# Brown University PHYS 0060 INDUCTANCE

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide INTODUCTION INDUCTANCE Anyone who has ever grabbed an auomobile spark-plug wire a he wrong place, wih he engine running, has an appreciaion of he abiliy of a changing curren in (par of) a coil of wire o induce an emf in he coil. Wha happens is ha he breaker conacs open, suddenly inerruping he curren, and causing a sudden large change in he magneic field hrough he coil; according o Faraday s law, his resuls in a (large) induced emf. In general, he producion of an emf in a coil by a changing magneic field due o a curren in ha same coil is called self-inducion; and he abiliy of a coil o produce an emf in his way is commonly measured by is self-inducance L, usually called more briefly is inducance. A coil used in his way is more formally called an inducor. The ransmission of elecric signals by elevision, radio, and elephone depends on ime-varying currens and fields o represen he appearance of picures and he sound of voices; and so, as you can well imagine, capaciors and inducors plan an imporan role in he circuis of such devices. You already know ha a capacior can sore energy; so can an inducor. If an inducor carrying a curren is conneced o a resisor, is energy is dissipaed as hea in he resisor, much as for a charged capacior. Bu now suppose you connec i insead o a capacior; he inducor will ry o give is energy o he capacior and vice versa bu he iniial energy is no quickly dissipaed from he elecrical circui. Wha do you suppose happens? If you do no already know, can you guess, before sudying his module? PEEQUISITES Before you begin his module, you should be able o: *Use Ampere s law o calculae B inside oroids and long solenoids (needed for Objecives 1 his module) *elae he emf induced in such oroids and solenoids o he ime rae of change of B or φ B (needed for Objecive 1 of his module) *Find he power dissipaed by a resisor (needed for Objecives 2 of his module) *Add volages around an C circui verify he exponenial ime dependences of he curren and volage (needed for Objecive 2 of his Locaion of Prerequisie Conen Ampère s Law Module Faraday s Law Module Ohm s Law Module Direc-Curren Circuis Module

2 Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide module) *Find he energy sored in a capacior (needed for Objecive 3 of his module) *elae he moion of a mechanical oscillaor o he mahemaical expression for is displacemen (needed for Objecive 3 of his module) Capaciors Module Simple Harmonic Moion Module LEANING OBJECTIVES afer you have masered he conen of his module, you will be able o: 1. Inducance Apply he definiion of inducance, Ampere s law, and Faraday s law o oroids and long solenoids o (a) find he inducance L; and (b) relae he induced emf o he rae of change of curren of flux. 2. L Circuis Deermine currens, volages, sored energies, and power dissipaions in simple L circuis. (This includes adding up volages around he circui o find a differenial equaion and deermine he ime dependence.) 3. LC Circuis Deermine charges, volages, currens, and sored energies in simple LC Circuis. (This includes using he principle of energy conservaion o find imum values, as well as o obain a differenial equaion and deermine he ime dependence.) 2

3 Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide GENEAL COMMENTS Once you know i (), i is relaively simple maer o find any oher quaniy, such as he volage across he resisor, V = i, or he induced emf ε L = di/d. A summary of he resuls for ypical L circuis is presened in Figure L Circuis Suppose you are given he circui shown in Figure 1. Before he swich is closed, he curren is zero. When he swich is closed, he curren sars o rise bu only a a finie rae, since he inducor will no allow any sudden change in he curren. [The induced emf L (di/d) would be infinie!] Furhermore, he curren will no rise indefiniely, because of he opposing volage V = i across he resisor. Therefore, he behavior of he curren has he appearance of Figure 2. Since he emf induced in L vanishes as he curren approaches is final unchanging value i, we see ha V he swich is closed. Figure 1 L i = V B Nex, adding volages around he circui, much as you did in he module Direc-Curren Circuis for circuis conaining only resisors and baeries, leads o he equaion V B L d dd = This differenial equaion gives a mahemaical descripion of he behavior of he curren i afer Anoher possibiliy is he circui show in Figure 3. Iniially, he swich is closed; and we imagine ha he curren i has reached is seady-sae value, so ha he emf induced in L is zero, Therefore, he volage difference across is zero, and he curren hrough he inducor is Figure 2 = V B 1 while he swich is closed. When he swich is opened, he emf induced in he inducor again prevens any insananeous change in i; is iniial value is herefore jus i. The curren now flows hrough he only pah open o i, namely, hrough ; as a resul, he resisor heas up. Evidenly, his supply of hea is no unlimied (or we would use i o hea houses!); he curren mus fall oward zero, as in Figure 4. Incidenally, since he resisor does hea up, we have seen ha an inducor sores energy when a curren is flowing hrough i. i() i 3

