Economics Honors Exam 2008 Solutions Question 5


 Thomasine Booker
 3 years ago
 Views:
Transcription
1 Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I + G = c 0 + c (Y T ) + I + G = c 0 + c (Y 0 Y ) + I + G ( c + c )Y = c 0 c 0 + I + G. Therefore he equilibrium oupu is, Y = c 0 c 0 + I + G c + c. 3 poins: for realizing Y = C + I + G 2 poins: for subsiuing in C = c 0 + c Y D 2 poins: for subsiuing in T = 0 + Y 2 poins: for subsiuing in Y D = Y T 3 poins: for geing he final answer correc (b) (2 poins) The muliplier is <. C + c c The economy responds less o changes in auonomous spending when is posiive. Afer a posiive change in auonomous spending, he increase in oal axes (because of he increase in income) reduces consumpion and ends o lessen he increase in oupu. poins: for geing he muliplier correc poins: for realizing ha he economy responds less when is posiive 0 poins: depending on he qualiy of he explanaion (c) (6 poins) Because of he auomaic effec of axes on he economy, he economy responds less o changes in auonomous spending han in he case
2 where axes are independen of income. So oupu ends o vary less and fiscal policy is called an auomaic sabilizer. 06 poins: depending on he qualiy of he explanaion 2
3 Economics Honors Exam 2008 Soluions Quesion 6 (a) (0 poins) Since he rae of growh of E is 0, E is consan. Leing A E α, we can rewrie he aggregae producion funcion as Y = E α K α L α = A K α L α. Thus income per worker, y, can be wrien as. In seady sae, we have y = Y L ( K = A L = A k α. ) α k = sy (δ + n)k. Subsiuing in he expression for k, we can ge s Ak α (δ + n)k = 0 k α = sa ( k = Subsiuing ino he expression for y, we ge δ+n sa δ+n ) α. ( y = A A α α s ( = A α s δ + n δ + n ) α α ) α α. poin: for realizing ha E is consan 2 poins: for geing he expression y = A k α correc poin: for realizing ha in seady sae, k = 0 2 poins: for geing he expression sy (δ + n)k = 0 correc 2 poins: for geing he seadysae k correc 2 poins: for geing he seadysae y correc 3
4 (b) (3 poins) Consumpion per worker is c = ( s) y = ( s) A α ( ) α s α. δ + n 2 poins: for geing c = ( s) y correc poin: for geing final answer correc (c) (3 poins) We know ha y = Ak α, while A E α. Therefore if E increases, oupu per worker would increase as well. poin: for realizing ha y increase on he day of he change 02 poins: depending on he qualiy of he reasoning (d) (7 poins) An increase in E is equivalen o improved efficiency in he producion funcion: As could be seen from he graph, in he new seady sae, boh capial per worker (k) and oupu/income per worker (y) are higher, herefore he ransiion pah is illusraed overleaf: 2 poins: for realizing ha income per worker keeps on increasing over he ransiion pah
5 02 poins: depending on he qualiy of he reasoning (does no necessarily have o draw he firs graph) poin: for drawing a discree jump a 0 in he second graph poin: for showing ha y increases over ime afer 0 in he second graph poin: for showing ha y converges o he new seady sae value in he second graph (e) (7 poins) Immediaely afer he shock, here are wo compeing effecs: E increases bu capial sock is desroyed, hence he efficiency gain is offse by he capial loss. The ne effec on iniial oupu per worker is ambiguous. If he drop in capial sock dominaes he increase in E, oupu per worker would acually drop on he day of he change. Oherwise, oupu per worker would sill jump up on he day of he change, hough o a lesser exen han in par (c). Over ime, oupu per worker is going o be higher since k is higher in he new seady sae. The new graphs are shown below: poin: for realizing ha he immediae effec of desrucion of capial sock is o reduce y 2 poins: for realizing ha he ne effec on income per worker a 0 is ambiguous poin: for realizing ha y is going o be higher in he new seady sae (does no necessarily have o draw he firs graph) poin: for drawing a leas wo curves in he second graph, wih a discree jump up or down respecively a 0 poin: for showing ha y increases over ime afer 0 in he second graph poin: for showing ha y converges o he new seady sae value in he second graph 5
6 6
