Automatic Tuning for FOREX Trading System Using Fuzzy Time Series

Size: px
Start display at page:

Download "Automatic Tuning for FOREX Trading System Using Fuzzy Time Series"

Transcription

1 utomatic Tuig for FOREX Tradig System Usig Fuzzy Time Series Kraimo Maeesilp ad Pitihate Soorasa bstract Efficiecy of the automatic currecy tradig system is time depedet due to usig fixed parameters which are most effective i specific period of time This paper presets a method of optimizig automatic currecy tradig system by adustig its time variat parameters usig fuzzy time-series forecastig to predict the tred of parameters Improved predictio for two sets of time series forecastig with fuzzy relatios is also illustrated Idex Terms Fuzzy time-series, forecast, foreig exchage, FOREX I INTRODUCTION Ivestmet i currecy marets have progressed sigificatly The curret ivestmet products are developed to be the automatic tradig systems which are becomig more popular Research o the fiacial forecasts ofte predicts merely o how much the prices would icrease or decrease [1], [] This iformatio is ot sufficiet to be employed for automatic tradig system Because it does ot eve wat to ow that the price will icrease or decrease but acquires to ow the time for ope-positio ad closed positio [3], which typically uses a techical idicator to decide various ope ad closed positio by settig some parameter values for decisio maig[4] However, the efficiecy of automatic tradig system is sesitive to some ow-characteristics of the maret This paper presets a algorithm to determie parameters of a automated tradig system to esure more efficiet i all aspects of the maret The proposed algorithm uses fuzzy time series to chage parameters rather tha predict direct exchage rate tred The results were compared to the results of the system whe the parameters are costat at most profitable durig the experimet The test will be carried out usig the period from May 3, 010 to July 6, 010 The exchage rate of the EURO-US$ by the profits ad losses will be based o total umber of Pips durig the experimet Sice we have two time-series i cosideratio, i this paper, we proposed a fuzzy time series methods modified from Che's method [5] usig the vector to assist the forecasted output process Mauscript received pril 9, 01; revised May 4, 01 Kraimo Maeesilp is with the School of Computer Egieerig Faculty of Egieerig, Kig Mogut s Istitute of Techology Ladrabag, Ladrabag, Bago, Thailad Pitihate Soorasa is with the School of Computer Egieerig ad Iformatio Sciece, Faculty of Egieerig, Kig Mogut s Istitute of Techology Ladrabag, Ladrabag, Bago, Thailad II TEMPLTE MODEL OF N UTOMTIC TRDING SYSTEM To mae the test clear ad simple, the automatic tradig system is adopted from the experimetal wor usig Relative Stregth Idex RSI) [6] as the idicator i the decisio to ope the order to buy / sell i the maret This is because RSI is very simple to uderstad ad is oe of the high probability tredig patters i FOREX maret [7] However, the system is protected from the ope order to prevet the opeig by the fault sigals This system has two parameters They are RSI Up ad RSI Dow The RSI Up is the value that determies whe RSI is higher tha the settig values I this case, the system will ope order "sell" I cotrary, the RSI Dow is the value that determies whe the RSI is lower tha the settig value; this will ope the order buy Every order cofiguratio taes profit at 10 Pips ad is cofigured Stop loss at 100 Pips I a certai period of time the system cosiders order at most oe order ad waits util the old order is clear out by Tae Profit or Stop Loss before it opes ew order The operatio procedure of the system is preseted as the flow chart i Fig 1 Fig 1 Flow chart of a automatic tradig system Upo testig, we limit RSI Up ragig i betwee ad RSI Dow ragig i from the price data from May 3, 010 to July 6, 010 based o EURO-US$ currecy exchage rates The procedure of the test is as follows: First, we use exchage rate for the first 0 days to fid profit ad loss by usig every value of the RSI Up ad RSI Dow, ad the repeat the same actio by recalculatig for every 5 days for 8 times Fially we plot the results as show i Fig to H 560

