# EXAMPLE: Water Flow in a Pipe

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along the pipe. Does the water slow down as it flows from one end to the other? Only component of velocity is in the x-direction. v = v x i Incompressible Continuity: v y = v z = 0 v x x v x x + v y y + v z z = 0 = 0 and the water does not slow down.

2 EXAMPLE: Flow Through a Tank V = constant (always full) Integral Mass Balance: ( v n)da = 0 S v 1 A 1 = v 2 A 2 Q Constant volumetric flow rate Q. EXAMPLE: Simple Shear Flow v y = v z = 0 v x = v x (y) satisfied identically v v x x + v y y + v z z = 0

3 NAVIER-STOKES EQUATIONS (p. 1) (in the limit of slow flows with high viscosity) ρ = density η = viscosity v = typical velocity scale D = typical length scale Reynolds Number: R e ρvd η (1-62) For R e 1 have laminar flow (no turbulence) ρ v t = P + ρ g + η 2 v Vector equation (thus really three equations) The full Navier-Stokes equations have other nasty inertial terms that are important for low viscosity, high speed flows that have turbulence (airplane wing).

4 NAVIER-STOKES EQUATIONS (p. 2) ρ v t = P + ρ g + η 2 v ρ v t = v t = acceleration ρ = force unit volume mass unit volume ( F = m a) Newton s 2 nd Law Navier-Stokes equations are a force balance per unit volume What accelerates the fluid? P = Pressure Gradient ρ g = Gravity η 2 v = Flow (fluid accelerates in direction of increasing velocity gradient. Increasing v 2 v > 0

5 GENERAL FLUID MECHANICS SOLUTIONS v r = constant r Already know the way velocity varies with position, and have not used the Navier-Stokes equations! Navier-Stokes equations + Continuity + Boundary Conditions Four coupled differential equations! Always look for ways to simplify the problem! EXAMPLE: 2D Source Flow Injection Molding a Plate Continuity equation v = 1 r 1. Independent of time 2. 2-D v z = 0 3. Symmetry Polar Coordinates 4. Symmetry v θ = 0 d (rv dr r) = 0 rv r = constant

6 EXAMPLE: Poiseuille Flow between Parallel Plates (important for injection molding) (P. 1) Independent of time v y = v z = 0 Cartesian coordinates Continuity: Navier-Stokes equation: v x x = 0 v x = v x (y) P = P (x) P x + µ 2 v x y 2 = 0 P y = P z = 0 v x = v x (y) P x = v x µ 2 y 2 How can f(x) = h(y)? Each must be constant! P x = C 1 P = C 1 x + C 2 B.C. x = 0 P = P 1 C 2 = P 1 x = L P = P 2 C 1 = P/L where : P P 1 P 2 P = P 1 P x L

7 EXAMPLE: Poiseuille Flow between Parallel Plates (important for injection molding) (P. 2) µ 2 v x y 2 = C 1 = P/L 2 v x y 2 = P µl v x y = P µl y + C 3 v x = P 2µL y2 + C 3 y + C 4.C. NO SLIP top plate y = d/2 v x = 0 bottom plate y = d/2 v x = 0 0 = P 8µ L d2 + C 3 d 2 + C 4 0 = P 8µ L d2 C 3 d 2 + C 4 v x = P 2µl C 3 = 0 [ d 2 4 y2 ] C 4 = P d2 8µL Parabolic velocity profile

8 EXAMPLE: Poiseuille Flow between Parallel Plates (important for injection molding) (P. 3) Where is the velocity largest? Maximum at vx = 0 = P y y µl maximum at y = 0 centerline What is the average velocity? A v ave = v xda da = 1 v x da A A A v ave = 1 z d/2 v x dydz = 1 d/2 zd 0 d/2 d d/2 v ave = P [ ] d 2 d/2 2µLd 4 y y3 3 d/2 For constant P, µ, L: double d quadruple v A = zd [ ] P d 2 2µL 4 y2 dy = P d2 12µL

