arxiv: v2 [math.nt] 5 Nov 2013


 Harold Russell
 1 years ago
 Views:
Transcription
1 arxiv:29.64v2 [math.nt] 5 Nov 23 EULER SUMS OF HYPERHARMONIC NUMBERS Ayha Dil Departmet of Mathematics, Adeiz Uiversity, 758 Atalya Turey Khristo N. Boyadzhiev Departmet of Mathematics ad Statistics, Ohio Norther Uiversity Ada, Ohio 458, USA, Abstract The hyperharmoic umbers are defied by meas of the classical harmoic umbers. We show that the Eulertype sums with hyperharmoic umbers: m ca be expressed i terms of series of Hurwitz zeta fuctio values. This is a geeralizatio of a result of Mező ad Dil. We also provide a explicit evaluatio of σ(r,m) i a closed form i terms of zeta values ad Stirlig umbers of the first id. Furthermore, we evaluate several other series ivolvig hyperharmoic umbers. 2 Mathematics Subject Classificatio: B73, M99 Keywords ad Phrases: Riema zeta fuctio, Hurwitz zeta fuctio, Euler sums, harmoic ad hyperharmoic umbers, Stirlig umbers, Beta fuctio. Itroductio I this paper we are iterested i Eulertype sums with hyperharmoic umbers σ(r,m) (see defiitios () ad (2) below). Such series could be of iterest i aalytic umber theory. We will show that these sums are related to the values of the Riema zeta fuctio. I [7] the authors cosidered the case r =. Here we exted this result to r >. I the secod sectio we express σ(r,m) as a special series ivolvig zeta values. I the third sectiowe evaluateσ(r,m) asafiite sum icludig Stirlig umbers of the first id, zeta values, ad values of the digamma (psi) fuctio.
2 I the last fourth sectio we use certai itegral represetaios to evaluate several series with hyperharmoic umbers. For example, ad (+)...(+r) = π2 6r! B(r+,+) =.. Defiitios ad otatio The th harmoic umber is defied by the th partial sum of the harmoic series H := ( N := {,2,3,...}), () where the empty sum H is covetioally uderstood to be zero. Startig with h () = ( N), the th hyperharmoicumberh(r) of order r is defied by (see [4], see also [7]): := h (r ) (r N). (2) It is easy to see that h () := H ( N). These umbers ca be expressed i terms of biomial coefficiets ad ordiary harmoic umbers (see [4, 7]): = ( +r r ) (H +r H r ). (3) The wellow geeratig fuctios of the harmoic ad hyperharmoic umbers are give as H x = l( x) (4) x ad x = l( x) ( x) r. (5) Euler discovered the followig formula (see, e.g., [5, ])): m 2 2 ζ H (m) = (m+2)ζ(m+) ζ(m )ζ(+) (m N\{}), (6) where ζ H (m) = H ad ζ(s) is the Riema zetafuctio, ad, throughout this paper the empty sum uderstood to be il m. 2
3 For certai pairs of positive itegers r ad m, several authors have evaluated the Euler sums H (r) S(r,m) = m, where H (r) deotes the geeralized harmoic umbers of order r defied by H (r) = + 2 r + + r = r (see [, 5] ad for a elemetary procedure [3]). I the earlier wors have bee doe with S(r,m), i this paper, we wat to give a closed form of the followig sum: h (r) m. Usig the relatio (3), Mező ad Dil ([7], Corollary 3) foud that the series σ(r,m) coverges for m > r, i.e., < (m > r). m A rearragemet trasforms σ(r,m) ito the followig sum ([7], Theorem 4) : h (r ) ζ(m,) (r N; m r+), (7) where ζ(s,a) is the Hurwitz (or geeralized) zeta fuctio defied by ζ(s,a) = = (+a) s ( Re(s) > ; a / Z ), where Z := {,, 2,...}. Usig (6) ad (7), Mező ad Dil ([7], p. 364) obtaied the followigidetity: 2 ζ(m,) m 2 = (m+2)ζ(m+) ζ(m )ζ(+) (m N\{}). 2 Euler Sums of Hyperharmoic Numbers The followig theorem provides a geeral versio of the Equatio (7). (8) 3
4 Theorem For < r < m (,r,m N := N {}), we have m = h (r ) ζ(m,i ), (9) where i i 2 i < Proof. From (7) we have ζ(m,i ) = A rearragemet of () gives h (r) m = i i 2 i <... i =i 2=i j= h (r 2) i =i ζ(m,i ). () h (r 2) j ζ(m,). () ζ(m,i ). (2) i = Usig a similar argumet, after steps we obtai the desired result. Remar 2 Let us cosider two special cases of (9). To express the Euler sums of hyperharmoic umbers σ(r, m) i terms of the multiple sums of Hurwitz zeta fuctio we set = r to have i ζ(m,i i 2 i r < r ). (3) Also the case = r 2 gives H i i 2 i r 2< ζ(m,i r 2 ), (4) which is a represetatio of σ(r,m) i terms of harmoic umbers ad the multiple sums of Hurwitz zeta fuctio. 3 A closed form of σ(r,m) We shall preset a closed form evaluatio of the followig sum: h (r), where m r+. m I the ext theorem we use a ow closed form evaluatio of the followig series recalled i Lemma 3 below: µ(m,r) = m (+r) ad the usiged Stirlig umbers of the first id [ ]. 4
