Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

Size: px
Start display at page:

Download "Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613."

Transcription

1 Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised paymens are fixed, bond prices change in response o changes in he marke deermined required rae of reurn. For invesor's who hold bonds, he issue of how sensiive a bond's price is o changes in he required rae of reurn is imporan. here are four measures of bond price sensiiviy ha are commonly used. hey are Simple Mauriy, Macaulay Duraion (effecive mauri, Modified Duraion, and Convexiy. Each of hese provides a more exac descripion of how a bond price changes relaive o changes in he required rae of reurn. Mauriy Simple mauriy is jus he ime lef o mauriy on a bond. We generally hink of 5-year bonds or 0-year bonds. I is sraighforward and requires no calculaion. he longer he ime o mauriy he more sensiive a paricular bond is o changes in he required rae of reurn. Consider wo zero coupon bonds, each wih a face value of $,000. Bond A maures in 0 years and has a required rae of reurn of 0%. he price of Bond A is $376.89, where A = $,000 ( +.0 / ) 0 = $ Bond B has a mauriy of 5 years and also has a required rae of reurn of 0%. Is price is $63.9 or $,000 = $ / = B ( ) By convenion, zero coupon bonds are compounded on a semi -annual basis. Since almos all US bonds have semi-annual coupon paymens, his noe will always assume semi-annual compounding unless oherwise noed. his noe was wrien by Rober M. Conroy, rofessor of Business Adminisraion, Darden Graduae School of Business Adminisraion, Universiy of Virginia. Copyrigh 998 by he Universiy of Virginia Darden School Foundaion, Charloesville, VA. All righs reserved. o order copies, send an o No par of his publicaion may be reproduced, sored in a rerieval sysem, used in a spreadshee or ransmied in any form or by any means-elecronic, mechanical, phoocopying, recording or oherwise wihou he permission of he Darden School Foundaion. Rev. 7/0.

2 -- UVA-F-38 If he required rae of reurn for each bond was o increase by 00 basis poins o %, he prices would hen be $34.73 for Bond A and $ for Bond B. his ranslaes ino a -9.% change in price for Bond A and -4.6% for Bond B. Jus from he pricing formulaion, i is clear ha any change in ineres raes will have a much Figure. Comparison of 5-year and 0-year Bonds year 0-year greaer impac on Bond A han Bond B. his is reinforced in Figure, where he price curve for he 0-year bond (Bond A) is much seaper han ha for he 5-year bond (Bond B). hus, for zero coupon bonds simple mauriy can be used o compare price sensiiviy. Macaulay Duraion (Effecive Mauri Required Rae of Reurn he relaionship beween price and mauriy is no as clear when you consider non-zero coupon bonds. For a coupon-paying bond, many of he cash flows occur before he acual mauriy of he bond and he relaive iming of hese cash flows will affec he pricing of he bond. In order o deal wih his, Frederick Macaulay in 938 suggesed ha invesors use he effecive mauriy of a bond as a measure of ineres rae sensiiviy. He called his duraion and defined i as a value-weighed average of he iming of he cash flows. he easies way o see his is o use an example. Consider a six-year bond wih face value of $,000, and a 6.% coupon rae (semi-annual paymens). If he curren yield o mauriy is 0%, he value of he bond is found by discouning each of he semi-annual paymens. his is shown in Exhibi. Fredick Macaulay, Some heoreical roblems Suggesed by he Movemen of Ineres Raes, Bond Yields, and Sock rices in he Unied Saes since 856 (New York: Naional Bureau of Economic Research, 938).

3 -3- UVA-F-38 Exhibi Cash Flow res. Value Facor res. Value of Cash Flow $ $ , Macaulay Duraion akes he presen value of each paymen and divides i by he oal bond price,. By doing his, one has a percenage, w, of he oal bond value ha is received in each period,. w C ( + = he duraion or effecive mauriy for he bond could hen be esimaed by muliplying he weigh, w, imes he ime, and hen summing all of he weighed values, or Duraion = = C ( + = = w. his measure akes ino accoun he relaive iming of he cash flows. Calculaion of he Macaulay Duraion measure is fairly sraighforward bu can be somewha edious 3. Exhibi shows how a semi-annual duraion for he example shown above would be calculaed. 3 Excel offers a workshee funcion DURAION(.), which calculaes he Macaulay Duraion.

4 -4- UVA-F-38 Exhibi Cash Flow res. Value Facor res. Value of Cash Flow Weigh x weigh $ $ % % % % % % % % % % % 0.37, % Bond Value $ 87.7 Semi-Annual Duraion 0.04 he semi-annual duraion for his bond is 0.04 six-monh periods. We usually use annual duraion and we annualize he semi-annual duraion simply by dividing by (he number of six monh periods in a year). In his case, he annualized duraion would be years. Noe ha he Macaulay Duraion for a 5-year zero coupon bond is he same as he simple mauriy, 5.0 years. Hence, we can expec ha he original 6-year, 6.% coupon bond when ineres raes change o behave in a manner similar o a 5-year zero coupon bond, since heir effecive mauriy (Macaulay Duraion) is essenially he same. Modified Duraion If we wan a more direc measure of he relaionship beween changes in ineres raes and changes in bond prices, we can use Modified Duraion. Modified Duraion, D, is defined as he following D = y where is he bond price, is he change in bond price and y is he change in he required rae of reurn (yield o mauri. For hose wih a mah background, y is he firs derivaive of he bond price wih respec o yield o mauriy. he basic pricing formulaion for bonds is

