# Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker André Bakker ( ) Fluent Inc. (2002) 1

2 Overview Drag. The boundary-layer concept. Laminar boundary-layers. Turbulent boundary-layers. Flow separation. 2

3 The drag force The surrounding fluid exerts pressure forces and viscous forces on an object. U p < 0 U τ w p > 0 The components of the resultant force acting on the object immersed in the fluid are the drag force and the lift force. The drag force acts in the direction of the motion of the fluid relative to the object. The lift force acts normal to the flow direction. Both are influenced by the size and shape of the object and the Reynolds number of the flow. 3

4 Drag prediction The drag force is due to the pressure and shear forces acting on the surface of the object. The tangential shear stresses acting on the object produce friction drag (or viscous drag). Friction drag is dominant in flow past a flat plate and is given by the surface shear stress times the area: Fd, viscous = A. τ w Pressure or form drag results from variations in the the normal pressure around the object: F d, pressure = p dan A In order to predict the drag on an object correctly, we need to correctly predict the pressure field and the surface shear stress. This, in turn, requires correct treatment and prediction of boundary layers and flow separation. We will discuss both in this lecture. 4

5 Viscous boundary layer An originally laminar flow is affected by the presence of the walls. Flow over flat plate is visualized by introducing bubbles that follow the local fluid velocity. Most of the flow is unaffected by the presence of the plate. However, in the region closest to the wall, the velocity decreases to zero. The flow away from the walls can be treated as inviscid, and can sometimes be approximated as potential flow. The region near the wall where the viscous forces are of the same order as the inertial forces is termed the boundary layer. The distance over which the viscous forces have an effect is termed the boundary layer thickness. The thickness is a function of the ratio between the inertial forces and the viscous forces, i.e. the Reynolds number. As Re increases, the thickness decreases. 5

6 Effect of viscosity The layers closer to the wall start moving right away due to the no-slip boundary condition. The layers farther away from the wall start moving later. The distance from the wall that is affected by the motion is also called the viscous diffusion length. This distance increases as time goes on. The experiment shown on the left is performed with a higher viscosity fluid (100 mpa.s). On the right, a lower viscosity fluid (10 mpa.s) is shown. 6

7 Moving plate boundary layer An impulsively started plate in a stagnant fluid. When the wall in contact with the still fluid suddenly starts to move, the layers of fluid close to the wall are dragged along while the layers farther away from the wall move with a lower velocity. The viscous layer develops as a result of the no-slip boundary condition at the wall. 7

8 Viscous boundary layer thickness Exact equations for the velocity profile in the viscous boundary layer were derived by Stokes in Start with the Navier-Stokes equation: u t 2 u = ν 2 y Derive exact solution for the velocity profile: erf is the error function: 2 2 t erf ( z) = e dt π y U = U0 1 erf 2 νt The boundary layer thickness can be approximated by: 2 u u U 0 U0 = ν ν δ νt 2 2 t y t δ z 0 8

9 Flow separation Flow separation occurs when: the velocity at the wall is zero or negative and an inflection point exists in the velocity profile, and a positive or adverse pressure gradient occurs in the direction of flow. 9

10 Separation at sharp corners Corners, sharp turns and high angles of attack all represent sharply decelerating flow situations where the loss in energy in the boundary layer ends up leading to separation. Here we see how the boundary layer flow is unable to follow the turn in the sharp corner (which would require a very rapid acceleration), causing separation at the edge and recirculation in the aft region of the backward facing step. 10

11 Flow around a truck Flow over non-streamlined bodies such as trucks leads to considerable drag due to recirculation and separation zones. A recirculation zone is clear on the back of the cab, and another one around the edge of the trailer box. The addition of air shields to the cab roof ahead of the trailer helps organize the flow around the trailer and minimize losses, reducing drag by up to 10-15%. 11

12 Flow separation in a diffuser with a large angle 12

13 Inviscid flow around a cylinder The origins of the flow separation from a surface are associated with the pressure gradients impressed on the boundary layer by the external flow. The image shows the predictions of inviscid, irrotational flow around a cylinder, with the arrows representing velocity and the color map representing pressure. The flow decelerates and stagnates upstream of the cylinder (high pressure zone). It then accelerates to the top of the cylinder (lowest pressure). Next it must decelerate against a high pressure at the rear stagnation point. 13