5 Lemma 3 ( [2]) For every positive iteger m ad every r > µ(m,r) = m ( ) ζ(m +) r + ( )m r m (Ψ(r+)+γ), (5) where Ψ(s) is the Psi (or digamma) fuctio defied by Ψ(s) = Γ (s) Γ(s) ad γ = Ψ() is the EulerMascheroi costat. Theorem 4 For r,m N with r < m, we have r [ ] r (r )!. ζ r H (m +) H r ζ(m +)+ µ(m +,j). (6) Proof. Usig the wellow expasio: we get Hece, h (r+) x(x+)...(x+ ) = j= [ ] x, = ( ) +r = r+ [ ] r+. r r! = r+ [ ] r + (H +r H r ) r! = r+ [ r + r! Now we ca write m = (r )! Therefore, ] ( H r H r ). r [ ] r H m + H r r m + +. m + (+j) m = (r )! r [ ] { r H m + j= j= r H r m + + m + (+j). 5
6 I view of (5), we obtai (6). Next we cosider two particular cases r = 2 ad 3 of σ(r,m). Case r = 2. By cosiderig the case r = 2 i (6) we get σ(2,m) = ζ H (m )+ζ H (m) ζ(m ). (7) With the aid of Theorem, equatio (7) ca be writte as σ(2,m) = H ζ(m,) = ζ H (m )+ζ H (m) ζ(m ). (8) Settig m = 3 i (8) we obtai σ(2,3) = ad for m = 4 we have σ(2,4) = ad so o. Case r = 3. By (9) ad (6) we have H ζ(3,) = 2ζ(3)+ 5 ζ(4) ζ(2) (9) 4 H ζ(4,) = 5 ζ(4)+3ζ(5) ζ(2)ζ(3) ζ(3) (2) 4 σ(3,m) = h (2) ζ(m,) = 2 ζ H (m 2)+ 3 2 ζ H (m )+ζ H (m) 5 4 ζ(m ) 3 4 ζ(m 2) Settig m = 4 i the above equatio we obtai σ(3,4) = h (2) ζ(4,) = 5 6 ζ(4)+ζ H (4) 4 ζ(3) 3 ζ(2). (2) 4 4 Some series with hyperharmoic umbers I this sectio we evaluate some specific series ivolvig hyperharmoic umbers. Propositio 5 (+)(+2)...(+r+) = r! (r N ). (22) 6
7 Proof. Usig the formula (see [6]) we ca write r! r! t ( t) r dt = t ( t) r dt = With the help of (5), we get (+)(+2)...(+r+) = r! This equatio completes the proof, sice (+)(+2)...(+r+), (23) (+)(+2)...(+r +). (24) l( t)dt. (25) l( t)dt =. (26) Propositio 6 (+)...(+r) = π2 6r! (27) Proof. I the same way as i the proof of Propositio 5, usig (23), we ca write t ( t) r dt r! t = (28) (+)...(+r) from which it follows that (+)...(+r) = r! Now, usig the followig ow formula (see [6]): we obtai (27). l( t) dt. (29) t l( t) dt = π2 t 6, (3) Remar 7 Our results i Propositios 5 ad 6 are ivolved i the Beta fuctio B(x,y) defied by (see [9]): B(x,y) = t x ( t) y dt, (3) 7
8 where Re(x) > ad Re(y) >. I view of the followig relatio: B(r+,+) = Γ(r +)Γ(+) Γ(r++2) = r!! (r ++)! = r! (+)(+2)...(+r+), the Equatios (22) ad (27), respectively, ca be writte i the followig forms: h (r) B(r+,+) = (32) ad B(r+,) = π2 6. At theed ofthis sectiowegivetwospecificseriesassociatedwith harmoic umbers. Their proofs cosist of routie maipulatio with the geeratig fuctio (5). Therefore we omit proofs. Propositio 8 The followig equatios hold. ad m= m= ( ) m+ (2m+2+3) (m+)(m+2+2) H m = 2l2 = ( ) m+ 2 (m+)(m+2+) H m = 2l2 Refereces = j j= j= j j ( ), j ( ). [] D. Borwei, J. M. Borwei ad R. Girgesoh, Explicit evaluatio of Euler sums. Proc. Ediburgh Math. Soc. 38 (2), (995), [2] K. N. Boyadzhiev, Evaluatio of EulerZagier sums, It. J. Math. Math. Sci. 27 (2), o. 7, [3] K. N. Boyadzhiev, Cosecutive evaluatio of Euler sums. Iterat. J. Math. Math. Sci., 29:9, (22) [4] J. H. Coway ad R. K. Guy, The Boo of Numbers (New Yor, SprigerVerlag, 996). [5] P. Flajolet ad B. Salvy, Euler Sums ad Cotour Itegral Represetatios. Experimetal Mathematics, 7, (), (998) [6] A. Jeffrey ad D. Zwilliger (editors), Gradshtey ad Ryzhi s Table of Itegrals, Series, ad Products, Seveth Editio, (27). 8
9 [7] I. Mezo ad A. Dil, Hyperharmoic series ivolvig Hurwitz zeta fuctio. Joural of Number Theory, 3, (2) (2) [8] A. P. Prudiov, Yu A. Brychov ad O. I. Marichev, Itegrals ad Series. Elemetary Fuctios (Gordo ad Breach, New YorLodo, 986). [9] A. P. Prudiov, Yu A. Brychov ad O. I. Marichev, Itegrals ad Series. Vol. 2. Special Fuctios (Gordo ad Breach, New Yor Lodo, 986). [] R. S. R. C. Rao ad A. S. R. Sarma, Some idetities ivolvig the Riema zeta fuctio. Idia J. Pure Appl. Math., (979) Acowledgmet. This wor is supported by the Adeiz Uiversity Scietific Research Projects Uit ad TÜBİTAK (Scietific ad Techological Research Coucil of Turey). 9
A probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationFactors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
More informationDegree of Approximation of Continuous Functions by (E, q) (C, δ) Means
Ge. Math. Notes, Vol. 11, No. 2, August 2012, pp. 1219 ISSN 22197184; Copyright ICSRS Publicatio, 2012 www.icsrs.org Available free olie at http://www.gema.i Degree of Approximatio of Cotiuous Fuctios
More informationA Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
More informationModule 4: Mathematical Induction
Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate
More informationIrreducible polynomials with consecutive zero coefficients
Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem
More informationChapter 2 Fractional Part Integrals
Chapter Fractioal Part Itegrals If I had the theorems! The I should fid the proofs easily eough Berhard Riema 86 866 Sigle Itegrals I have had my results for a log time: but I do ot yet ow how I am to
More information{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers
. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,
More informationON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE
Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationThe Field Q of Rational Numbers
Chapter 3 The Field Q of Ratioal Numbers I this chapter we are goig to costruct the ratioal umber from the itegers. Historically, the positive ratioal umbers came first: the Babyloias, Egyptias ad Grees
More informationThe Euler Totient, the Möbius and the Divisor Functions
The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationx(x 1)(x 2)... (x k + 1) = [x] k n+m 1
1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More informationTHE HEIGHT OF qbinary SEARCH TREES
THE HEIGHT OF qbinary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average
More informationA Note on Sums of Greatest (Least) Prime Factors
It. J. Cotemp. Math. Scieces, Vol. 8, 203, o. 9, 423432 HIKARI Ltd, www.mhikari.com A Note o Sums of Greatest (Least Prime Factors Rafael Jakimczuk Divisio Matemática, Uiversidad Nacioal de Luá Bueos
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More information8.1 Arithmetic Sequences
MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationA note on the boundary behavior for a modiﬁed Green function in the upperhalf space
Zhag ad Pisarev Boudary Value Problems (015) 015:114 DOI 10.1186/s136610150363z RESEARCH Ope Access A ote o the boudary behavior for a modiﬁed Gree fuctio i the upperhalf space Yulia Zhag1 ad Valery
More informationLinear Algebra II. 4 Determinants. Notes 4 1st November Definition of determinant
MTH6140 Liear Algebra II Notes 4 1st November 2010 4 Determiats The determiat is a fuctio defied o square matrices; its value is a scalar. It has some very importat properties: perhaps most importat is
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More information1 Introduction to reducing variance in Monte Carlo simulations
Copyright c 007 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a uow mea µ = E(X) of a distributio by
More informationTHE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationTHE UNLIKELY UNION OF PARTITIONS AND DIVISORS
THE UNLIKELY UNION OF PARTITIONS AND DIVISORS Abdulkadir Hasse, Thomas J. Osler, Mathematics Departmet ad Tirupathi R. Chadrupatla, Mechaical Egieerig Rowa Uiversity Glassboro, NJ 828 I the multiplicative
More informationClass Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES  CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More informationOn the L p conjecture for locally compact groups
Arch. Math. 89 (2007), 237 242 c 2007 Birkhäuser Verlag Basel/Switzerlad 0003/889X/0302376, ublished olie 2007080 DOI 0.007/s0003007993x Archiv der Mathematik O the L cojecture for locally comact
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationCombinatorial Identities: Table I: Intermediate Techniques for Summing Finite Series
Combiatorial Idetities: Table I: Itermediate Techiques for Summig Fiite Series From the seve upublished mauscripts of H. W. Gould Edited ad Compiled by Jocely Quaitace May 3, 00 Coefficiet Compariso Remar.