7 Economics Honors Exam 2008 Soluions Quesion 7 (a) (6 poins) Consumpion is: C = Y G K + = G 2 K G K + Differeniaing his wih respec o G gives: Seing his equal o zero gives: dc dg = 2 G 2 K G = K 2 2 poins: for geing he expression for consumpion C correc poin: for differeniaing C wih respec o G and seing his o zero 2 poins: for solving he differeniaion problem correcly poin: for geing he final answer G = K 2 correc (b) (2 poins) The household s budge consrain is: C = G 2 K G K + Subsiuing his ino he uiliy funcion of he represenaive agen gives: U = =0 β u(g 2 K G K + ) The consumer does no ake governmen spending as given, herefore G mus be subsiued ou of his expression, i.e.: U = = =0 =0 β u( 2 K K K + K 2 ) β u( K 2 K + ) Taking firs order condiions wih respec o K gives: 0 = u ( K 2 K ) + β 8 K 2 u ( K 2 K + )
8 Therefore he firs order condiion gives: = β 8 K 2 K = ( 8 β ) 2 2 poins: for subsiuing he expression for C ino he lifeime uiliy funcion 2 poins: for subsiuing G = K 2 in 2 poins: for geing U = =0 β u( K 2 K + ) correc 2 poins: for aking firs order condiion wih respec o K 2 poins: for solving he differeniaion problem correcly 2 poins: for geing he final answer K = ( 8 β ) 2 correc (c) (9 poins) The household s budge consrain is: C = G 2 K G + K + Subsiuing his ino he uiliy funcion of he represenaive agen gives: U = =0 β u(g 2 K G + K + ) Taking firs order condiions wih respec o G gives: 0 = u (G 2 K G K ) + β 2 G 2 K u (G 2 K G + K + ) In seady sae he argumens are he same, herefore: G 2 = β 2 K G = β2 K 2 2 poins: for geing he new expression for C correc (noe he subscrips of G) poin: for subsiuing C ino he lifeime uiliy funcion 2 poins: for aking firs order condiion wih respec o G 2 poins: for solving he differeniaion problem correcly poin: for realizing ha in seady sae, G is consan poin: for geing he final answer G = β2 K 2 correc 2
9 (d) (3 poins) This is less han he answer from par (a). I is because here is an exra cos o governmen spending now, in ha i mus be from savings. Because agens are impaien, his means ha i is less desirable. poin: for realizing ha he new governmen spending level is lower 02 poins: depending on he qualiy of he reasoning 3
10 Economics Honors Exam 2008 Soluions Quesion 8 (a) (6 poins) K = I δk = sy δk = sa()(k()) α (L()) α δk() k k = K K L L = sa()(k()) α δ n poin: for realizing ha K = I δk 2 poins: for geing he expression K = sa()(k()) α (L()) α δk() correc poin: for realizing ha k k = K K L L 2 poins: for geing he final answer correc (b) (6 poins) y = A()k() α In seady sae, i mus be ha y and k grow a he same rae, call i g. Therefore i mus be ha: A ( α)g = A i.e. he growh of A mus be consan. The growh of A is given by: A() A() = y() A() = k()α This mus be consan, i.e. k() mus be consan. However, i is no because if i were hen k k would be growing consanly over ime, which can be seen from par (a). poin: for acknowledging ha his model does have such a seady sae poin: for geing y = A()k() α correc poin: for realizing ha y and k mus grow a he same rae in seady sae
11 poin: for geing ( α)g = Ȧ A correc A() poin: for geing A() = k()α correc poin: for realizing ha he growh rae of A is consan (c) (9 poins) A() ( α)g = A() = k()β A() Therefore if he las par is consan hen k() grows a a rae β A() rae of A, which is consisen wih A() = ( α)g if ( α) = β. A() A() = k()β A() 2 poins: for geing correc 2 poins: for equaing his o ( α)g he growh A() A() is consan if k() grows a a rae β he 3 poins: for realizing ha growh rae of A 2 poins: for realizing ha his is saisfied if ( α) = β (d) (6 poins) Here, savings affec growh. I does no in he oher case. The more paien people are, he higher he opimal s will be. The usual Golden Rule does no depend on he ime preference. 2 poins: for realizing ha savings affec growh here, while i does no in he oher case 2 poins: for realizing ha he more paien people are, he higher he opimal s will be 2 poins: for realizing ha he usual Golden Rule does no depend on he ime preference (e) (3 poins) Learning by doing. 5
Graduate Macro Theory II: Notes on Neoclassical Growth Model
Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.