9 EXAMPLE: Poiseuille Flow in an Annular Die (important for blow molding) (P. 1) P 1 > P 2 Independent of Time Cylindrical Coordinates v r = v θ = 0 v z = v z (r) Continuity: vz z = 0 Navier-Stokes equation: P z = µ [ 1 r f(z) = g(r) = a constant Split into two parts - Pressure Part: P z = C 1 P = C 1 z + C 2 r ( r v )] z r B.C. z = 0 P = P 2 C 2 = P 2 z = L P = P 1 C 1 = P/L where : P P 1 P 2 P = P 2 + P L z P = P 2 + P z analogous to Poiseuille flow between parallel plates. L

10 EXAMPLE: Poiseuille Flow in an Annular Die (important for blow molding) (P. 2) [ 1 µ r r ( r v )] z = P r L r v z r = P 2µL r2 + C 3 v z r = P 2µL r + C 3 r v z = P 4µL r2 + C 3 ln r + C 4 B.C. NO SLIP at r = R i, v z = 0 at r = R 0, v z = 0 0 = P 4µL R2 i + C 3 ln R i + C 4 subtract 0 = P 4µL R2 0 + C 3 ln R 0 + C 4 ( ) 0 = P 4µL (R2 0 Ri 2 R ) + C 3 ln 0 R i C 3 = P (R2 0 Ri 2 ) 4µL ln(r 0 /R i ) C 4 = P [ ] R0 2 (R2 0 Ri 2 ) ln R 0 4µL ln(r 0 /R i )

11 EXAMPLE: Poiseuille Flow in an Annular Die (important for blow molding) (P. 3) v z = P [ r 2 (R2 0 Ri 2 ) 4µL ln(r 0 /R i ) ln r R2 0 + (R2 0 Ri 2 ) ln(r 0 /R i ) ] [ 1 + r2 v z = P R2 0 4µL r < R 0 always, so v z < 0 R 2 0 (R2 0 R 2 i ) ln(r 0 /R i ) ln(r/r 0) Leading term is parabolic in r (like the flow between plates) but this one has a logarithmic correction. What is the volumetric flow rate? Q = π P R4 0 8µL Q = [ A 1 + v z da = ( Ri R 0 R0 R i v z 2πrdr ) ] 4 + (1 (R i/r 0 ) 2 ) 2 ln(r 0 /R i ) ]

12 GENERAL FEATURES OF NEWTONIAN POISEUILLE FLOW Parallel Plates: Q = P d3 W 12µL Circular Tube: Q = π P R4 8µL Annular Tube: Q = π P R4 0 8µL f(r i/r 0 ) Rectangular Tube: All have the same general form: Q = P d3 w 12µL Q P Q 1/µ Weak effects of pressure, viscosity and flow length Q 1/L Q R 4 or d 3 w Strong effect of size. In designing and injection mold, we can change the runner sizes.

13 NON-NEWTONIAN EFFECTS EXAMPLE: Poiseuille Flow in a Circular Pipe Newtonian Velocity Profile: v z = P R2 4µL [ 1 (r/r) 2 ] Shear Rate: γ = v z r = P r 2µL Apparent Viscosity: where γ is higher Viscosity is lower Real Velocity Profile: Lower η a increases v z non-parabolic

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### Scalars, Vectors and Tensors

Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector

### Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

### Viscous flow in pipe

Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### Notes on Polymer Rheology Outline

1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

### Entrance Conditions. Chapter 8. Islamic Azad University

Chapter 8 Convection: Internal Flow Islamic Azad University Karaj Branch Entrance Conditions Must distinguish between entrance and fully developed regions. Hydrodynamic Effects: Assume laminar flow with

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### Practice Problems on the Navier-Stokes Equations

ns_0 A viscous, incompressible, Newtonian liquid flows in stead, laminar, planar flow down a vertical wall. The thickness,, of the liquid film remains constant. Since the liquid free surface is eposed

### Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 22 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 22 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. So

### Chapter 5. Microfluidic Dynamics

Chapter 5 Thermofluid Engineering and Microsystems Microfluidic Dynamics Navier-Stokes equation 1. The momentum equation 2. Interpretation of the NSequation 3. Characteristics of flows in microfluidics