More informationOur aim is to show that under reasonable assumptions a given 2πperiodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
More informationSection 8.3 : De Moivre s Theorem and Applications
The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationActa Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) 77 87. ALMOST SURE FUNCTIONAL LIMIT THEOREMS IN L p( ]0, 1[ ), WHERE 1 p <
Acta Acad. Paed. Agriesis, Sectio Mathematicae 29 22) 77 87 ALMOST SUR FUNCTIONAL LIMIT THORMS IN L ], [ ), WHR < József Túri Nyíregyháza, Hugary) Dedicated to the memory of Professor Péter Kiss Abstract.
More informationAn example of nonquenched convergence in the conditional central limit theorem for partial sums of a linear process
A example of oqueched covergece i the coditioal cetral limit theorem for partial sums of a liear process Dalibor Volý ad Michael Woodroofe Abstract A causal liear processes X,X 0,X is costructed for which
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationTHIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK
THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E MCCARTHY, SANDRA POTT, AND BRETT D WICK Abstract We provide a ew proof of Volberg s Theorem characterizig thi iterpolatig sequeces as those for
More informationYour organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:
Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network
More informationThe second difference is the sequence of differences of the first difference sequence, 2
Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for
More informationEkkehart Schlicht: Economic Surplus and Derived Demand
Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 200617 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät LudwigMaximiliasUiversität Müche Olie at http://epub.ub.uimueche.de/940/
More informationWHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
More informationA Faster ClauseShortening Algorithm for SAT with No Restriction on Clause Length
Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 4960 A Faster ClauseShorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece
More informationTHE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE
THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE JAVIER CILLERUELO Abstract. We obtai, for ay irreducible quadratic olyomial f(x = ax 2 + bx + c, the asymtotic estimate log l.c.m. {f(1,..., f(} log. Whe
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationEscola Federal de Engenharia de Itajubá
Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica PósGraduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José
More informationThe Gompertz Makeham coupling as a Dynamic Life Table. Abraham Zaks. Technion I.I.T. Haifa ISRAEL. Abstract
The Gompertz Makeham couplig as a Dyamic Life Table By Abraham Zaks Techio I.I.T. Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 32000, Haifa, Israel Abstract A very famous
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationBINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients
652 (1226) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you
More informationINFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationEntropy of bicapacities
Etropy of bicapacities Iva Kojadiovic LINA CNRS FRE 2729 Site école polytechique de l uiv. de Nates Rue Christia Pauc 44306 Nates, Frace iva.kojadiovic@uivates.fr JeaLuc Marichal Applied Mathematics
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More informationInverse Gaussian Distribution
5 Kauhisa Matsuda All rights reserved. Iverse Gaussia Distributio Abstract Kauhisa Matsuda Departmet of Ecoomics The Graduate Ceter The City Uiversity of New York 65 Fifth Aveue New York NY 649 Email:
More informationArithmetic of Triangular Fuzzy Variable from Credibility Theory
Vol., Issue 3, August 0 Arithmetic of Triagular Fuzzy Variable from Credibility Theory Ritupara Chutia (Correspodig Author) Departmet of Mathematics Gauhati Uiversity, Guwahati, Assam, Idia. Rituparachutia7@rediffmail.com
More informationSEQUENCES AND SERIES
Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More information5.3. Generalized Permutations and Combinations
53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible
More information4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then
SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or pseries (the Compariso Test), but of
More informationSection 1.6: Proof by Mathematical Induction
Sectio.6 Proof by Iductio Sectio.6: Proof by Mathematical Iductio Purpose of Sectio: To itroduce the Priciple of Mathematical Iductio, both weak ad the strog versios, ad show how certai types of theorems