More informationChapter 7. Response of FirstOrder RL and RC Circuits
Chaper 7. esponse of FirsOrder L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
More informationInductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College  Physics 2426  Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
More informationPROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
More informationOptimal Investment and Consumption Decision of Family with Life Insurance
Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker
More informationRC (ResistorCapacitor) Circuits. AP Physics C
(ResisorCapacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
More information17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
More information11/6/2013. Chapter 14: Dynamic ADAS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic DS dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuingedge
More informationCircuit Types. () i( t) ( )
Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All
More informationAnswer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prinou should hae 1 quesions. Muliplechoice quesions may coninue on he ne column or page find all choices before making your selecion. The
More informationTwo Compartment Body Model and V d Terms by Jeff Stark
Two Comparmen Body Model and V d Terms by Jeff Sark In a onecomparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics  By his, we mean ha eliminaion is firs order and ha pharmacokineic
More informationNetwork Effects, Pricing Strategies, and Optimal Upgrade Time in Software Provision.
Nework Effecs, Pricing Sraegies, and Opimal Upgrade Time in Sofware Provision. YiNung Yang* Deparmen of Economics Uah Sae Universiy Logan, UT 84322353 April 3, 995 (curren version Feb, 996) JEL codes:
More informationDensity Dependence. births are a decreasing function of density b(n) and deaths are an increasing function of density d(n).
FW 662 Densiydependen populaion models In he previous lecure we considered densiy independen populaion models ha assumed ha birh and deah raes were consan and no a funcion of populaion size. Longerm
More informationWorking Paper No. 482. Net Intergenerational Transfers from an Increase in Social Security Benefits
Working Paper No. 482 Ne Inergeneraional Transfers from an Increase in Social Securiy Benefis By Li Gan Texas A&M and NBER Guan Gong Shanghai Universiy of Finance and Economics Michael Hurd RAND Corporaion
More informationStochastic Optimal Control Problem for Life Insurance
Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian
More informationChapter 10 Social Security 1
Chaper 0 Social Securiy 0. Inroducion A ypical social securiy sysem provides income during periods of unemploymen, illhealh or disabiliy, and financial suppor, in he form of pensions, o he reired. Alhough
More information1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,
Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..