### Chapter 8 Steady Incompressible Flow in Pressure Conduits

Chapter 8 Steady Incompressible Flow in Pressure Conduits Outline 8.1 Laminar Flow and turbulent flow Reynolds Experiment 8.2 Reynolds number 8.3 Hydraulic Radius 8.4 Friction Head Loss in Conduits of

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### ME19b. SOLUTIONS. Feb. 11, 2010. Due Feb. 18

ME19b. SOLTIONS. Feb. 11, 21. Due Feb. 18 PROBLEM B14 Consider the long thin racing boats used in competitive rowing events. Assume that the major component of resistance to motion is the skin friction

### Experiment 3 Pipe Friction

EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### FLUID FLOW Introduction General Description

FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

### Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

### Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

### 1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

### Introduction to COMSOL. The Navier-Stokes Equations

Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

### 4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

### Civil Engineering Hydraulics Mechanics of Fluids. Flow in Pipes

Civil Engineering Hydraulics Mechanics of Fluids Flow in Pipes 2 Now we will move from the purely theoretical discussion of nondimensional parameters to a topic with a bit more that you can see and feel

### Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline

Introduction to Microfluidics Date: 2013/04/26 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics Microfluidics

### Introduction to Fluid Mechanics. Chapter 9 External Incompressible Viscous Flow. Pritchard

Introduction to Fluid Mechanics Chapter 9 External Incompressible Viscous Flow Main Topics The Boundary-Layer Concept Boundary-Layer Thicknesses Laminar Flat-Plate Boundary Layer: Exact Solution Momentum

### Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

### Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

### Distinguished Professor George Washington University. Graw Hill

Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

### CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

### Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

### ANALYTICAL VELOCITY PROFILE IN TUBE FOR LAMINAR AND TURBULENT FLOW

Engineering MECHANICS, Vol. 21, 2014, No. 6, p. 371 379 371 ANALYTICAL VELOCITY PROFILE IN TUBE FOR LAMINAR AND TURBULENT FLOW Jaroslav Štigler* A new analytical formula of the velocity profile for both

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### Chapter Six. Non-Newtonian Liquid

Chapter Six Non-Newtonian Liquid For many fluids a plot of shear stress against shear rate does not give a straight line. These are so-called Non-Newtonian Fluids. Plots of shear stress against shear rate

### Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis

Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 99 107 (2009) 99 Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis M. E. Sayed-Ahmed

### Transport Phenomena I

Transport Phenomena I Andrew Rosen December 14, 013 Contents 1 Dimensional Analysis and Scale-Up 4 1.1 Procedure............................................... 4 1. Example................................................

### Mercury Flow through a Long Curved Pipe

Mercury Flow through a Long Curved Pipe Wenhai Li & Foluso Ladeinde Department of Mechanical Engineering Stony Brook University Summary The flow of mercury in a long, curved pipe is simulated in this task,

### AA200 Chapter 9 - Viscous flow along a wall

AA200 Chapter 9 - Viscous flow along a wall 9.1 The no-slip condition 9.2 The equations of motion 9.3 Plane, Compressible Couette Flow (Review) 9.4 The viscous boundary layer on a wall 9.5 The laminar

### Physics-biophysics 1

Physics-biophysics 1 Flow of fluids Péter Makra University of Szeged 2011-2012. autumn semester Version: 1.1 Latest update: 29th September 2011 Péter Makra (University of Szeged) Physics-biophysics 1 2011-2012.

### Practice Problems on Viscosity. free surface. water. y x. Answer(s): base: free surface: 0

viscosity_01 Determine the magnitude and direction of the shear stress that the water applies: a. to the base b. to the free surface free surface U y x h u water u U y y 2 h h 2 2U base: yx y 0 h free

### 11 Navier-Stokes equations and turbulence

11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal

### Viscous Flow in Pipes

Viscous Flow in Pipes Excerpted from supplemental materials of Prof. Kuang-An Chang, Dept. of Civil Engin., Texas A&M Univ., for his spring 2008 course CVEN 311, Fluid Dynamics. (See a related handout

### 1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation.

CHAPTER 06 1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation. 2.How is the acceleration of a particle described?