2 B C D system to be fixed RSI) Fig 4 shows compoets of the adaptive RSI automatic tradig system for which the parameter forecastig service usig fuzzy time series to forecast the ext values of RSI Up ad RSI Dow ad sedig ew parameters to the automatic tradig applicatio The ew parameter is fed to update decisio cotrol of the automatic tradig system This research uses Meta Trader 4 Platform [8], which has a fuctio called the Expert dvisor i supportig the automatic tradig system The advatage of this system is that the two subsystems wor separately betwee the forecastig service ad the tradig system I doig so, if some error occurs, the subsystem will ot be detrimetal to the overall system E F Fig 4 Compoets of adaptive RSI automatic tradig system G H Fig Profit ad loss for the first 0 days-period recalculatig by shiftig the data for every 5 days ccordig to the experimetal results, although we use the same parameters, profit / loss ca tur aroud differetly depedig o time period i cosideratio For example, Fig -a, if we set RSI Dow lower tha 0, the results are positive at all values of RSI Up ad the system will gets most profitable with RSI Up i rage This meas that the tred of exchage rate is bearish I this case, the system should be a ope-sell order strategy rather tha a buy order oe However, if the system parameter is set as the same values show i period of Fig -e, the system will get more loss This is because the exchage rate i this period is bullish The graph shows RSI Up ad RSI Dow which get most profits ragig i ad The strategy should be ope-buy order rather tha sell- order Moreover, if the system is set RSI Up ragig i ad is set RSI Dow to 0, it ca get the most profit as show i Fig -a Nevertheless, the same period yields the great loss i Fig -e III FORECST PRMETERS WITH FUZZY TIME SERIES I the previous sectio, if the system has bee adusted the parameters to the optimal oes, performace of the system should be sigificatly ehaced doptig this cocept, this paper uses fuzzy time-series [9], [10] to forecast the tred of parameter chages RSI Up, RSI Dow) to gai the profit We hypothesize that expectatio of RSI Up ad RSI Dow of the series at two sets are related, ad are parameters of the system This paper proposes a predictio usig two sets of time series with correlatio The cocept is modified from Che's Method [5] usig vector cocept to solve the problem The procedures are as follows: Defie Scope Uiverse Of Discourse U o Sets of Time Series, Divided Them to J ad K ito Equal Parts The boudary of RSI Up is ad the boudary of RSI Dow is Hece, the member of U is ragig i betwee splittig ito 10 equal part Similarly, the member of U is betwee from 60 to 90 ad splits ito 10 equal parts B Defie Membership Fuctio of U ad U after that, Fuzzify Historical Data by the Membership Fuctios Sice ad is divided ito 10 equal parts, the fuzzy membership fuctio ca be defied as show i Fig 5 Fig 3 Profit - loss of all RSI values throughout the experimet Fig 3 depicts profit ad loss whe we exted period to all data startig from May 3, 010 to July 6, 010 The result is a system with the most profit at RSI Up ad RSI Dow about 61 ad 0, which will use these costats for compariso the Fig 5 Membership fuctios of U ad U 561

3 Utilizig historical data to fid the RSI Up ad RSI Dow i the most profitable exchage rate usig a 3-day period ad the shift the data to recalculate by employig the same test method for all data RSI Dow has the same multiple maximum profits We select a value that is the shortest distace from the last state ad the fuzzify data by membership fuctio The result is show i Table I TBLE I: RSI UP, RSI DOWN OF THE MOST PROFIT ND FUZZIFIED RESULTS C Fid Fuzzy Relatioship From State Relatio Usig Fuzzified Results This time series cotai sets of relatios The fuzzy relatios are exteded to defie each value of ad Therefore the fuzzy relatios ca be defied as, Determiatio of the relatioship ca be doe by fidig a state with ad correspodig to, of ccordig to, Table 1, the values ad of the ext state are filled i the relatio table ad are the updated value ad of, Repeat the same step util all, state relatio table for time series of all Table II are well defied Next, is show i D Calculate Forecast Output Table from Next State Relatio Table Based o 3 Rules with dapted From Che's Method [4] as Follows 1) If, ) has oly oe member of fuzzy relatioship which is, p q ), the the midpoits of is p m ad midpoits p of is m respectively Forecasted output of, ) q q is m, m ) p q ) If, ) members of relatioship are 1, 1),, ),, ),, p, ad the umber of 3 3 q ) members is Midpoits of,,,, are 1 3 p m,, m, m, m 1 3 m,, m, m, m 1 3, ) is p q ad midpoits of,,,, are 1 3 p respectively Forecasted output of [ m m m m ] [ m m m m p ] 3 1 q, 3 1 3) If, ) is ot a member of fuzzy relatioship, the the midpoit of is m ad the midpoit of is output of, ) is m, m ) m Forecasted TBLE II: NEXT STTE RELTION TBLE Usig these procedures summarized i Table II, the forecasted results ca be writte i Table III To predict RSI Up, RSI Dow i the ext period, we examie the RSI Up, RSI Dow by matchig to the Profit Max i the curret period, correspodig to the same rage We the tae the output at the positio value of, ad as the expectatio values 56