14 Drag on a smooth circular cylinder 2 The drag coefficient is defined as follows: Fdrag = CD v A 1 ρ 2 no separation steady separation unsteady vortex shedding laminar BL wide turbulent wake turbulent BL narrow turbulent wake 14

15 Drag on a smooth circular cylinder At low Reynolds numbers (Re < 1), the inertia effects are small relative to the viscous and pressure forces. In this flow regime the drag coefficient varies inversely with the Reynolds number. For example, the drag coefficient CD for a sphere is equal to 24/Re. no separation 15

16 Drag on a smooth circular cylinder At moderate Reynolds numbers (1<Re<10 3 ), the flow begins to separate in a periodic fashion in the form of Karman vortices steady separation unsteady vortex shedding 16

17 Drag on a smooth circular cylinder At higher Reynolds numbers (10 3 < Re < 10 5 ), the flow becomes fully separated. An adverse pressure gradient exists over the rear portion of the cylinder resulting in a rapid growth of the laminar boundary layer and separation As the Reynolds number increases, the boundary layer transitions to turbulent, delaying separation and resulting in a sudden decrease in the drag coefficient. laminar BL wide turbulent wake turbulent BL narrow turbulent wake 17

18 Separation - adverse pressure gradients Separation of the boundary layers occurs whenever the flow tries to decelerate quickly, that is whenever the outer pressure gradient is negative, or the pressure gradient is positive, sometimes referred to as an adverse pressure gradient. In the case of the tennis ball, the flow initially decelerates on the upstream side of the ball, while the local pressure increases in accord with Bernoulli s equation. Near the top of the ball the local external pressure decreases and the flow should accelerate as the potential energy of the pressure field is converted to kinetic energy. However, because of viscous losses, not all kinetic energy is recovered and the flow reverses around the separation point. 18

19 Turbulent boundary layer Increased momentum transport due to turbulence from the free stream flow to the flow near the wall makes turbulent boundary layers more resistant to flow separation. The photographs depict the flow over a strongly curved surface, where there exists a strong adverse (positive) pressure gradient. The boundary layer has a high momentum deficit. In the case where the boundary layer is laminar, insufficient momentum exchange takes, the flow is unable to adjust to the increasing pressure and separates from the surface. In case where the flow is turbulent, the increased transport of momentum (due to the Reynolds stresses) from the free-stream to the wall increases the streamwise momentum in the boundary layer. This allows the flow to overcome the adverse pressure gradient. It eventually does separate nevertheless, but much further downstream. 19

20 Tripping the boundary layer Here we see how the addition of a trip wire to induce transition to turbulence changes the separation line further to the rear of the sphere, reducing the size of the wake and thus drastically diminishing overall drag. This well-known fact can be taken advantage of in a number of applications, such as dimples in golf balls and turbulence generation devices on airfoils. 20

21 Sports balls Many games involve balls designed to use drag reduction brought about by surface roughness. Many sports balls have some type of surface roughness, such as the seams on baseballs or cricket balls and the fuzz on tennis balls. It is the Reynolds number (not the speed, per se) that determines whether the boundary layer is laminar or turbulent. Thus, the larger the ball, the lower the speed at which a rough surface can be of help in reducing the drag. Typically sports ball games that use surface roughness to promote an early transition of the boundary layer from a laminar to a turbulent flow are played over a Reynolds number range that is near the trough of the Cd versus Re curve, where drag is lowest. 21

22 Flow in reference frame relative to the ball Note that we have been showing flow fields in the reference frame of the object, similar to the flow around the soccer ball shown here. 22

23 Flow in absolute reference frame However, one should keep in mind that the flow in the absolute reference frame may look quite different, as shown here. 23

24 Airfoil - effect of angle of attack The loss in pressure in the separated flow region behind solid bodies causes an imbalance between the upstream and downstream forces, contributing greatly to an increased net drag force. In the case of streamlined airfoils at low angle of attack, separation occurs only at the tip, with minimal losses. As the angle of attack increases, the separation point moves upstream, leading to increased drag. 24