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### Chapter (1) Fluids and their Properties

Chapter (1) Fluids and their Properties Fluids (Liquids or gases) which a substance deforms continuously, or flows, when subjected to shearing forces. If a fluid is at rest, there are no shearing forces

### Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow

### Free Convection Film Flows and Heat Transfer

Deyi Shang Free Convection Film Flows and Heat Transfer With 109 Figures and 69 Tables < J Springer Contents 1 Introduction 1 1.1 Scope 1 1.2 Application Backgrounds 1 1.3 Previous Developments 2 1.3.1

### ENSC 283 Introduction and Properties of Fluids

ENSC 283 Introduction and Properties of Fluids Spring 2009 Prepared by: M. Bahrami Mechatronics System Engineering, School of Engineering and Sciences, SFU 1 Pressure Pressure is the (compression) force

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

### Physics of the Atmosphere I

Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh

IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: P..Sleigh@leeds.ac.uk r J Noakes:.J.Noakes@leeds.ac.uk January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

### 4 Microscopic dynamics

4 Microscopic dynamics In this section we will look at the first model that people came up with when they started to model polymers from the microscopic level. It s called the Oldroyd B model. We will

### Fundamentals of Fluid Mechanics

Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

### Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

### Total water potential is sum of gravitational and soil water pressure potential, or. Column of water

SSC107 Fall 000 Chapter 3 Page 3-1 Chapter 3. Saturated Water Flow All pores are filled with water, i.e., volumetric water content is equal to porosity ( θ = θ s with θ s = φ ) Nonequilibrium. Water flows

### Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

### TYPES OF FLUID FLOW. Laminar or streamline flow. Turbulent flow

FLUID DYNAMICS We will deal with Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID

### Modeling Fluid Systems

Modeling Fluid Systems The prevalent use of fluid (hydraulic) circuitry in machines tool applications, aircraft control systems, and similar operations occurs because of such factors such as accuracy,

### Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### Diffusion and Fluid Flow

Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

### Head Loss in Pipe Systems Laminar Flow and Introduction to Turbulent Flow

Head Loss in Pipe Systems Laminar Flow and Introduction to Turbulent Flow ME 322 Lecture Slides, Winter 2007 Gerald Recktenwald January 23, 2007 Associate Professor, Mechanical and Materials Engineering

### A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer

### E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering

E 490 Fundamentals of Engineering Review Fluid Mechanics By M. A. Boles, PhD Department of Mechanical & Aerospace Engineering North Carolina State University Archimedes Principle and Buoyancy 1. A block

### Module 5 : Lecture 1 VISCOUS INCOMPRESSIBLE FLOW (Fundamental Aspects)

Module 5 : Lecture 1 VISCOUS INCOMPRESSIBLE FLOW (Fundamental Aspects) Overview Being highly non-linear due to the convective acceleration terms, the Navier-Stokes equations are difficult to handle in

### Microfluidic Principles Part 1

Introduction to BioMEMS & Medical Microdevices Microfluidic Principles Part 1 Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Dr. Steven S. Saliterman www.tc.umn.edu/~drsteve

### Physics 6B. Philip Lubin

Physics 6B Philip Lubin prof@deepspace.ucsb.edu http://www.deepspace.ucsb.edu/classes/physics-6b-spring-2015 Course Outline Text College Physics Freedman 2014 Cover Chap 11-13, 16-21 Chap 11- Fluid Chap

### Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

### ME 305 Fluid Mechanics I. Part 4 Integral Formulation of Fluid Flow

ME 305 Fluid Mechanics I Part 4 Integral Formulation of Fluid Flow These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey

### .01 1 10 100 1000 Flow Rate (ml/min)

TECHNICAL NOTE Pressure Drop of alves and Tubes from to 000 ml/min Abstract. The flow resistance of injectors, switching valves, detectors, and connecting tubes can cause problems under some conditions.