4 TBLE III: FORECSTED OUTPUT TBLE s we have see, the predictios of RSI Up ad RSI Dow are agreed as i the same directio with the actual data But there are still some errors We will measure errors by usig root mea squared errors show i equatio 1) RMSE i1 ctualrsi ForecastRSI i From the measured values, the RMSE of RSI Up is located at 4583 ad RMSE of RSI Dow at 788 errors may be reduced if we exted the time series or addig more data i 1) IV EXPERIMENTL RESULTS The experimet is desiged to aim for two parts: First part is experimet for estimatio of appropriate RSI Up ad RSI Dow for the ext steps This result will be compared to actual time series that eables to determie the predictio ability Secod part is the experimet o adustig RSI Up ad RSI Dow for the automatic tradig system The result of secod part will be compared to the automatic tradig system with fixed parameters at most profit for all periods I the experimet, we use the exchage rate of Euro US$ EURUSD) i the period from May 3, 010 to July 6, 010 Fig 6 shows the results obtaied from the first part whe the actual data ad predicted data are plotted i compariso Fig 6 Forecast outputs compared to actual values Fig 7 shows the results from the secod part usig the RSI Up ad RSI Dow predictio to cotrol the opeig order of the system The results are compared with those of fixed RSI at the maximum profit s ca be see, the graph of adaptive RSI has cotiuously icreased earig profits, while that of the fixed RSI yields icreased earig profit at first ad the turs aroud to be a decrease oe as time goes by This is because the maret tred has bee chaged Fig 7 Compariso o the growth profit betwee fixed RSI ad dyamic RSI usig fuzzy time series V CONCLUSIONS Followig the proposed ivestmet algorithm usig fuzzy time series, the results show that the adustmet parameters of the proposed automatic tradig system ca actually icrease the profits of the system Eve though there is small error i the forecast accuracy of some parameters, but the results are better tha those usig the fixed parameters 563

5 Because the slope of the curve of the profit to parameter is ot high, the small error of the estimatio has ot much affected to the performace s a result, it is oly little dimiished a profit, but it does ot cause the loss evetually This study cosiders oly the coditios of order opeig, which is oly oe factor i causig the profits Nevertheless, i some extesio, a more practical automatic tradig system has other factors For example, coditios of order closig ad order maagemet are those ifluet factors to be cosidered I spite of existece of a more complicated system, a simple oe is show i this paper to iitiate ad first validate the effectiveess of the proposed method The more complex system as metioed will be suited for future wor REFERENCES [1] K Chi, F P Fu, ad W G Che, modified model of fuzzy time series for forecastig exchage rates, Iteratioal Worshop o Educatio Techology ad Computer Sciece, vol 3, o, pp 40-43, 010 [] Y Leu, C P Lee, ad Y Z Jou, distace-based fuzzy time series model for exchage rates forecastig, Expert Systems with pplicatios, vol36, pp , 009 [3] T Stridsma, Tradig systems that wor: buildig ad evaluatig effective tradig systems, New Yor: McGraw-Hill, 000, pp [4] P J Kaufma, New tradig systems ad methods, 3 rd ed, New Jersey: Joh Wiley adsos, 005, pp [5] S M Che, Forecastig erollmets based o fuzzy time series, Fuzzy Sets ad Systems, vol 81, o3, pp , 1996 [6] J Murphy, Techical aalysis of the fiacial marets, New Yor: Pretice Hall, 1986, pp 55-6 [7] E Posi, FOREX Patters ad Probabilities: tradig strategies for tredig ad rage-boud marets, New Jersey: Joh Wiley adsos, 007, pp [8] Meta Quotes Software 000) MQL4 Referece [Olie] vailable: [9] Q Sog ad BS Chissom, Forecastig erollmets with fuzzy time series Part I, Fuzzy Sets ad Systems, vol 54, o1, pp1-9, 1993 [10] Q Sog ad BS Chissom, Forecastig erollmets with fuzzy time series Part II, Fuzzy Sets ad Systems, vol 6, o1, pp1-8, 1994 Kraimo Maeesilp was bor i Thailad He received a BId ad MEg from Kig Mogut s Istitute of Techology Ladrabag His research iterests iclude Fiacial Iformatio Behavior, oliear forecastig ad utomatic Tradig System He is worig toward his Doctoral degree at the school of Computer Egieerig Faculty of Egieerig, Kig Mogut s Istitute of Techology Ladrabag, Ladrabag, Bago, Thailad Pitihate Soorasa was bor i Thailad He is curretly ssociate Professor of Electrical Egieerig at the School of Computer Egieerig ad Iformatio Sciece, Faculty of Egieerig, Kig Mogut s Istitute of Techology Ladrabag, Ladrabag, Bago, Thailad His research iterests iclude IT oliear systems ad computer-aided cotrol He received a BEd Hos) ad MSc i Physics from Sriahariwirot Uiver- sity, a MS from George Washigto Uiversity199) ad a PhD from the Uiversity of Housto1996), both i Electrical Egieerig 564