25 Airfoil - effect of shape The pressure field is changed by changing the thickness of a streamlined body placed in the flow. The acceleration and deceleration caused by a finite body width creates favorable and unfavorable pressure gradients. When the body is thin, there are only weak pressure gradients and the flow remains attached. As the body is made thicker, the adverse pressure gradient resulting from the deceleration near the rear leads to flow separation, recirculation, and vortex shedding. Focusing in on the rear region of the flow, it is seen that as the body is again reduced in thickness, the separated region disappears as the strengths of the adverse pressure gradient is diminished. 25

26 Suction Just as flow separation can be understood in terms of the combined effects of viscosity and adverse pressure gradients, separated flows can be reattached by the application of a suitable modification to the boundary conditions. In this example, suction is applied to the leading edge of the airfoil at a sharp angle of attack, removing the early separation zone, and moving the separation point much farther downstream. 26

27 Blowing Separation in external flows, such as the flow past a sudden expansion can be controlled not only by suction but also by blowing. In this video, the region of separated flow is eliminated by the introduction of high momentum fluid at a point near the separation point. This acts to eliminate the adverse pressure gradient by accelerating the fluid close to the boundary, leading to reattachment of the flow. 27

28 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects are important. The boundary layer allows the fluid to transition from the free stream velocity U τ to a velocity of zero at the wall. The velocity component normal to the surface is much smaller than the velocity parallel to the surface: v << u. The gradients of the flow across the layer are much greater than the gradients in the flow direction. The boundary layer thickness δ is defined as the distance away from the surface where the velocity reaches 99% of the free-stream velocity. δ = y, where u = 0.99 U 28

29 The turbulent boundary layer 29

30 The turbulent boundary layer Important variables: Distance from the wall: y. Wall shear stress: τ w. The force exerted on a flat plate is the area times the wall shear stress. Density: ρ. Dynamic viscosity: µ. Kinematic viscosity: ν. Velocity at y: U. The friction velocity: u τ = (τ w /ρ) 1/2. We can define a Reynolds number based on the distance to the wall using the friction velocity: y + = yu τ /ν. We can also make the velocity at y dimensionless using the friction velocity: u + = U/ u τ. 30

31 Boundary layer structure u + =y + y + =1 31

32 Standard wall functions The experimental boundary layer profile can be used to calculate τ w. However, this requires y + for the cell adjacent to the wall to be calculated iteratively. In order to save calculation time, the following explicit set of correlations is usually solved instead: y = 1/4 1/ 2 ρ C µ k P y y * P µ y * < ( ) U = 1 κ ln Ey U = y UP C τw = U Here: U p is the velocity in the center of the cell adjacent to the wall. y p is the distance between the wall and the cell center. k p is the turbulent kinetic energy in the cell center. κ is the von Karman constant (0.42). E is an empirical constant that depends on the roughness of the walls (9.8 for smooth surfaces). 1/4 µ k / ρ 1/2 P 32

33 Near-wall treatment - momentum equations The objective is to take the effects of the boundary layer correctly into account without having to use a mesh that is so fine that the flow pattern in the layer can be calculated explicitly. Using the no-slip boundary condition at wall, velocities at the nodes at the wall equal those of the wall. The shear stress in the cell adjacent to the wall is calculated using the correlations shown in the previous slide. This allows the first grid point to be placed away from the wall, typically at 50 < y + < 500, and the flow in the viscous sublayer and buffer layer does not have to be resolved. This approach is called the standard wall function approach. The correlations shown in the previous slide are for steady state ( equilibrium ) flow conditions. Improvements, non-equilibrium wall functions, are available that can give improved predictions for flows with strong separation and large adverse pressure gradients. 33

34 Two-layer zonal model A disadvantage of the wallfunction approach is that it relies on empirical correlations. The two-layer zonal model does not. It is used for low-re flows or flows with complex near-wall phenomena. Zones distinguished by a walldistance-based turbulent ρ k y Reynolds number: Re y The flow pattern in the boundary layer is calculated explicitly. Regular turbulence models are used in the turbulent core region. Only k equation is solved in the viscosity-affected region. µ Re y >200 ε is computed using a correlation for the turbulent length scale. Zoning is dynamic and solution adaptive. Re y <

35 Near-wall treatment - turbulence The turbulence structure in the boundary layer is highly anisotropic. ε and k require special treatment at the walls. Furthermore, special turbulence models are available for the low Reynolds number region in the boundary layer. These are aptly called low Reynolds number models. This is still a very active area of research, and we will not discuss those here in detail. 35