More informationMorningstar Investor Return
Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion
More informationChapter 5. Aggregate Planning
Chaper 5 Aggregae Planning Supply Chain Planning Marix procuremen producion disribuion sales longerm Sraegic Nework Planning miderm shorerm Maerial Requiremens Planning Maser Planning Producion Planning
More informationOptimal Monetary Policy When LumpSum Taxes Are Unavailable: A Reconsideration of the Outcomes Under Commitment and Discretion*
Opimal Moneary Policy When LumpSum Taxes Are Unavailable: A Reconsideraion of he Oucomes Under Commimen and Discreion* Marin Ellison Dep of Economics Universiy of Warwick Covenry CV4 7AL UK m.ellison@warwick.ac.uk
More informationDuration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVAF38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
More informationAP Calculus AB 2013 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a missiondriven noforprofi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was
More informationRandom Walk in 1D. 3 possible paths x vs n. 5 For our random walk, we assume the probabilities p,q do not depend on time (n)  stationary
Random Walk in D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes
More informationThe Real Business Cycle paradigm. The RBC model emphasizes supply (technology) disturbances as the main source of
Prof. Harris Dellas Advanced Macroeconomics Winer 2001/01 The Real Business Cycle paradigm The RBC model emphasizes supply (echnology) disurbances as he main source of macroeconomic flucuaions in a world
More informationName: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling
Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: Solving Exponenial Equaions (The Mehod of Common Bases) Solving Exponenial Equaions (Using Logarihms)
More informationA OneSector Neoclassical Growth Model with Endogenous Retirement. By Kiminori Matsuyama. Final Manuscript. Abstract
A OneSecor Neoclassical Growh Model wih Endogenous Reiremen By Kiminori Masuyama Final Manuscrip Absrac This paper exends Diamond s OG model by allowing he agens o make he reiremen decision. Earning a
More informationcooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
More informationAppendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area workedou s o OddNumbered Eercises Do no read hese workedou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
More informationII.1. Debt reduction and fiscal multipliers. dbt da dpbal da dg. bal
Quarerly Repor on he Euro Area 3/202 II.. Deb reducion and fiscal mulipliers The deerioraion of public finances in he firs years of he crisis has led mos Member Saes o adop sizeable consolidaion packages.
More informationThe Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
More informationAnalysis of tax effects on consolidated household/government debts of a nation in a monetary union under classical dichotomy
MPRA Munich Personal RePEc Archive Analysis of ax effecs on consolidaed household/governmen debs of a naion in a moneary union under classical dichoomy Minseong Kim 8 April 016 Online a hps://mpra.ub.unimuenchen.de/71016/
More informationModule 4. Singlephase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Singlephase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
More informationAP Calculus AB 2010 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College
More informationINSTRUMENTS OF MONETARY POLICY*
Aricles INSTRUMENTS OF MONETARY POLICY* Bernardino Adão** Isabel Correia** Pedro Teles**. INTRODUCTION A classic quesion in moneary economics is wheher he ineres rae or he money supply is he beer insrumen
More informationChapter 2: Principles of steadystate converter analysis
Chaper 2 Principles of SeadySae Converer Analysis 2.1. Inroducion 2.2. Inducor volsecond balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer
More information4.2 Trigonometric Functions; The Unit Circle
4. Trigonomeric Funcions; The Uni Circle Secion 4. Noes Page A uni circle is a circle cenered a he origin wih a radius of. Is equaion is as shown in he drawing below. Here he leer represens an angle measure.
More informationThe Greek financial crisis: growing imbalances and sovereign spreads. Heather D. Gibson, Stephan G. Hall and George S. Tavlas
The Greek financial crisis: growing imbalances and sovereign spreads Heaher D. Gibson, Sephan G. Hall and George S. Tavlas The enry The enry of Greece ino he Eurozone in 2001 produced a dividend in he
More informationCHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
More informationCOMPLEMENTARY RELATIONSHIPS BETWEEN EDUCATION AND INNOVATION
Discussion Paper No. 731 COMPLEMENTARY RELATIONSHIPS BETWEEN EDUCATION AND INNOVATION Kasuhiko Hori and Kasunori Yamada February 2009 The Insiue of Social and Economic Research Osaka Universiy 61 Mihogaoka,
More informationAP Calculus BC 2010 Scoring Guidelines
AP Calculus BC Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board
More informationSteps for D.C Analysis of MOSFET Circuits
10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.
More informationWHAT ARE OPTION CONTRACTS?
WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be
More informationMonetary and Fiscal Policy Interactions with Debt Dynamics
Moneary and Fiscal Policy Ineracions wih Deb Dynamics Sefano Gnocchi and Luisa Lamberini Preliminary and Incomplee November, 22 Absrac We analyze he ineracion beween commied moneary and discreionary fiscal
More informationI. Basic Concepts (Ch. 14)
(Ch. 14) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing
More informationEfficient Subsidization of Human Capital Accumulation with Overlapping Generations and Endogenous Growth. Wolfram F. Richter and Christoph Braun
Efficien Subsidizaion of uman Capial Accumulaion wih Overlapping eneraions and Endogenous rowh by Wolfram F. Richer and Chrisoph Braun T Dormund niversiy April 29 Firs Draf o be presened a he Conference
More informationSignal Processing and Linear Systems I
Sanford Universiy Summer 214215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 1415, Gibbons
More informationWhy Did the Demand for Cash Decrease Recently in Korea?
Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in
More informationTHE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS
VII. THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS The mos imporan decisions for a firm's managemen are is invesmen decisions. While i is surely
More informationDebt Relief and Fiscal Sustainability for HIPCs *
Deb Relief and Fiscal Susainabiliy for HIPCs * Craig Burnside and Domenico Fanizza December 24 Absrac The enhanced HIPC iniiaive is disinguished from previous deb relief programs by is condiionaliy ha
More informationTable of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities
Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17
More informationFollow links Class Use and other Permissions. For more information, send to:
COPYRIGHT NOTICE: David A. Kendrick, P. Ruben Mercado, and Hans M. Amman: Compuaional Economics is published by Princeon Universiy Press and copyrighed, 2006, by Princeon Universiy Press. All righs reserved.
More informationTime Consistency in Portfolio Management
1 Time Consisency in Porfolio Managemen Traian A Pirvu Deparmen of Mahemaics and Saisics McMaser Universiy Torono, June 2010 The alk is based on join work wih Ivar Ekeland Time Consisency in Porfolio Managemen
More information9. Capacitor and Resistor Circuits
ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren
More informationA Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation
A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion
More informationMathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
More informationChapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr
Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i
More informationMarkit Excess Return Credit Indices Guide for price based indices
Marki Excess Reurn Credi Indices Guide for price based indices Sepember 2011 Marki Excess Reurn Credi Indices Guide for price based indices Conens Inroducion...3 Index Calculaion Mehodology...4 Semiannual
More informationTerm Structure of Prices of Asian Options
Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 111 Nojihigashi, Kusasu, Shiga 5258577, Japan Email:
More informationCRISES AND THE FLEXIBLE PRICE MONETARY MODEL. Sarantis Kalyvitis
CRISES AND THE FLEXIBLE PRICE MONETARY MODEL Saranis Kalyviis Currency Crises In fixed exchange rae regimes, counries rarely abandon he regime volunarily. In mos cases, raders (or speculaors) exchange
More informationReturn Calculation of U.S. Treasury Constant Maturity Indices
Reurn Calculaion of US Treasur Consan Mauri Indices Morningsar Mehodolog Paper Sepeber 30 008 008 Morningsar Inc All righs reserved The inforaion in his docuen is he proper of Morningsar Inc Reproducion
More informationUsing RCtime to Measure Resistance
Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a builin ADC (Analog o Digial Converer)
More informationWorking Paper Monetary aggregates, financial intermediate and the business cycle
econsor www.econsor.eu Der OpenAccessPublikaionsserver der ZBW LeibnizInformaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Hong, Hao Working
More informationTHE PRESSURE DERIVATIVE
Tom Aage Jelmer NTNU Dearmen of Peroleum Engineering and Alied Geohysics THE PRESSURE DERIVATIVE The ressure derivaive has imoran diagnosic roeries. I is also imoran for making ye curve analysis more reliable.
More informationDISCUSSION PAPER. Emissions Targets and the Real Business Cycle. Intensity Targets versus Caps or Taxes. Carolyn Fischer and Michael R.