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature. Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S 2 CONTROL CHART FOR THE CHANGES IN A PROCESS

COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S 2 CONTROL CHART FOR THE CHANGES IN A PROCESS COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S CONTROL CHART FOR THE CHANGES IN A PROCESS Supraee Lisawadi Departmet of Mathematics ad Statistics, Faculty of Sciece ad Techoology, Thammasat

More information

Volatility of rates of return on the example of wheat futures. Sławomir Juszczyk. Rafał Balina

Volatility of rates of return on the example of wheat futures. Sławomir Juszczyk. Rafał Balina Overcomig the Crisis: Ecoomic ad Fiacial Developmets i Asia ad Europe Edited by Štefa Bojec, Josef C. Brada, ad Masaaki Kuboiwa http://www.hippocampus.si/isbn/978-961-6832-32-8/cotets.pdf Volatility of

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Domain 1: Designing a SQL Server Instance and a Database Solution

Domain 1: Designing a SQL Server Instance and a Database Solution Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Rainbow options. A rainbow is an option on a basket that pays in its most common form, a nonequally

Rainbow options. A rainbow is an option on a basket that pays in its most common form, a nonequally Raibow optios INRODUCION A raibow is a optio o a basket that pays i its most commo form, a oequally weighted average of the assets of the basket accordig to their performace. he umber of assets is called

More information

Convention Paper 6764

Convention Paper 6764 Audio Egieerig Society Covetio Paper 6764 Preseted at the 10th Covetio 006 May 0 3 Paris, Frace This covetio paper has bee reproduced from the author's advace mauscript, without editig, correctios, or

More information

Evaluating Model for B2C E- commerce Enterprise Development Based on DEA

Evaluating Model for B2C E- commerce Enterprise Development Based on DEA , pp.180-184 http://dx.doi.org/10.14257/astl.2014.53.39 Evaluatig Model for B2C E- commerce Eterprise Developmet Based o DEA Weli Geg, Jig Ta Computer ad iformatio egieerig Istitute, Harbi Uiversity of

More information

Baan Service Master Data Management

Baan Service Master Data Management Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :

More information

Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond

Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixed-icome security that typically pays periodic coupo paymets, ad a pricipal

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

SPC for Software Reliability: Imperfect Software Debugging Model

SPC for Software Reliability: Imperfect Software Debugging Model IJCSI Iteratioal Joural of Computer Sciece Issues, Vol. 8, Issue 3, o., May 0 ISS (Olie: 694-084 www.ijcsi.org 9 SPC for Software Reliability: Imperfect Software Debuggig Model Dr. Satya Prasad Ravi,.Supriya

More information

Forecasting. Forecasting Application. Practical Forecasting. Chapter 7 OVERVIEW KEY CONCEPTS. Chapter 7. Chapter 7

Forecasting. Forecasting Application. Practical Forecasting. Chapter 7 OVERVIEW KEY CONCEPTS. Chapter 7. Chapter 7 Forecastig Chapter 7 Chapter 7 OVERVIEW Forecastig Applicatios Qualitative Aalysis Tred Aalysis ad Projectio Busiess Cycle Expoetial Smoothig Ecoometric Forecastig Judgig Forecast Reliability Choosig the