36 Comparison of near-wall treatments Approach Strengths Weaknesses Standard wallfunctions Non-equilibrium wall-functions Two-layer zonal model Robust, economical, reasonably accurate Accounts for pressure gradient (PG) effects. Improved predictions for separation, reattachment, impingement Does not rely on empirical law-of-thewall relations, good for complex flows, applicable to low-re flows Empirically based on simple high- Re flows; poor for low-re effects, massive transpiration, PGs, strong body forces, highly 3D flows Poor for low-re effects, massive transpiration (blowing, suction), severe PGs, strong body forces, highly 3D flows Requires finer mesh resolution and therefore larger cpu and memory resources 36

37 Computational grid guidelines Wall Function Approach Two-Layer Zonal Model Approach First grid point in log-law region: 50 y 500 Gradual expansion in cell size away from the wall. + Better to use stretched quad/hex cells for economy. First grid point at y + 1. At least ten grid points within buffer and sublayers. Better to use stretched quad/hex cells for economy. 37

38 Obtaining accurate solutions When very accurate (say 2%) drag, lift, or torque predictions are required, the boundary layer and flow separation require accurate modeling. The following practices will improve prediction accuracy: Use boundary layer meshes consisting of quads, hexes, or prisms. Avoid using pyramid or tetrahedral cells immediately adjacent to the wall. After converging the solution, use the surface integral reporting option to check if y + is in the right range, and if not refine the grid using adaption. For best predictions use the two-layer zonal model and completely resolve the flow in the whole boundary layer. tetrahedral volume mesh is generated automatically prism layer efficiently resolves boundary layer triangular surface mesh on car body is quick and easy to create 38

39 Summary The concept of the boundary layer was introduced. Boundary layers require special treatment in the CFD model. The influence of pressure gradient on boundary layer attachment showed that an adverse pressure gradient gives rise to flow separation. For accurate drag, lift, and torque predictions, the boundary layer and flow separation need to be modeled accurately. This requires the use of: A suitable grid. A suitable turbulence model. Higher order discretization. Deep convergence using the force to be predicted as a convergence monitor. 39

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### Introduction to Fluid Mechanics. Chapter 9 External Incompressible Viscous Flow. Pritchard

Introduction to Fluid Mechanics Chapter 9 External Incompressible Viscous Flow Main Topics The Boundary-Layer Concept Boundary-Layer Thicknesses Laminar Flat-Plate Boundary Layer: Exact Solution Momentum

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

### Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

### Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

### Lecture 8 - Turbulence. Applied Computational Fluid Dynamics

Lecture 8 - Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence

### A fundamental study of the flow past a circular cylinder using Abaqus/CFD

A fundamental study of the flow past a circular cylinder using Abaqus/CFD Masami Sato, and Takaya Kobayashi Mechanical Design & Analysis Corporation Abstract: The latest release of Abaqus version 6.10

### Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### Use of Magnus Effect Rotors as Wind Turbines for Solar Chimney Power Plants

Use of Magnus Effect Rotors as Wind Turbines for Solar Chimney Power Plants Presented by: Mohammed Abdul Hamid Abdul Latif Advisor: Prof. Mohamed Amr Serag El-Din Outline Introduction Objectives Methodology

### Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow

### Distinguished Professor George Washington University. Graw Hill

Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

### Basics of vehicle aerodynamics

Basics of vehicle aerodynamics Prof. Tamás Lajos Budapest University of Technology and Economics Department of Fluid Mechanics University of Rome La Sapienza 2002 Influence of flow characteristics on the

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### Natural Convection. Buoyancy force

Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

### Turbulence and Fluent

Turbulence and Fluent Turbulence Modeling What is Turbulence? We do not really know 3D, unsteady, irregular motion in which transported quantities fluctuate in time and space. Turbulent eddies (spatial

### Fluent Software Training TRN Boundary Conditions. Fluent Inc. 2/20/01

Boundary Conditions C1 Overview Inlet and Outlet Boundaries Velocity Outline Profiles Turbulence Parameters Pressure Boundaries and others... Wall, Symmetry, Periodic and Axis Boundaries Internal Cell