4 Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide i Figures 2 and 4 should recall he behavior of he charge and curren in he C-circuis ha you sudied in he module Direc-Curren Circuis. A synopsis of he L V B resuls for such circuis is represened in Figure 5. If you look back, you will find, for example, ha he Figure 3 volage across he capacior obeys he equaion V C = V B 1 e τ when he swich is moved o he charge posiion, and i() i V C = V B e τ Figure 4 4

5 Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide when he swich is moved back o discharge afer he capacior has become fully charged. In fac, all he quaniies indicaed in Figure 5 can be expressed as y = consd f(d) or y = consd g(d) where f(d) = 1 e τ and g(d) = e τ Noe ha f () = and f ( ) = 1, g () = 1 and g ( ) = 1 Figure 5: C Circuis (τ = C) Charge i V V Discharge q C V C Noe proporionaliies: V C = q ; V C =. Swich is moved a = q or V C i or V CHAGE f() g() a) c) C C q or V C -i or -V DISCHAGE b) g() d) g() C C In each case, cons is jus he imum value of he quaniy in quesion, which is eiher he limiing value for large imes, or he iniial value a =. Of course, we are no really ineresed in re-solving C circuis in his module! The poin of 5

6 Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide all his is ha we need o find he soluion of he differenial equaion (2). The similariy beween Figures 2 and 5(a) boh curve rise from zero o an asympoic value sugges ha we ry a soluion similar o Eq. (4). (Acually, if you checked he differenial equaions, you should find ha hey are similar, oo.) Tha is, we se (d) = Af(d) = A 1 e τ, where he consan A is deermined by he condiion, from Eq. (1), ha ( ) = = V B = A(1 ) = A Subsiuion of he expression (8) ino he differenial equaion (2) leads o = V B A 1 eτ L A τ e τ = V B V B + V B LV B e τ τ when he value A = V B / is insered, from Eq. (9). This equaion is saisfied if and only if τ = L Wih hese paricular values, Eq. (8) becomes (d) = V B 1 e τ ; we have found he needed soluion o Eq. (1) for he curren i() in he circui of Figure 1! (I can also be shown ha his soluion is unique.) Oher L circui problems can be analyzed in his same way; as above, he seps are: a. Deermine he qualiaive behavior of he curren as a funcion of ime, including is imum value b. Add volages around he circui o find he appropriae differenial equaion. c. Try a soluion o (b) of he form An f () or A g (), where f () and g () are defined in Eq. (7), depending on wheher (a) was increasing or decreasing. [The consan A is equal o he imum value found in par (a).] The resuling equaion gives he correc value of τ Once you know i (), i is relaively simple maer o find any oher quaniy, such as he volage across he resisor, V = i, or he induced emf ε L = di/d. A summary of he resuls for ypical L circuis is presened in Figure 6. 6