DISCUSSION PAPER November 2009 RFF DP 0947 Emissions Targes and he Real Business Cycle Inensiy Targes versus Caps or Taxes Carolyn Fischer and Michael R. Springborn 66 P S. NW Washingon, DC 20036 2023285000
More informationChapter 4: Exponential and Logarithmic Functions
Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67  FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1  TRANSIENTS
EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67  FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1  RANIEN Uni conen 2 Undersand he ransien behaviour of resisorcapacior (R) and resisorinducor (RL) D circuis
More informationSmall Menu Costs and Large Business Cycles: An Extension of Mankiw Model *
Small enu Coss an Large Business Ccles: An Exension of ankiw oel * Hirana K Nah Deparmen of Economics an Inl. Business Sam Houson Sae Universi an ober Srecher Deparmen of General Business an Finance Sam
More informationFullwave rectification, bulk capacitor calculations Chris Basso January 2009
ullwave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal
More informationDYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS
DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper
More informationDifferential Equations and Linear Superposition
Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y
More informationReal Business Cycles Theory
Real Business Cycles Theory Research on economic flucuaions has progressed rapidly since Rober Lucas revived he profession s ineres in business cycle heory. Business cycle heory is he heory of he naure
More informationInternational Risk Sharing: Through Equity Diversification or Exchange Rate Hedging?
WP/09/38 Inernaional Risk Sharing: Through Equiy Diversificaion or Exchange Rae Hedging? Charles Engel and Akio Masumoo 2009 Inernaional Moneary Fund WP/09/38 IMF Working Paper Research Deparmen Inernaional
More informationOne dictionary: Native language  English/English  native language or English  English
Faculy of Social Sciences School of Business Corporae Finance Examinaion December 03 English Dae: Monday 09 December, 03 Time: 4 hours/ 9:003:00 Toal number of pages including he cover page: 5 Toal number
More informationDopamine, dobutamine, digitalis, and diuretics during intraaortic balloon support
Dopamine, dobuamine, digialis, and diureics during inraaoric balloon suppor Sephen Slogoff, M.D. n his presenaion, should like o discuss some conceps of drug herapy for inraaoric balloon paiens. Figure
More informationThe P/BROE Model Revisited. Jarrod Wilcox Wilcox Investment Inc & Thomas Philips Paradigm Asset Management
The /BROE Model Revisied Jarrod Wilcox Wilcox Invesmen Inc & Thomas hilips aradigm Asse Managemen Agenda Characerizing a good equiy model: Is virues and uses Saic vs. dynamic models The /BROE model:
More informationChapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m
Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m
More informationEstimating TimeVarying Equity Risk Premium The Japanese Stock Market 19802012
Norhfield Asia Research Seminar Hong Kong, November 19, 2013 Esimaing TimeVarying Equiy Risk Premium The Japanese Sock Marke 19802012 Ibboson Associaes Japan Presiden Kasunari Yamaguchi, PhD/CFA/CMA
More informationPresent Value Methodology
Presen Value Mehodology Econ 422 Invesmen, Capial & Finance Universiy of Washingon Eric Zivo Las updaed: April 11, 2010 Presen Value Concep Wealh in Fisher Model: W = Y 0 + Y 1 /(1+r) The consumer/producer
More informationDebt management and optimal fiscal policy with long bonds 1
Deb managemen and opimal fiscal policy wih long bonds Elisa Faraglia 2 Alber Marce 3 and Andrew Sco 4 Absrac We sudy Ramsey opimal fiscal policy under incomplee markes in he case where he governmen issues
More informationPrice elasticity of demand for crude oil: estimates for 23 countries
Price elasiciy of demand for crude oil: esimaes for 23 counries John C.B. Cooper Absrac This paper uses a muliple regression model derived from an adapaion of Nerlove s parial adjusmen model o esimae boh
More informationABSTRACT KEYWORDS. Term structure, duration, uncertain cash flow, variable rates of return JEL codes: C33, E43 1. INTRODUCTION
THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS BY FRANK DE JONG 1 AND JACCO WIELHOUWER ABSTRACT Variable rae savings accouns have wo main feaures. The ineres rae paid on he accoun is variable
More informationVerification Theorems for Models of Optimal Consumption and Investment with Retirement and Constrained Borrowing
MATHEMATICS OF OPERATIONS RESEARCH Vol. 36, No. 4, November 2, pp. 62 635 issn 364765X eissn 526547 364 62 hp://dx.doi.org/.287/moor..57 2 INFORMS Verificaion Theorems for Models of Opimal Consumpion
More informationIndividual Health Insurance April 30, 2008 Pages 167170
Individual Healh Insurance April 30, 2008 Pages 167170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve
More informationLectures # 5 and 6: The Prime Number Theorem.