More information

Data Analysis and Statistical Behaviors of Stock Market Fluctuations

Data Analysis and Statistical Behaviors of Stock Market Fluctuations 44 JOURNAL OF COMPUTERS, VOL. 3, NO. 0, OCTOBER 2008 Data Aalysis ad Statistical Behaviors of Stock Market Fluctuatios Ju Wag Departmet of Mathematics, Beijig Jiaotog Uiversity, Beijig 00044, Chia Email:

More information

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Analyzing Longitudinal Data from Complex Surveys Using SUDAAN

Analyzing Longitudinal Data from Complex Surveys Using SUDAAN Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Engineering Data Management

Engineering Data Management BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

Trading rule extraction in stock market using the rough set approach

Trading rule extraction in stock market using the rough set approach Tradig rule extractio i stock market usig the rough set approach Kyoug-jae Kim *, Ji-youg Huh * ad Igoo Ha Abstract I this paper, we propose the rough set approach to extract tradig rules able to discrimiate

More information

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

NPTEL STRUCTURAL RELIABILITY

NPTEL STRUCTURAL RELIABILITY NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics

More information

DAME - Microsoft Excel add-in for solving multicriteria decision problems with scenarios Radomir Perzina 1, Jaroslav Ramik 2

DAME - Microsoft Excel add-in for solving multicriteria decision problems with scenarios Radomir Perzina 1, Jaroslav Ramik 2 Itroductio DAME - Microsoft Excel add-i for solvig multicriteria decisio problems with scearios Radomir Perzia, Jaroslav Ramik 2 Abstract. The mai goal of every ecoomic aget is to make a good decisio,

More information

ADAPTIVE NETWORKS SAFETY CONTROL ON FUZZY LOGIC

ADAPTIVE NETWORKS SAFETY CONTROL ON FUZZY LOGIC 8 th Iteratioal Coferece o DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a i a, M a y 25 27, 2 6 ADAPTIVE NETWORKS SAFETY CONTROL ON FUZZY LOGIC Vadim MUKHIN 1, Elea PAVLENKO 2 Natioal Techical

More information

Systems Design Project: Indoor Location of Wireless Devices

Systems Design Project: Indoor Location of Wireless Devices Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: bcm1@cec.wustl.edu Supervised

More information

Research Article Sign Data Derivative Recovery

Research Article Sign Data Derivative Recovery Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

How to read A Mutual Fund shareholder report

How to read A Mutual Fund shareholder report Ivestor BulletI How to read A Mutual Fud shareholder report The SEC s Office of Ivestor Educatio ad Advocacy is issuig this Ivestor Bulleti to educate idividual ivestors about mutual fud shareholder reports.

More information

Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr.

Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr. Algorithms ad Data Structures Algorithm efficiecy Learig outcomes Able to carry out simple asymptotic aalysisof algorithms Prof. Dr. Qi Xi 2 Time Complexity Aalysis How fast is the algorithm? Code the

More information

Now here is the important step

Now here is the important step LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

More information

Using Four Types Of Notches For Comparison Between Chezy s Constant(C) And Manning s Constant (N)

Using Four Types Of Notches For Comparison Between Chezy s Constant(C) And Manning s Constant (N) INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH OLUME, ISSUE, OCTOBER ISSN - Usig Four Types Of Notches For Compariso Betwee Chezy s Costat(C) Ad Maig s Costat (N) Joyce Edwi Bategeleza, Deepak

More information

Audit of Assumptions for the March 2001 Budget. REPORT BY THE COMPTROLLER AND AUDITOR GENERAL HC 304 Session 2000 2001: 7 March 2001

Audit of Assumptions for the March 2001 Budget. REPORT BY THE COMPTROLLER AND AUDITOR GENERAL HC 304 Session 2000 2001: 7 March 2001 Audit of Assumptios for the March 2001 Budget REPORT BY THE COMPTROLLER AND AUDITOR GENERAL HC 304 Sessio 2000 2001: 7 March 2001 Audit of Assumptios for the March 2001 Budget REPORT BY THE COMPTROLLER