7 Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide Figure 6: L Circuis (τ = L/) V Energize i Deenergize ε L L V di/d Noe proporionaliies: ε L = L dd dd ; V = Swich is moved a = ENEGIZE (Corresponds o Charge ) DEENEGIZE (Corresponds o Discharge ) i or V C i or V a) f() c) g() L/ L/ ε L or dd dd ε L or dd dd b) g() d) g() L/ L/ 2. LC Circuis As he erm LC implies, we are assuming idealized inducors and capaciors, wih negligible resisive or oher dissipaive effecs; he circui in Figure 7 is consruced from such idealized componens. Wih he swich in posiion a, he capacior acquires he charge q = CV B As you learned in he module Capaciors, his implies ha amoun of energy 7

8 Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide U C = 1 2 q 2 = U C is sored in he capacior When he swich is moved o posiion b as in Figure 8, posiive charge sars o flow from he upper plae of C hrough L. Evenually, he capacior becomes discharged (q = ), a which ime U C = Bu he energy U ha was originally sored in he capacior mus have gone somewhere. I could no have been convered o inernal ( hea ) energy, since here are no resisors in he circui; herefore i mus have gone ino he inducor. Tha is, he curren mus have he value I = i such ha he energy sored in inducor is V B a b q C Figure 7 a b L U L = 1 2 L 2 = U Of course, he inducor will no le he curren sop abruply; he capacior hus proceeds o charge up again, bu wih negaive charge on he op plae. The curren does sop, however, when all he energy has been ransferred back o he capacior, i.e., when U C = U and U L = Nex, he poenial difference across he charged capacior V B q C Figure 8 L plaes again sars a curren flowing hrough he inducor, bu in he opposie direcion from before and so on. Thus, here is a coninual ransfer of energy back and forh beween he capacior and inducor, in such a way ha he oal energy is consan: U L + U C U C (d) + U L (d) = U See Figure 9. This ransfer of energy back and forh is very nicely porrayed by he upper circular diagram on p.1[fig. 11(a)] U C U L Figure 9 i or V x q or x Figure 1 8

9 Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide Figures 11(a) and (b) visualize he energy ransfer ha occurs during one cycle of an elecrical oscillaor [Figure 11(a)] and of a mechanical oscillaor [Figure 11 (b)]. Noe he amazingly similar behavior of hese apparenly dissimilar devices. The diagrams on his page [Figure 11(a) and 11(b)] have been reprined from Fundamenals of Physics, by David Halliday and ober esnick (Wiley, New York, 197; revised prining, 1974), wih permission of he publisher. In he ex hey are Figures 34-1 and 7-4 respecively. The lower circular diagram [Fig. 11(b)] shows he analogous siuaion in a mechanical oscillaor; he spring poenial energy is he analog of U C, and he kineic energy of he moving mass is he analog of U L. The oscillaion of he posiive charge beween he upper and lower plaes of c is very similar o he back and forh moion of he mass in he mechanical case; In fac, we can represen he charge q and he displacemen x (or he curren I and he velociy v x ) by he same graph, as Figure 1, provided we mach up he ampliudes, frequencies, and phases. The curves in Figure 1 were drawn o be sinusoidal; how can we check his claimed behavior? Simple enough: a. Wrie he equaion of energy conservaion 1 2 q2 C L2 = U b. Differeniae wih respec o ime 9

10 Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide q dq + L d C dd dd = c. Use i = dq/d, cancel a facor, and rearrange: LC d2 q dd2 + q = Anoher differenial equaion! Bu do no despair; we are merely going o check he claimed sinusoidal behavior hus we se q(d) = q m cos(ωd + φ), (where q m, ω, and φ are consans o be deermined) and subsiue his expression ino Eq. (19) o see wheher or no i is a soluion. The subsiuion leads o LCω 2 q m cos(ωd + φ) + q m cos(ωd + φ) = which is saisfied provided ω = 1 LC The sinusoidal behavior (2) is his verified, and we have found he frequency f = ω 2π = 1 2π 1 LC As in he mechanical case, he values of q and φ are deermined by iniial condiions. For example, if he swich in Figure 7 is moved o b a =, hen q(d = ) = CV B and dq (d = ) = ; dd applying hese condiions o Eq. (2) yields q m = CV B and φ = ADDITIONAL LEANING MATEIALS Auxiliary eading Sanley Williams, Kenneh Brownsein, and ober Gray, Suden Sudy Guide wih I and II, by David Halliday and ober esnick (Wiley, New York, 197). Objecive 1: Secions 31-1 and 31-2; Objecive 2: Secions 31-4 and 31-7 hrough 31-9; Objecive 3: Secion 33-1 Various Texs Frederick J. Bueche, Inroducion o Physics for Scieniss and Engineers (McGraw-Hill, New York, 1975), second ediion: Secions 25.3 hrough 25.5 and