### Chapter 1. Governing Equations of Fluid Flow and Heat Transfer

Chapter 1 Governing Equations of Fluid Flow and Heat Transfer Following fundamental laws can be used to derive governing differential equations that are solved in a Computational Fluid Dynamics (CFD) study

### AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss

AB2.5: urfaces and urface Integrals. Divergence heorem of Gauss epresentations of surfaces or epresentation of a surface as projections on the xy- and xz-planes, etc. are For example, z = f(x, y), x =

### Basic Fluid Mechanics. Prof. Young I Cho

Basic Fluid Mechanics MEM 220 Prof. Young I Cho Summer 2009 Chapter 1 Introduction What is fluid? Give some examples of fluids. Examples of gases: Examples of liquids: What is fluid mechanics? Mechanics

### CHAPTER ONE Fluid Fundamentals

CHPTER ONE Fluid Fundamentals 1.1 FLUID PROPERTIES 1.1.1 Mass and Weight Mass, m, is a property that describes the amount of matter in an object or fluid. Typical units are slugs in U.S. customary units,

### CBE 6333, R. Levicky 1. Potential Flow

CBE 6333, R. Levicky Part I. Theoretical Background. Potential Flow Potential Flow. Potential flow is irrotational flow. Irrotational flows are often characterized by negligible viscosity effects. Viscous

### CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

### 1. Introduction, fluid properties (1.1, and handouts)

1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Applications of fluid mechanics

### Problem 1. 12ft. Find: Velocity of truck for both drag situations. Equations: Drag F Weight. For force balance analysis: Lift and Drag: Solution:

Problem 1 Given: Truck traveling down 7% grade Width 10ft m 5 tons 50,000 lb Rolling resistance on concrete 1.% weight C 0.96 without air deflector C 0.70 with air deflector V 100 7 1ft Find: Velocity

### A fundamental study of the flow past a circular cylinder using Abaqus/CFD

A fundamental study of the flow past a circular cylinder using Abaqus/CFD Masami Sato, and Takaya Kobayashi Mechanical Design & Analysis Corporation Abstract: The latest release of Abaqus version 6.10

### VISUAL PHYSICS School of Physics University of Sydney Australia. Why do cars need different oils in hot and cold countries?

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW VISCOSITY POISEUILLE'S LAW? Why do cars need different oils in hot and cold countries? Why does the engine runs more freely as

### Teil I. Student Laboratory Manuals

Teil I Student Laboratory Manuals 1 IR1 5. Fluid friction in liquids 5.1 Introduction Generally the term fluid is understood to be matter either in the gaseous or liquid state. The physics involved on

### FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2)

FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2) Overview Power requirements for mixing Newtonian and non-newtonian liquids Ungassed and gassed systems Scale-up issues, scale-down approach Adapting bioreactor

### Air Resistance: Distinguishing Between Laminar and Turbulent Flow 0.1 Introduction

Air Resistance: Distinguishing Between Laminar and Turbulent Flow 0.1 Introduction You have probably heard that objects fall (really, accelerate) at the same rate, independent of their mass. Galileo demonstrated

### Module 2 : Convection. Lecture 20a : Illustrative examples

Module 2 : Convection Lecture 20a : Illustrative examples Objectives In this class: Examples will be taken where the concepts discussed for heat transfer for tubular geometries in earlier classes will

### F = U. (1) We shall answer these questions by examining the dimensions n = 1,2,3 separately.

Lecture 24 Conservative forces in physics (cont d) Determining whether or not a force is conservative We have just examined some examples of conservative forces in R 2 and R 3. We now address the following

### CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and

### Viscosity and the Navier-Stokes equations

Chapter 6 Viscosity and the Navier-Stokes equations 6.1 The Newtonian stress tensor Generally real fluids are not inviscid or ideal. 1 Modifications of Euler s equations, needed to account for real fluid

### Exergy Analysis of a Water Heat Storage Tank

Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.-J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center

### OUTLINE Introduction to Laminar and Turbulent Flow Reynolds Number Laminar Flow

REAL FLUIDS OUTLINE Introduction to Laminar and Turbulent Flow Reynolds Number Laminar Flow Flow in Circular Pipes Hagen Poiseuille Equation Flow between parallel plates REAL FLUIDS Turbulent Flow About

### Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che

Fluid Dynamics Viscosity Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che che.rochester.eduedu 1 Chemical Engineering What do Chemical Engineers Do? Manufacturing

### VISCOSITY. Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics

VISCOSITY Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics DEFINITION A fluid s ability to flow is called viscosity. Viscosity arises from the mutual COHESIVE FORCES between molecules