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More informationRemarques sur un beau rapport entre les series des puissances tant directes que reciproques
Aug 006 Traslatio with otes of Euler s paper Remarques sur u beau rapport etre les series des puissaces tat directes que reciproques Origially published i Memoires de l'academie des scieces de Berli 7
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationAn Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function
A Efficiet Polyomial Approximatio of the Normal Distributio Fuctio & Its Iverse Fuctio Wisto A. Richards, 1 Robi Atoie, * 1 Asho Sahai, ad 3 M. Raghuadh Acharya 1 Departmet of Mathematics & Computer Sciece;
More informationTAYLOR SERIES, POWER SERIES
TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the
More informationHow Euler Did It. Since we discussed the first part of this paper last February, we will start in the middle of this paper, with Euler s Theorem 7:
How Euler Did It Ifiitely may rimes March 2006 Why are there so very may rime umbers? by Ed Sadifer Euclid wodered this more tha 200 years ago, ad his roof that Prime umbers are more tha ay assiged multitude
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationThe analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
More informationPROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationA sharp TrudingerMoser type inequality for unbounded domains in R n
A sharp TrudigerMoser type iequality for ubouded domais i R Yuxiag Li ad Berhard Ruf Abstract The TrudigerMoser iequality states that for fuctios u H, 0 (Ω) (Ω R a bouded domai) with Ω u dx oe has Ω
More informationCooleyTukey. Tukey FFT Algorithms. FFT Algorithms. Cooley
Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Cosider a legth sequece x[ with a poit DFT X[ where Represet the idices ad as +, +, Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Usig these
More informationPermutations, the Parity Theorem, and Determinants
1 Permutatios, the Parity Theorem, ad Determiats Joh A. Guber Departmet of Electrical ad Computer Egieerig Uiversity of Wiscosi Madiso Cotets 1 What is a Permutatio 1 2 Cycles 2 2.1 Traspositios 4 3 Orbits
More informationON THE DENSE TRAJECTORY OF LASOTA EQUATION
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLIII 2005 ON THE DENSE TRAJECTORY OF LASOTA EQUATION by Atoi Leo Dawidowicz ad Najemedi Haribash Abstract. I preseted paper the dese trajectory
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationREVISION SHEET FP2 (AQA) CALCULUS. x x π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + arcsin x = + ar sinh x
the Further Mathematics etwork www.fmetwork.org.uk V 07 REVISION SHEET FP (AQA) CALCULUS The mai ideas are: Calculus usig iverse trig fuctios & hperbolic trig fuctios ad their iverses. Calculatig arc legths.
More informationLecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a dregular
More informationNUMBERS COMMON TO TWO POLYGONAL SEQUENCES
NUMBERS COMMON TO TWO POLYGONAL SEQUENCES DIANNE SMITH LUCAS Chia Lake, Califoria a iteger, The polygoal sequece (or sequeces of polygoal umbers) of order r (where r is r > 3) may be defied recursively
More informationOn Formula to Compute Primes. and the n th Prime
Applied Mathematical cieces, Vol., 0, o., 3535 O Formula to Compute Primes ad the th Prime Issam Kaddoura Lebaese Iteratioal Uiversity Faculty of Arts ad cieces, Lebao issam.kaddoura@liu.edu.lb amih AbdulNabi
More informationSolving Logarithms and Exponential Equations
Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:
More informationEfficient tree methods for pricing digital barrier options
Efficiet tree methods for pricig digital barrier optios arxiv:1401.900v [qfi.cp] 7 Ja 014 Elisa Appolloi Sapieza Uiversità di Roma MEMOTEF elisa.appolloi@uiroma1.it Abstract Adrea igori Uiversità di Roma
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationLecture 5: Span, linear independence, bases, and dimension
Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;
More informationDEFINITION OF INVERSE MATRIX
Lecture. Iverse matrix. To be read to the music of Back To You by Brya dams DEFINITION OF INVERSE TRIX Defiitio. Let is a square matrix. Some matrix B if it exists) is said to be iverse to if B B I where
More informationChapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationFast Fourier Transform
18.310 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform.
More informationNotes on exponential generating functions and structures.
Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a elemet set, (2) to fid for each the
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More information3. Greatest Common Divisor  Least Common Multiple
3 Greatest Commo Divisor  Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
More information