11 Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide David Halliday and ober esnick, Fundamenals of Physics (Wiley, New York, 197; revised prining, 1974): Secions 32-1 hrough 32-4 and 34-1 hrough 34-3 Francis Weson Sears and Mark W. Zemansky, Universiy Physics (Addison-Wesley, eading, Mass, 197), fourh ediion: Secions 33-9 hrough ichard T. Wediner and ober L. Sells, Elemenary Classical Physics (Allyn and Bacon, Boson, 1973), second ediion, Vol. 2: Secions 32-1 hrough 32-3 and POBLEM A(1) An inducor has been wound on a long cylindrical form wih a square cross secion measuring 1. cm by 1. cm. The winding has been pained over, so ha i is impossible o coun he urns; however, you are able o deermine ha he flux hrough he cener is 1. µt when he curren is 4. A. 11

### Chapter 7. Response of First-Order RL and RC Circuits

Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

### Inductance and Transient Circuits

Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

### CHARGE AND DISCHARGE OF A CAPACITOR

REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

### RC (Resistor-Capacitor) Circuits. AP Physics C

(Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED

### Capacitors and inductors

Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

### RC, RL and RLC circuits

Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

### Circuit Types. () i( t) ( )

Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All

### Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,

### RC Circuit and Time Constant

ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisor-capacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he

### Chabot College Physics Lab RC Circuits Scott Hildreth

Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard

### 9. Capacitor and Resistor Circuits

ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren

### The Transport Equation

The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1 - TRANSIENTS

EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67 - FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1 - RANIEN Uni conen 2 Undersand he ransien behaviour of resisor-capacior (R) and resisor-inducor (RL) D circuis

### Differential Equations and Linear Superposition

Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

### Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur

Module 3 - & -C Transiens esson 0 Sudy of DC ransiens in - and -C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series

### Physics 111 Fall 2007 Electric Currents and DC Circuits

Physics 111 Fall 007 Elecric Currens and DC Circuis 1 Wha is he average curren when all he sodium channels on a 100 µm pach of muscle membrane open ogeher for 1 ms? Assume a densiy of 0 sodium channels

### Chapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr

Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i

### Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

### Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m

Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m

### Chapter 2 Kinematics in One Dimension

Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how

### Chapter 2: Principles of steady-state converter analysis

Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

### A Mathematical Description of MOSFET Behavior

10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical

### Voltage level shifting

rek Applicaion Noe Number 1 r. Maciej A. Noras Absrac A brief descripion of volage shifing circuis. 1 Inroducion In applicaions requiring a unipolar A volage signal, he signal may be delivered from a bi-polar

### Using RCtime to Measure Resistance

Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a buil-in ADC (Analog o Digial Converer)

### AP Calculus AB 2013 Scoring Guidelines

AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was

### AP Calculus BC 2010 Scoring Guidelines

AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board

### PHYS245 Lab: RC circuits

PHYS245 Lab: C circuis Purpose: Undersand he charging and discharging ransien processes of a capacior Display he charging and discharging process using an oscilloscope Undersand he physical meaning of

### Rotational Inertia of a Point Mass

Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha

### Physics 1402: Lecture 21 Today s Agenda

ecure 4 Physics 142: ecure 21 Tody s Agend Announcemens: nducion, R circuis Homework 6: due nex Mondy nducion / A curren Frdy's w ds N S B v B B S N B v 1 ecure 4 nducion Self-nducnce, R ircuis X X X X

### Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

### µ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ

Page 9 Design of Inducors and High Frequency Transformers Inducors sore energy, ransformers ransfer energy. This is he prime difference. The magneic cores are significanly differen for inducors and high

### A Curriculum Module for AP Calculus BC Curriculum Module

Vecors: A Curriculum Module for AP Calculus BC 00 Curriculum Module The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy.