More information

Arithmetic of Triangular Fuzzy Variable from Credibility Theory

Arithmetic of Triangular Fuzzy Variable from Credibility Theory Vol., Issue 3, August 0 Arithmetic of Triagular Fuzzy Variable from Credibility Theory Ritupara Chutia (Correspodig Author) Departmet of Mathematics Gauhati Uiversity, Guwahati, Assam, Idia. Rituparachutia7@rediffmail.com

More information

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51 Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

THE ACCURACY OF SIMPLE TRADING RULES IN STOCK MARKETS

THE ACCURACY OF SIMPLE TRADING RULES IN STOCK MARKETS THE ACCURACY OF SIMPLE TRADING RULES IN STOCK MARKETS Audrius Dzikevicius 1, Svetlaa Sarada 2, Aleksadra Kravciook 3 1 Vilius Gedimias Techical Uiversity, Lithuaia, audrius@piigusrautas.lt 2 Vilius Gedimias

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

C.Yaashuwanth Department of Electrical and Electronics Engineering, Anna University Chennai, Chennai 600 025, India..

C.Yaashuwanth Department of Electrical and Electronics Engineering, Anna University Chennai, Chennai 600 025, India.. (IJCSIS) Iteratioal Joural of Computer Sciece ad Iformatio Security, A New Schedulig Algorithms for Real Time Tasks C.Yaashuwath Departmet of Electrical ad Electroics Egieerig, Aa Uiversity Cheai, Cheai

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity

More information

ODBC. Getting Started With Sage Timberline Office ODBC

ODBC. Getting Started With Sage Timberline Office ODBC ODBC Gettig Started With Sage Timberlie Office ODBC NOTICE This documet ad the Sage Timberlie Office software may be used oly i accordace with the accompayig Sage Timberlie Office Ed User Licese Agreemet.

More information

Investing in Stocks WHAT ARE THE DIFFERENT CLASSIFICATIONS OF STOCKS? WHY INVEST IN STOCKS? CAN YOU LOSE MONEY?

Investing in Stocks WHAT ARE THE DIFFERENT CLASSIFICATIONS OF STOCKS? WHY INVEST IN STOCKS? CAN YOU LOSE MONEY? Ivestig i Stocks Ivestig i Stocks Busiesses sell shares of stock to ivestors as a way to raise moey to fiace expasio, pay off debt ad provide operatig capital. Ecoomic coditios: Employmet, iflatio, ivetory

More information

A guide to School Employees' Well-Being

A guide to School Employees' Well-Being A guide to School Employees' Well-Beig Backgroud The public school systems i the Uited States employ more tha 6.7 millio people. This large workforce is charged with oe of the atio s critical tasks to

More information

Subject CT5 Contingencies Core Technical Syllabus

Subject CT5 Contingencies Core Technical Syllabus Subject CT5 Cotigecies Core Techical Syllabus for the 2015 exams 1 Jue 2014 Aim The aim of the Cotigecies subject is to provide a groudig i the mathematical techiques which ca be used to model ad value

More information

NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,

NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff, NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

Application and research of fuzzy clustering analysis algorithm under micro-lecture English teaching mode

Application and research of fuzzy clustering analysis algorithm under micro-lecture English teaching mode SHS Web of Cofereces 25, shscof/20162501018 Applicatio ad research of fuzzy clusterig aalysis algorithm uder micro-lecture Eglish teachig mode Yig Shi, Wei Dog, Chuyi Lou & Ya Dig Qihuagdao Istitute of

More information

PSYCHOLOGICAL STATISTICS

PSYCHOLOGICAL STATISTICS UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics

More information

9.8: THE POWER OF A TEST

9.8: THE POWER OF A TEST 9.8: The Power of a Test CD9-1 9.8: THE POWER OF A TEST I the iitial discussio of statistical hypothesis testig, the two types of risks that are take whe decisios are made about populatio parameters based

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Desktop Management. Desktop Management Tools

Desktop Management. Desktop Management Tools Desktop Maagemet 9 Desktop Maagemet Tools Mac OS X icludes three desktop maagemet tools that you might fid helpful to work more efficietly ad productively: u Stacks puts expadable folders i the Dock. Clickig

More information

Supply Chain Management

Supply Chain Management Supply Chai Maagemet LOA Uiversity October 9, 205 Distributio D Distributio Authorized to Departmet of Defese ad U.S. DoD Cotractors Oly Aim High Fly - Fight - Wi Who am I? Dr. William A Cuigham PhD Ecoomics

