HYDRAULICS FLUD2006 BASc. Civil Engineering Wednesday 16 th April,
More informationChapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
More informationModule 9: Basics of Pumps and Hydraulics Instructor Guide
Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine
More informationPart 654 Stream Restoration Design National Engineering Handbook
United States Department of Agriculture Natural Resources Conservation Service Stream Restoration Design Chapter 6 Issued August 007 Cover photo: Stream hydraulics focus on bankfull frequencies, velocities,
More informationM6b: Water Surface Profiles and Hydraulic Jumps
Example.0 (Chin 006): Constriction in Channel M6b: Water Surface Profiles and Hdraulic Jumps Robert Pitt Universit of Alabama and Shirle Clark Penn State  Harrisburg A rectangular channel.0 m wide carries.0
More informationSpreadsheet Use for Partially Full Pipe Flow Calculations
Spreadsheet Use for Partially Full Pipe Flow Calculations Course No: C02037 Credit: 2 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY
More informationCHAPTER 5 OPENCHANNEL FLOW
CHAPTER 5 OPENCHANNEL FLOW 1. INTRODUCTION 1 Openchannel flows are those that are not entirely included within rigid boundaries; a part of the flow is in contract with nothing at all, just empty space
More informationIndexVelocity Rating Development (Calibration) for HADCP RealTime Discharge Monitoring in Open Channels
IndexVelocity Rating Development (Calibration) for HADCP RealTime Discharge Monitoring in Open Channels Hening Huang Teledyne RD Instruments, Inc., 14020 Stowe Drive, Poway, CA. 92064, USA (Tel: 8588422600,
More informationSECTION 5  STORM DRAINS
Drainage Criteria Manual SECTION 5  STORM DRAINS 5.1.0 GENERAL This The purpose of this section discusses briefly is to consider the hydraulic aspects of storm drains and their appurtenances in a storm
More informationCHAPTER 4 FLOW IN CHANNELS
CHAPTER 4 FLOW IN CHANNELS INTRODUCTION 1 Flows in conduits or channels are of interest in science, engineering, and everyday life. Flows in closed conduits or channels, like pipes or air ducts, are entirely
More informationL r = L m /L p. L r = L p /L m
NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,
More informationEmergency Spillways (Sediment basins)
Emergency Spillways (Sediment basins) DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control ShortTerm Steep Gradient Channel Lining MediumLong Term Outlet Control Soil Treatment Permanent [1] [1]
More informationFLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUTSW
FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUTSW Daniel J. Howes, P.E. 1 Charles M. Burt, Ph.D., P.E. 2 Brett F. Sanders, Ph.D. 3 ABSTRACT Acoustic
More informationCHAPTER 3 STORM DRAINAGE SYSTEMS
CHAPTER 3 STORM DRAINAGE SYSTEMS 3.7 Storm Drains 3.7.1 Introduction After the tentative locations of inlets, drain pipes, and outfalls with tailwaters have been determined and the inlets sized, the next
More informationOpen Channel Flow Measurement Weirs and Flumes
Open Channel Flow Measurement Weirs and Flumes by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here Measuring the flow rate of water in an open channel typically involves some type of
More informationThere are a number of criteria to consider when designing canals Below is a list of main criteria, not necessarily in order of importance:
Lecture 15 Canal Design Basics I. Canal Design Factors There are a number of criteria to consider when designing canals Below is a list of main criteria, not necessarily in order of importance: 1. Flow
More informationThese slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.
Fluid Mechanics FE Review Carrie (CJ) McClelland, P.E. cmcclell@mines.edu Fluid Mechanics FE Review These slides contain some notes, thoughts about what to study, and some practice problems. The answers
More informationTravel Time. Computation of travel time and time of concentration. Factors affecting time of concentration. Surface roughness
3 Chapter 3 of Concentration and Travel Time Time of Concentration and Travel Time Travel time ( T t ) is the time it takes water to travel from one location to another in a watershed. T t is a component
More informationOpen Channel Flow in Aquaculture
SRAC Publication No. 74 Southern Regional Aquaculture Center March 1995 PR VI Open Channel Flow in Aquaculture J. David Bankston, Jr. 1 and Fred Eugene Baker Open channel flow of water has been used in
More informationScattergraph Principles and Practice Practical Application of the Froude Number to Flow Monitor Data
Scattergraph Principles and Practice Practical Application of the Froude Number to Flow Monitor Data Kevin L. Enfinger, P.E. and Patrick L. Stevens, P.E. ADS Environmental Services 4940 Research Drive
More informationBasic Hydrology. Time of Concentration Methodology
Basic Hydrology Time of Concentration Methodology By: Paul Schiariti, P.E., CPESC Mercer County Soil Conservation District What is the Time of Concentration? The time it takes for runoff to travel from
More informationLECTURE 1: Review of pipe flow: DarcyWeisbach, Manning, HazenWilliams equations, Moody diagram
LECTURE 1: Review of pipe flow: DarcyWeisbach, Manning, HazenWilliams equations, Moody diagram 1.1. Important Definitions Pressure Pipe Flow: Refers to full water flow in closed conduits of circular
More informationDimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.
Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems
More informationFigure 1. Head losses in a pipe
53:071 Principles of Hydraulics Laboratory Experiment #1 ENERGY AND HYDRAULIC GRADE LINES IN WATER PIPE SYSTEMS Principle The energy of a real fluid decreases as it moves through a pipe. The energy budget
More informationFluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems
Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today
More informationSharpCrested Weirs for Open Channel Flow Measurement, Course #506. Presented by:
SharpCrested Weirs for Open Channel Flow Measurement, Course #506 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com A weir is basically an obstruction in an open channel
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationCHAPTER: 6 FLOW OF WATER THROUGH SOILS
CHAPTER: 6 FLOW OF WATER THROUGH SOILS CONTENTS: Introduction, hydraulic head and water flow, Darcy s equation, laboratory determination of coefficient of permeability, field determination of coefficient
More information2011 HYDRAULICS MANUAL
STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT P.O. Box 94245 Baton Rouge, Louisiana 708049245 http://www.dotd.la.gov/ HYDRAULICS MANUAL Hydraulics (225) 3791306 PREFACE The following
More informationANALYSIS OF OPENCHANNEL VELOCITY MEASUREMENTS COLLECTED WITH AN ACOUSTIC DOPPLER CURRENT PROFILER
Reprint from RIVERTECH 96 Proceedings from the1st International Conference On New/Emerging Concepts for Rivers Organized by the International Water Resources Association Held September 2226, 1996, Chicago,
More informationWhen the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
More informationAbaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
More informationDRAINAGE CRITERIA MANUAL (V. 2) CULVERTS CONTENTS
DRAINAGE CRITERIA MANUAL (V. 2) CONTENTS Section Page CU 1.0 INTRODUCTION AND OVERVIEW... 1 1.1 Required Design Information... 3 1.1.1 Discharge... 4 1.1.2 Headwater... 4 1.1.3 Tailwater... 5 1.1.4 Outlet
More informationA n. P w Figure 1: Schematic of the hydraulic radius
BEE 473 Watershed Engineering Fall 2004 OPEN CHANNELS The following provide the basic equations and relationships used in open channel design. Although a variety of flow conditions can exist in a channel
More informationExperiment 3 Pipe Friction
EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A crosssectional
More informationApplied Fluid Mechanics
Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture
More informationProceeding of International Seminar on Application of Science Matehmatics 2011 (ISASM2011) PWTC, KL, Nov, 13, 2011
Proceeding of International Seminar on Application of Science Matehmatics 2011 (ISASM2011) PWTC, KL, Nov, 13, 2011 INFLUENCE OF BED ROUGHNESS IN OPEN CHANNEL Zarina Md Ali 1 and Nor Ashikin Saib 2 1 Department
More informationHydraulics Engineering 6713
MEMORIAL UNIVERSITY OF NEWFOUNLAN FACULTY OF ENGINEERING AN APPLIE SCIENCE Hydraulics Engineering 67 Problems & Solutions r. Leonard Lye Professor of Civil Engineering TUTORIAL TURBULENT PIPE FLOW. In
More informationChapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright
More informationCHAPTER 9. Outlet Protection
CHAPTER 9 Outlet Protection General Considerations Not an ABACT, but should be used in all watersheds to prevent erosion due to concentrated discharges For channel or swale, use guidance for pipe with
More informationFLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions
FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or
More informationCE415L Applied Fluid Mechanics Laboratory. Experiment: No. 5 Open Channel Flow Measurements and Grade Lines
CE415L pplied Fluid Mechanics Laborator Experiment: No. 5 Open Channel Flow Measurements and Grade Lines Learning Objective Following the completion of this experiment and the analsis of the data, ou should
More informationCHAPTER 4 STORM DRAINAGE SYSTEMS
CHAPTER 4 STORM DRAINAGE SYSTEMS 4.1 Overview... 41 4.1.1 Introduction... 41 4.1.2 Inlet Definition... 41 4.1.3 Criteria... 41 4.2 Pavement Drainage... 42 4.2.1 Introduction... 42 4.2.2 Storm Drain
More informationGuo, James C.Y. (2004). Design of Urban Channel Drop Structure, J. of Flood Hazards News, December,
Guo, James C.. (004). esign of Urban Channel rop Structure, J. of Flood azards News, ecember, Guo, James C.., (009) Grade Control for Urban Channel esign, submitted to Elsevier Science, J. of ydroenvironmental
More informationCHAPTER IX HYDRAULICS AND DRAINAGE
CHAPTER IX HYDRAULICS AND DRAINAGE 904.1 GENERAL. Providing for the control of erosion is a necessary part of the complete design of any highway construction project. These provisions must include measures
More informationPhysics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
More informationPipe FlowFriction Factor Calculations with Excel
Pipe FlowFriction Factor Calculations with Excel Course No: C03022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980
More information