### Lecture 2: Telegrapher Equations For Transmission Lines. Power Flow.

Whies, EE 481 Lecure 2 Page 1 of 13 Lecure 2: Telegraher Equaions For Transmission Lines. Power Flow. Microsri is one mehod for making elecrical connecions in a microwae circui. I is consruced wih a ground

### 5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance.

5.8 Resonance 231 5.8 Resonance The sudy of vibraing mechanical sysems ends here wih he heory of pure and pracical resonance. Pure Resonance The noion of pure resonance in he differenial equaion (1) ()

### Section 7.1 Angles and Their Measure

Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed

### Motion Along a Straight Line

Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his

### cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

### Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The

### 1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,

Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..

### MOTION ALONG A STRAIGHT LINE

Chaper 2: MOTION ALONG A STRAIGHT LINE 1 A paricle moes along he ais from i o f Of he following alues of he iniial and final coordinaes, which resuls in he displacemen wih he larges magniude? A i =4m,

### Signal Processing and Linear Systems I

Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons

### Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa

### Full-wave rectification, bulk capacitor calculations Chris Basso January 2009

ull-wave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal

### Imagine a Source (S) of sound waves that emits waves having frequency f and therefore

heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing

### Permutations and Combinations

Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes - ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he k-value for he middle erm, divide

### Newton s Laws of Motion

Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The

### Switching Regulator IC series Capacitor Calculation for Buck converter IC

Swiching Regulaor IC series Capacior Calculaion for Buck converer IC No.14027ECY02 This applicaion noe explains he calculaion of exernal capacior value for buck converer IC circui. Buck converer IIN IDD

### Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given

### Transient Analysis of First Order RC and RL circuits

Transien Analysis of Firs Order and iruis The irui shown on Figure 1 wih he swih open is haraerized by a pariular operaing ondiion. Sine he swih is open, no urren flows in he irui (i=0) and v=0. The volage

### 11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

### Graduate Macro Theory II: Notes on Neoclassical Growth Model

Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.

### PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

### AP Calculus AB 2007 Scoring Guidelines

AP Calculus AB 7 Scoring Guidelines The College Board: Connecing Sudens o College Success The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and

### The Torsion of Thin, Open Sections

EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such

### Astable multivibrator using the 555 IC.(10)

Visi hp://elecronicsclub.cjb.ne for more resources THE 555 IC TIMER The 555 IC TIMER.(2) Monosable mulivibraor using he 555 IC imer...() Design Example 1 wih Mulisim 2001 ools and graphs..(8) Lile descripion

### MTH6121 Introduction to Mathematical Finance Lesson 5

26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random

### Two Compartment Body Model and V d Terms by Jeff Stark

Two Comparmen Body Model and V d Terms by Jeff Sark In a one-comparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics - By his, we mean ha eliminaion is firs order and ha pharmacokineic

### AP Calculus AB 2010 Scoring Guidelines

AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College

### Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

### Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS 2204 FINAL EXAMINATION. June 2009.

Name: Teacher: DO NOT OPEN THE EXMINTION PPER UNTIL YOU RE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS 2204 FINL EXMINTION June 2009 Value: 100% General Insrucions This examinaion consiss of wo pars. Boh pars

### Making Use of Gate Charge Information in MOSFET and IGBT Data Sheets

Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have

### 4. International Parity Conditions

4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency

### Steps for D.C Analysis of MOSFET Circuits

10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.