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

CCH CRM Books Online Software Fee Protection Consultancy Advice Lines CPD Books Online Software Fee Protection Consultancy Advice Lines CPD

CCH CRM Books Online Software Fee Protection Consultancy Advice Lines CPD Books Online Software Fee Protection Consultancy Advice Lines CPD Books Olie Software Fee Fee Protectio Cosultacy Advice Advice Lies Lies CPD CPD facig today s challeges As a accoutacy practice, maagig relatioships with our cliets has to be at the heart of everythig

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

Review: Classification Outline

Review: Classification Outline Data Miig CS 341, Sprig 2007 Decisio Trees Neural etworks Review: Lecture 6: Classificatio issues, regressio, bayesia classificatio Pretice Hall 2 Data Miig Core Techiques Classificatio Clusterig Associatio

More information

THE ROLE OF EXPORTS IN ECONOMIC GROWTH WITH REFERENCE TO ETHIOPIAN COUNTRY

THE ROLE OF EXPORTS IN ECONOMIC GROWTH WITH REFERENCE TO ETHIOPIAN COUNTRY - THE ROLE OF EXPORTS IN ECONOMIC GROWTH WITH REFERENCE TO ETHIOPIAN COUNTRY BY: FAYE ENSERMU CHEMEDA Ethio-Italia Cooperatio Arsi-Bale Rural developmet Project Paper Prepared for the Coferece o Aual Meetig

More information

Anti-Money Laundering

Anti-Money Laundering Ati-Moey Lauderig Over the last year, moey-lauderig crimes siphoed a estimated $1.3 trillio out of the global ecoomy.* I light of this staggerig statistic, the resultig striget legislatio is uderstadable.

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Trading the randomness - Designing an optimal trading strategy under a drifted random walk price model

Trading the randomness - Designing an optimal trading strategy under a drifted random walk price model Tradig the radomess - Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore

More information

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology Adoptio Date: 4 March 2004 Effective Date: 1 Jue 2004 Retroactive Applicatio: No Public Commet Period: Aug Nov 2002 INVESTMENT PERFORMANCE COUNCIL (IPC) Preface Guidace Statemet o Calculatio Methodology

More information

Characterizing End-to-End Packet Delay and Loss in the Internet

Characterizing End-to-End Packet Delay and Loss in the Internet Characterizig Ed-to-Ed Packet Delay ad Loss i the Iteret Jea-Chrysostome Bolot Xiyu Sog Preseted by Swaroop Sigh Layout Itroductio Data Collectio Data Aalysis Strategy Aalysis of packet delay Aalysis of

More information

Hypergeometric Distributions

Hypergeometric Distributions 7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

Evaluation of Different Fitness Functions for the Evolutionary Testing of an Autonomous Parking System

Evaluation of Different Fitness Functions for the Evolutionary Testing of an Autonomous Parking System Evaluatio of Differet Fitess Fuctios for the Evolutioary Testig of a Autoomous Parkig System Joachim Wegeer 1, Oliver Bühler 2 1 DaimlerChrysler AG, Research ad Techology, Alt-Moabit 96 a, D-1559 Berli,

More information

I. Why is there a time value to money (TVM)?

I. Why is there a time value to money (TVM)? Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios

More information

Institute of Actuaries of India Subject CT1 Financial Mathematics

Institute of Actuaries of India Subject CT1 Financial Mathematics Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

A Fuzzy Model of Software Project Effort Estimation

A Fuzzy Model of Software Project Effort Estimation TJFS: Turkish Joural of Fuzzy Systems (eissn: 309 90) A Official Joural of Turkish Fuzzy Systems Associatio Vol.4, No.2, pp. 68-76, 203 A Fuzzy Model of Software Project Effort Estimatio Oumout Chouseioglou

More information

, a Wishart distribution with n -1 degrees of freedom and scale matrix.