### HOW BOARDS AND RUDDERS WORK

HOW BOARDS AND RUDDERS WORK Lift theory By B. Kohler Copyright 2006 by B. Kohler K-designs HOW BOARDS & RUDDERS WORK Our boats become faster and faster and a better understanding of how a sail, rudder,

### Commercial CFD Software Modelling

Commercial CFD Software Modelling Dr. Nor Azwadi bin Che Sidik Faculty of Mechanical Engineering Universiti Teknologi Malaysia INSPIRING CREATIVE AND INNOVATIVE MINDS 1 CFD Modeling CFD modeling can be

### Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 22 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 22 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. So

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### Fundamentals of Fluid Mechanics

Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

### Chapter 7. External Forced Convection. Multi Energy Transport (MET) Lab. 1 School of Mechanical Engineering

Chapter 7 Eternal Forced Convection 1 School of Mechanical Engineering Contents Chapter 7 7-1 rag and Heat Transfer in Eternal Flow 3 page 7-2 Parallel Flow Over Flat Plates 5 page 7-3 Flow Across Cylinders

### Lecture 7 - Meshing. Applied Computational Fluid Dynamics

Lecture 7 - Meshing Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Why is a grid needed? Element types. Grid types.

### 4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

### Chapter 8 Steady Incompressible Flow in Pressure Conduits

Chapter 8 Steady Incompressible Flow in Pressure Conduits Outline 8.1 Laminar Flow and turbulent flow Reynolds Experiment 8.2 Reynolds number 8.3 Hydraulic Radius 8.4 Friction Head Loss in Conduits of

### Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

### AA200 Chapter 9 - Viscous flow along a wall

AA200 Chapter 9 - Viscous flow along a wall 9.1 The no-slip condition 9.2 The equations of motion 9.3 Plane, Compressible Couette Flow (Review) 9.4 The viscous boundary layer on a wall 9.5 The laminar

### Using CFD to improve the design of a circulating water channel

2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

### Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

### Flow Loss in Screens: A Fresh Look at Old Correlation. Ramakumar Venkata Naga Bommisetty, Dhanvantri Shankarananda Joshi and Vighneswara Rao Kollati

Journal of Mechanics Engineering and Automation 3 (013) 9-34 D DAVID PUBLISHING Ramakumar Venkata Naga Bommisetty, Dhanvantri Shankarananda Joshi and Vighneswara Rao Kollati Engineering Aerospace, MCOE,

### Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

### ME19b. SOLUTIONS. Feb. 11, 2010. Due Feb. 18

ME19b. SOLTIONS. Feb. 11, 21. Due Feb. 18 PROBLEM B14 Consider the long thin racing boats used in competitive rowing events. Assume that the major component of resistance to motion is the skin friction

### CFD software overview comparison, limitations and user interfaces

CFD software overview comparison, limitations and user interfaces Daniel Legendre Introduction to CFD Turku, 05.05.2015 Åbo Akademi University Thermal and Flow Engineering Laboratory 05.05.2015 1 Some

### THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

### FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

### CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

### Comparison of CFD models for multiphase flow evolution in bridge scour processes

Comparison of CFD models for multiphase flow evolution in bridge scour processes A. Bayón-Barrachina, D. Valero, F.J. Vallès Morán, P. A. López-Jiménez Dept. of Hydraulic and Environmental Engineering

### AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS

International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 91 104, Article ID: IJMET_07_02_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

### ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

### Aerodynamics of Rotating Discs

Proceedings of ICFD 10: Tenth International Congress of FluidofDynamics Proceedings ICFD 10: December 16-19, 2010, Stella Di MareTenth Sea Club Hotel, Ain Soukhna, Egypt International Congress of Red FluidSea,

### Problem 1. 12ft. Find: Velocity of truck for both drag situations. Equations: Drag F Weight. For force balance analysis: Lift and Drag: Solution:

Problem 1 Given: Truck traveling down 7% grade Width 10ft m 5 tons 50,000 lb Rolling resistance on concrete 1.% weight C 0.96 without air deflector C 0.70 with air deflector V 100 7 1ft Find: Velocity

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

### Simulation at Aeronautics Test Facilities A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640

Simulation at Aeronautics Test A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640 Questions How has the ability to do increasingly accurate modeling and