### CAPACITANCE AND INDUCTANCE

CHAPTER 6 CAPACITANCE AND INDUCTANCE THE LEARNING GOALS FOR THIS CHAPTER ARE: Know how o use circui models for inducors and capaciors o calculae volage, curren, and power Be able o calculae sored energy

### Acceleration Lab Teacher s Guide

Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion

### Cointegration: The Engle and Granger approach

Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be non-saionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require

### 6.5. Modelling Exercises. Introduction. Prerequisites. Learning Outcomes

Modelling Exercises 6.5 Inroducion This Secion provides examples and asks employing exponenial funcions and logarihmic funcions, such as growh and decay models which are imporan hroughou science and engineering.

### A Probability Density Function for Google s stocks

A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural

### 4.2 Trigonometric Functions; The Unit Circle

4. Trigonomeric Funcions; The Uni Circle Secion 4. Noes Page A uni circle is a circle cenered a he origin wih a radius of. Is equaion is as shown in he drawing below. Here he leer represens an angle measure.

### SOLID MECHANICS TUTORIAL GEAR SYSTEMS. This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 3.

SOLI MEHNIS TUTORIL GER SYSTEMS This work covers elemens of he syllabus for he Edexcel module 21722P HN/ Mechanical Principles OUTOME 3. On compleion of his shor uorial you should be able o do he following.

### Stochastic Optimal Control Problem for Life Insurance

Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian

### CHAPTER 5 CAPACITORS

CHAPTER 5 CAPACITORS 5. Inroducion A capacior consiss of wo meal plaes separaed by a nonconducing medium (known as he dielecric medium or simply he dielecric, or by a vacuum. I is represened by he elecrical

### 17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides

7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion

### Part II Converter Dynamics and Control

Par II onverer Dynamics and onrol 7. A equivalen circui modeling 8. onverer ransfer funcions 9. onroller design 1. Inpu filer design 11. A and D equivalen circui modeling of he disconinuous conducion mode

### Period 4 Activity Solutions: Transfer of Thermal Energy

Period 4 Aciviy Soluions: Transfer of Thermal nergy 4.1 How Does Temperaure Differ from Thermal nergy? a) Temperaure Your insrucor will demonsrae molecular moion a differen emperaures. 1) Wha happens o

### Product Operation and Setup Instructions

A9 Please read and save hese insrucions. Read carefully before aemping o assemble, insall, operae, or mainain he produc described. Proec yourself and ohers by observing all safey informaion. Failure o

### Section 5.1 The Unit Circle

Secion 5.1 The Uni Circle The Uni Circle EXAMPLE: Show ha he poin, ) is on he uni circle. Soluion: We need o show ha his poin saisfies he equaion of he uni circle, ha is, x +y 1. Since ) ) + 9 + 9 1 P

### Equation for a line. Synthetic Impulse Response 0.5 0.5. 0 5 10 15 20 25 Time (sec) x(t) m

Fundamenals of Signals Overview Definiion Examples Energy and power Signal ransformaions Periodic signals Symmery Exponenial & sinusoidal signals Basis funcions Equaion for a line x() m x() =m( ) You will

### Module 3 Design for Strength. Version 2 ME, IIT Kharagpur

Module 3 Design for Srengh Lesson 2 Sress Concenraion Insrucional Objecives A he end of his lesson, he sudens should be able o undersand Sress concenraion and he facors responsible. Deerminaion of sress

### Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar

Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 0-7-380-7 Ifeachor

### Entropy: From the Boltzmann equation to the Maxwell Boltzmann distribution

Enropy: From he Bolzmann equaion o he Maxwell Bolzmann disribuion A formula o relae enropy o probabiliy Ofen i is a lo more useful o hink abou enropy in erms of he probabiliy wih which differen saes are