Lecures # 5 and 6: The Prime Number Theorem Noah Snyder July 8, 22 Riemann s Argumen Riemann used his analyically coninued ζfuncion o skech an argumen which would give an acual formula for π( and sugges
More informationChapter 9 Bond Prices and Yield
Chaper 9 Bond Prices and Yield Deb Classes: Paymen ype A securiy obligaing issuer o pay ineress and principal o he holder on specified daes, Coupon rae or ineres rae, e.g. 4%, 5 3/4%, ec. Face, par value
More informationReal exchange rate variability in a twocountry business cycle model
Real exchange rae variabiliy in a wocounry business cycle model Håkon Trevoll, November 15, 211 Absrac Real exchange rae flucuaions have imporan implicaions for our undersanding of he sources and ransmission
More informationANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS
ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,
More informationInternational Journal of Supply and Operations Management
Inernaional Journal of Supply and Operaions Managemen IJSOM May 05, Volume, Issue, pp 5547 ISSNPrin: 859 ISSNOnline: 855 wwwijsomcom An EPQ Model wih Increasing Demand and Demand Dependen Producion
More informationTRADE, DEVELOPMENT AND CONVERGING GROWTH RATES Dynamic Gains From Trade Reconsidered *
TRAD, DVLOPMNT AND CONVRGING GROWTH RATS Dynamic Gains From Trade Reconsidered * Theo S. icher Deparmen of conomics Universiy of Washingon Seale, WA 98195 (206) 685 8082 e@u.washingon.edu ABSTRACT: Wihin
More informationLecture Note on the Real Exchange Rate
Lecure Noe on he Real Exchange Rae Barry W. Ickes Fall 2004 0.1 Inroducion The real exchange rae is he criical variable (along wih he rae of ineres) in deermining he capial accoun. As we shall see, his
More informationEducation & Human Resource Development
Educaion & Human Resource Developmen New Research Adminisraion Srucure Rerea June 23 & 24, 2006 Where is he Caribbean in Relaion o Oher Counries? Office of he Vice Presiden for Research and Compliance
More informationDifferential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.
Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given
More informationNewton s Laws of Motion
Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The
More informationChapter 2 Kinematics in One Dimension
Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how
More informationInterest Rates and the Market For New Light Vehicles
Federal Reserve Bank of New York Saff Repors Ineres Raes and he Marke For New Ligh Vehicles Adam Copeland George Hall Louis Maccini Saff Repor No. 741 Sepember 2015 This paper presens preliminary findings
More informationPremium Income of Indian Life Insurance Industry
Premium Income of Indian Life Insurance Indusry A Toal Facor Produciviy Approach Ram Praap Sinha* Subsequen o he passage of he Insurance Regulaory and Developmen Auhoriy (IRDA) Ac, 1999, he life insurance
More informationBALANCE OF PAYMENTS. First quarter 2008. Balance of payments
BALANCE OF PAYMENTS DATE: 20080530 PUBLISHER: Balance of Paymens and Financial Markes (BFM) Lena Finn + 46 8 506 944 09, lena.finn@scb.se Camilla Bergeling +46 8 506 942 06, camilla.bergeling@scb.se
More informationPlanning Demand and Supply in a Supply Chain. Forecasting and Aggregate Planning
Planning Demand and Supply in a Supply Chain Forecasing and Aggregae Planning 1 Learning Objecives Overview of forecasing Forecas errors Aggregae planning in he supply chain Managing demand Managing capaciy
More informationWorking Paper Social security systems, human capital, and growth in a small open economy
econsor www.econsor.eu Der OpenAccessPublikaionsserver der ZBW LeibnizInformaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Kaganovich, Michael;
More informationAnalogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar
Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 073807 Ifeachor
More information