, a Wishart distribution with n -1 degrees of freedom and scale matrix. UMEÅ UNIVERSITET Matematisk-statistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that

More information

Domain 1: Identifying Cause of and Resolving Desktop Application Issues Identifying and Resolving New Software Installation Issues

Domain 1: Identifying Cause of and Resolving Desktop Application Issues Identifying and Resolving New Software Installation Issues Maual Widows 7 Eterprise Desktop Support Techicia (70-685) 1-800-418-6789 Domai 1: Idetifyig Cause of ad Resolvig Desktop Applicatio Issues Idetifyig ad Resolvig New Software Istallatio Issues This sectio

More information

CONTROL CHART BASED ON A MULTIPLICATIVE-BINOMIAL DISTRIBUTION

CONTROL CHART BASED ON A MULTIPLICATIVE-BINOMIAL DISTRIBUTION www.arpapress.com/volumes/vol8issue2/ijrras_8_2_04.pdf CONTROL CHART BASED ON A MULTIPLICATIVE-BINOMIAL DISTRIBUTION Elsayed A. E. Habib Departmet of Statistics ad Mathematics, Faculty of Commerce, Beha

More information

Sole trader financial statements

Sole trader financial statements 3 Sole trader fiacial statemets this chapter covers... I this chapter we look at preparig the year ed fiacial statemets of sole traders (that is, oe perso ruig their ow busiess). We preset the fiacial

More information

The Gompertz Makeham coupling as a Dynamic Life Table. Abraham Zaks. Technion I.I.T. Haifa ISRAEL. Abstract

The Gompertz Makeham coupling as a Dynamic Life Table. Abraham Zaks. Technion I.I.T. Haifa ISRAEL. Abstract The Gompertz Makeham couplig as a Dyamic Life Table By Abraham Zaks Techio I.I.T. Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 32000, Haifa, Israel Abstract A very famous

More information

Stat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median.

Stat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median. Stat 04 Lecture Statistics 04 Lecture (IPS. &.) Outlie for today Variables ad their distributios Fidig the ceter Measurig the spread Effects of a liear trasformatio Variables ad their distributios Variable:

More information

Ekkehart Schlicht: Economic Surplus and Derived Demand

Ekkehart Schlicht: Economic Surplus and Derived Demand Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Domain 1 - Describe Cisco VoIP Implementations

Domain 1 - Describe Cisco VoIP Implementations Maual ONT (642-8) 1-800-418-6789 Domai 1 - Describe Cisco VoIP Implemetatios Advatages of VoIP Over Traditioal Switches Voice over IP etworks have may advatages over traditioal circuit switched voice etworks.

More information

A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Moments of a Binomial Distribution A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

More information

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2 74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is

More information

3. Covariance and Correlation

3. Covariance and Correlation Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics

More information

GOOD PRACTICE CHECKLIST FOR INTERPRETERS WORKING WITH DOMESTIC VIOLENCE SITUATIONS

GOOD PRACTICE CHECKLIST FOR INTERPRETERS WORKING WITH DOMESTIC VIOLENCE SITUATIONS GOOD PRACTICE CHECKLIST FOR INTERPRETERS WORKING WITH DOMESTIC VIOLENCE SITUATIONS I the sprig of 2008, Stadig Together agaist Domestic Violece carried out a piece of collaborative work o domestic violece

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

TruStore: The storage. system that grows with you. Machine Tools / Power Tools Laser Technology / Electronics Medical Technology

TruStore: The storage. system that grows with you. Machine Tools / Power Tools Laser Technology / Electronics Medical Technology TruStore: The storage system that grows with you Machie Tools / Power Tools Laser Techology / Electroics Medical Techology Everythig from a sigle source. Cotets Everythig from a sigle source. 2 TruStore

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

PENSION ANNUITY. Policy Conditions Document reference: PPAS1(7) This is an important document. Please keep it in a safe place.

PENSION ANNUITY. Policy Conditions Document reference: PPAS1(7) This is an important document. Please keep it in a safe place. PENSION ANNUITY Policy Coditios Documet referece: PPAS1(7) This is a importat documet. Please keep it i a safe place. Pesio Auity Policy Coditios Welcome to LV=, ad thak you for choosig our Pesio Auity.

More information

A Secure Implementation of Java Inner Classes

A Secure Implementation of Java Inner Classes A Secure Implemetatio of Java Ier Classes By Aasua Bhowmik ad William Pugh Departmet of Computer Sciece Uiversity of Marylad More ifo at: http://www.cs.umd.edu/~pugh/java Motivatio ad Overview Preset implemetatio

More information