### Part 1: White Noise and Moving Average Models

Chaper 3: Forecasing From Time Series Models Par 1: Whie Noise and Moving Average Models Saionariy In his chaper, we sudy models for saionary ime series. A ime series is saionary if is underlying saisical

### Kinematics in 1-D From Problems and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, morin@physics.harvard.

Chaper 2 Kinemaics in 1-D From Problems and Soluions in Inroducory Mechanics (Draf ersion, Augus 2014) Daid Morin, morin@physics.harard.edu As menioned in he preface, his book should no be hough of as

### Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling

Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)

### Chapter 4: Exponential and Logarithmic Functions

Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion

### Modeling Stock Price Dynamics with Fuzzy Opinion Networks

Modeling Sock Price Dynamics wih Fuzzy Opinion Neworks Li-Xin Wang Deparmen of Auomaion Science and Technology Xian Jiaoong Universiy, Xian, P.R. China Email: lxwang@mail.xju.edu.cn Key words: Sock price

### Second Order Linear Differential Equations

Second Order Linear Differenial Equaions Second order linear equaions wih consan coefficiens; Fundamenal soluions; Wronskian; Exisence and Uniqueness of soluions; he characerisic equaion; soluions of homogeneous

### Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is \$613.

Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

### Density Dependence. births are a decreasing function of density b(n) and deaths are an increasing function of density d(n).

FW 662 Densiy-dependen populaion models In he previous lecure we considered densiy independen populaion models ha assumed ha birh and deah raes were consan and no a funcion of populaion size. Long-erm

### Lecture-10 BJT Switching Characteristics, Small Signal Model

1 Lecure-1 BJT Swiching Characerisics, Small Signal Model BJT Swiching Characerisics: The circui in Fig.1(b) is a simple CE swich. The inpu volage waveform v s shown in he Fig.1(a) is used o conrol he

### Present Value Methodology

Presen Value Mehodology Econ 422 Invesmen, Capial & Finance Universiy of Washingon Eric Zivo Las updaed: April 11, 2010 Presen Value Concep Wealh in Fisher Model: W = Y 0 + Y 1 /(1+r) The consumer/producer

### Pulse-Width Modulation Inverters

SECTION 3.6 INVERTERS 189 Pulse-Widh Modulaion Inverers Pulse-widh modulaion is he process of modifying he widh of he pulses in a pulse rain in direc proporion o a small conrol signal; he greaer he conrol

### Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities

Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17

### DETERMINISTIC INVENTORY MODEL FOR ITEMS WITH TIME VARYING DEMAND, WEIBULL DISTRIBUTION DETERIORATION AND SHORTAGES KUN-SHAN WU

Yugoslav Journal of Operaions Research 2 (22), Number, 6-7 DEERMINISIC INVENORY MODEL FOR IEMS WIH IME VARYING DEMAND, WEIBULL DISRIBUION DEERIORAION AND SHORAGES KUN-SHAN WU Deparmen of Bussines Adminisraion

### Solution of a differential equation of the second order by the method of NIGAM

Tire : Résoluion d'une équaion différenielle du second[...] Dae : 16/02/2011 Page : 1/6 Soluion of a differenial equaion of he second order by he mehod of NIGAM Summarized: We presen in his documen, a

### Revisions to Nonfarm Payroll Employment: 1964 to 2011

Revisions o Nonfarm Payroll Employmen: 1964 o 2011 Tom Sark December 2011 Summary Over recen monhs, he Bureau of Labor Saisics (BLS) has revised upward is iniial esimaes of he monhly change in nonfarm

### Optimal Investment and Consumption Decision of Family with Life Insurance

Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker

### Return Calculation of U.S. Treasury Constant Maturity Indices

Reurn Calculaion of US Treasur Consan Mauri Indices Morningsar Mehodolog Paper Sepeber 30 008 008 Morningsar Inc All righs reserved The inforaion in his docuen is he proper of Morningsar Inc Reproducion