### FIGURE P Flow over Flat Plates FIGURE P11 56

626 cient increases to 0.41 when the sunroof is open. Determine the additional power consumption of the car when the sunroof is opened at (a) 35 mi/h and (b) 70 mi/h. Take the density of air to be 0.075

### Department of Mechanical Engineering

Department of Mechanical Engineering AMEE 401/ AUTO 400 Aerodynamics Instructor: Marios M. Fyrillas Email: m.fyrillas@frederick.ac.cy QUESTION 1 HOMEWORK ASSIGNMENT #1 SOLUTION a. Explain the meaning of

### Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras. Module No - 12 Lecture No - 25

(Refer Slide Time: 00:22) Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras Module No - 12 Lecture No - 25 Prandtl-Meyer Function, Numerical

### CFD Simulation of the NREL Phase VI Rotor

CFD Simulation of the NREL Phase VI Rotor Y. Song* and J. B. Perot # *Theoretical & Computational Fluid Dynamics Laboratory, Department of Mechanical & Industrial Engineering, University of Massachusetts

### A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

### CHAPTER 4 FLOW IN CHANNELS

CHAPTER 4 FLOW IN CHANNELS INTRODUCTION 1 Flows in conduits or channels are of interest in science, engineering, and everyday life. Flows in closed conduits or channels, like pipes or air ducts, are entirely

### High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter

High-Lift Systems Outline of this Chapter The chapter is divided into four sections. The introduction describes the motivation for high lift systems, and the basic concepts underlying flap and slat systems.

### HIGH LIFT DEVICES. High Lift Device (I)

HIGH LIFT DEVICES When an aircraft is landing or taking off, specially high values of lift coefficient are required in order to maintain flight at the desired low speeds. L 1 V 2 2 SC L Increasing the

### Chapter 13 OPEN-CHANNEL FLOW

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### Chapter 5. Microfluidic Dynamics

Chapter 5 Thermofluid Engineering and Microsystems Microfluidic Dynamics Navier-Stokes equation 1. The momentum equation 2. Interpretation of the NSequation 3. Characteristics of flows in microfluidics

### NUMERICAL STUDY OF FLOW AND TURBULENCE THROUGH SUBMERGED VEGETATION

NUMERICAL STUDY OF FLOW AND TURBULENCE THROUGH SUBMERGED VEGETATION HYUNG SUK KIM (1), MOONHYEONG PARK (2), MOHAMED NABI (3) & ICHIRO KIMURA (4) (1) Korea Institute of Civil Engineering and Building Technology,

### Steady Flow: Laminar and Turbulent in an S-Bend

STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and

### Hydraulic losses in pipes

Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor

### Educational Module on Introductory Aerodynamics

Educational Module on Introductory Aerodynamics Kentucky Wing Design Competition: A partnership between the Kentucky Institute for Aerospace Education and the University of Kentucky Sponsored by the NASA

### O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

### Turbulence: The manifestation of eddies and their role in conservation laws

Turbulence: The manifestation of eddies and their role in conservation laws George E. Hrabovsky MAST Presentation Given to the Chaos and Complex Systems Seminar University of Wisconsin - Madison 26 February,

### 7. Basics of Turbulent Flow

1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

### The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as:

12.001 LAB 3C: STOKES FLOW DUE: WEDNESDAY, MARCH 9 Lab Overview and Background The viscosity of a fluid describes its resistance to deformation. Water has a very low viscosity; the force of gravity causes

### Aerodynamic Development of a Solar Car

Aerodynamic Development of a Solar Car Devanshu Singla 1 1 Department of Mechanical Engineering, Aakash Tayal 2 2 Department of Mechanical Engineering, Rajat Sharma 3 3 (Department of Mechanical Engineering,

### Viscous Flow in Pipes

Viscous Flow in Pipes Excerpted from supplemental materials of Prof. Kuang-An Chang, Dept. of Civil Engin., Texas A&M Univ., for his spring 2008 course CVEN 311, Fluid Dynamics. (See a related handout

### Blasius solution. Chapter 19. 19.1 Boundary layer over a semi-infinite flat plate

Chapter 19 Blasius solution 191 Boundary layer over a semi-infinite flat plate Let us consider a uniform and stationary flow impinging tangentially upon a vertical flat plate of semi-infinite length Fig

### Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

### ENSC 283 Introduction and Properties of Fluids

ENSC 283 Introduction and Properties of Fluids Spring 2009 Prepared by: M. Bahrami Mechatronics System Engineering, School of Engineering and Sciences, SFU 1 Pressure Pressure is the (compression) force

### High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

### PASSIVE CONTROL OF SHOCK WAVE APPLIED TO HELICOPTER ROTOR HIGH-SPEED IMPULSIVE NOISE REDUCTION

TASK QUARTERLY 14 No 3, 297 305 PASSIVE CONTROL OF SHOCK WAVE APPLIED TO HELICOPTER ROTOR HIGH-SPEED IMPULSIVE NOISE REDUCTION PIOTR DOERFFER AND OSKAR SZULC Institute of Fluid-Flow Machinery, Polish Academy

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics

European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd

### Turbulent Flow Examples

Turbulent Flow Examples 1 / 47 2d Backstep Experiments conducted at NASA Ames (Driver and Seegmiller, 1985) Re H = 3.74 x 10 4, α = 0deg. The flow features re-circulation, reattachment, and re-developing

### Chapter 4 Aerodynamics of Flight

Chapter 4 Aerodynamics of Flight Forces Acting on the Aircraft Thrust, drag, lift, and weight are forces that act upon all aircraft in flight. Understanding how these forces work and knowing how to control

### CFD Analysis on Airfoil at High Angles of Attack

CFD Analysis on Airfoil at High Angles of Attack Dr.P.PrabhakaraRao¹ & Sri Sampath.V² Department of Mechanical Engineering,Kakatiya Institute of Technology& Science Warangal-506015 1 chantifft@rediffmail.com,

### CFD ANALYSIS OF RAE 2822 SUPERCRITICAL AIRFOIL AT TRANSONIC MACH SPEEDS

CFD ANALYSIS OF RAE 2822 SUPERCRITICAL AIRFOIL AT TRANSONIC MACH SPEEDS K.Harish Kumar 1, CH.Kiran Kumar 2, T.Naveen Kumar 3 1 M.Tech Thermal Engineering, Sanketika Institute of Technology & Management,

### REVIEWS ON BLUFF BODY FLOW AROUND PRISMS AND GIRDERS

REVIEWS ON BLUFF BODY FLOW AROUND PRISMS AND GIRDERS Prepared by Le Thai Hoa 2005 1 L e T h a i H o a B l u f f b o d y f l o w a r o u n d p r i s m s a n d g i r d e r s REVIEWS ON BLUFF BODY FLOW AROUND

### Lecturer, Department of Engineering, ar45@le.ac.uk, Lecturer, Department of Mathematics, sjg50@le.ac.uk

39 th AIAA Fluid Dynamics Conference, San Antonio, Texas. A selective review of CFD transition models D. Di Pasquale, A. Rona *, S. J. Garrett Marie Curie EST Fellow, Engineering, ddp2@le.ac.uk * Lecturer,

### Model Rocket Aerodynamics

Model Rocket Aerodynamics Some Terminology Free stream the flow far away from a moving body Mach number fraction of the local speed of sound v free stream velocity (m/s) M free stream Mach number ρ air

### Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,

### Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary

### HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

### Urban Hydraulics. 2.1 Basic Fluid Mechanics

Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able

### Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

### Introduction to CFD Analysis

Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

### Numerical simulation of turbulent boundary for stagnation-flow in spray-painting processes

Int. Conference on Boundary and Interior Layers BAIL 2006 G.Lube, G.Rapin (Eds) University of Göttingen, 2006 Numerical simulation of turbulent boundary for stagnation-flow in spray-painting processes

### ANSYS CFD results for the AIAA High Lift Prediction Workshop

ANSYS CFD results for the AIAA High Lift Prediction Workshop Robin Steed ANSYS Canada Ltd. Waterloo, Ontario, Canada Greg Stuckert ANSYS, Inc. Lebanon, NH, USA 2009 ANSYS, Inc. All rights reserved. 1 Outline

### Brainstorming and Barnstorming: Basics of Flight

Brainstorming and Barnstorming: Basics of Flight Flight History First flight: The Wright Flyer 1903 Break Speed of Sound: Bell X-1A 1947 Land on Moon: Apollo 11 1969 Circumnavigate Earth on one tank of