5 -5- UVA-F-38 = C = + ( where C is he cash paymen received in ime period and y is he semi-annual yield o mauriy. aking he derivaive of wih respec oy, y = ( + C = ( +. Insering his ino he formula for Modified Duraion yields, D = C ( + ( + ) = y Rearranging he above slighly, D = ( + = C ( +. Comparing his o he definiion of Macaulay Duraion and using ha definiion we can wrie Modified Duraion as Modified Duraion = D = ( + Macaulay Duraion While i is easy calculae Modified Duraion once you have Macaulay Duraion he inerpreaions of he wo are quie differen. Macaulay Duraion is an average or effecive mauriy. Modified Duraion really measures how small changes in he yield o mauriy affec he price of he bond. In fac, from he definiion of Modified Duraion we can wrie he following relaionship: = D y or % change in bond price = - Modified Duraion imes he change in yield o mauriy. For example, he six-year 6.% coupon bond above had a yield o mauriy of 0% and a semi-annual Macaulay Duraion of 0.04 (5.007 annual Macaulay Duraion). he Modified Duraion of his bond is or on a semi-annual basis or = 4.77 years on an ( +.05)

6 -6- UVA-F-38 annual basis 4. Assuming ha he yield o mauriy of 0% increases by 5 basis poins o 0.5%, based on he Modified Duraion of 4.77 years he price of he bond should change by. he bond price should drop by.9% from $87.7 o $87.3 = D y = 4.77 (.5%) =.9% ($87.7*(-.09) = $87.3). he acual calculaed price a a yield o mauriy of 0.5% is $ Exhibi 3 shows he Modified Duraion price change and he acual calculaed price change for differen changes in yield o mauriy. Bond Daa Coupon = 6.% Mauriy= 6 years Face Value = $,000 Yield o Mauriy= 0% rice = $87.7 Modifed Duraion= Exhibi 3 New Yield o Mauriy Change in Yield -D*Change in Yield rediced rice Acual % change* Acual rice** Difference***.00%.00% -9.54% % %.75% -8.35% % %.50% -7.6% % %.5% -5.96% % %.00% -4.77% % % 0.75% -3.58% % % 0.50% -.39% % % 0.5% -.9% % % 0.00% 0.00% % % -0.5%.9% % % -0.50%.39% % % -0.75% 3.58% % % -.00% 4.77% % % -.5% 5.96% % % -.50% 7.6% % % -.75% 8.35% % % -.00% 9.54% % * Acual % change is based on he calculaed price relaive o he price of $87.7. ** Acual price is he calculaed price based on he yield o mauriy. *** Difference is Acual rice - rediced rice. Modified Duraion assumes ha he price changes are linear wih respec o changes in he yield o mauriy. From Exhibi 3, he rue relaionship beween he bond's price and he yield o mauriy is no linear. he Column wih he differences is always posiive and increases 4 If he original compounding basis on he bond was semi -annual, he Modified Duraion mus firs be calculaed on a semi-annual basis and hen annualized. You can no use he annual Macaulay Duraion o calculae he Modified Duraion.

7 -7- UVA-F-38 as we move away from a yield o mauriy of 0%. he acual relaionship beween he bond price and he yield o mauriy is shown in Figure. Figure. Bond rices 6-year, 6.% Coupon (paid semi-annuall Rae, Face value = $,000,600.00,400.00,00.00, Yield o Mauriy he curved line is he acual price curve. he sraigh line is he price relaionship using Modified Duraion. Everywhere he acual price curve is above he Modified Duraion relaionship. his is exacly wha we saw in Exhibi 3. he difference was always posiive, i.e., acual calculaed price was greaer han he new price using he Modified Duraion relaionship. In addiion, he percenage changes in price are no symmeric. he percenage decrease in price for a given increase in yield is always less han he percen increase for he same decrease in yield. his propery is refered o as convexiy. Noe ha he wo prices are quie close for small changes in he yield o mauriy bu he difference grows as he change in yield o mauriy becomes bigger. Convexiy. From Figure i is clear ha he Modified Duraion relaionship does no fully capure he rue relaionship beween bond prices and yield o mauriy. In order o more fully capure his, praciioners use Convexiy. he definiion of Convexiy is Convexiy= CV = ( Once again hose wih a mah background will recognize he las erm on he righ as he second derivaive of price wih respec o yield o mauriy. he acual definiion of Convexiy ha we can use is

8 -8- UVA-F-38 Convexiy= CV = = ( ( + = ( + ) C ( + y ) Exhibi 4 shows he calculaion of he semi-annual convexiy for he six-year 6.% coupon bond. Exhibi 4 Convexiy Cash Flow res. Value Facor res. Value of Cash Flow Weigh x( + ) weigh ( + $ $ % % % % % % % % % % %.58, % Bond Value $87.7 Semi-annual Convexiy 0.88 We can annualize he semi-annual convexiy of 0.88 by dividing 5 i by or 4. Here i would be 7.7. Convexiy is useful o praciioners in a number of ways. Firs i can be used in conjuncion wih duraion o ge a more accurae esimae of he percenage price change resuling from a change in he yield. he formula 6 is % rice = - Modified Duraion y + Convexiy ( 5 Convexiy is annualized by dividing he calculaed Convexiy by he number of paymens per year squared. 6 For hose wih a mah ben, his formula is based on using a aylor series expansion o approximae he value of he percenage change in price.

9 -9- UVA-F-38 Adding he convexiy adjusmen correcs for he fac ha Modified Duraion undersaes he rue bond price. For example, in Exhibi 3, a a yield of % he percenage price change using only Modified Duraion was -9.54%, while he acual was -9.0%. If we use he Convexiy value we jus calculaed, he prediced percenage price change would be % rice = (.0) (.0) = = his is -8.99%, which is much closer o he acual percenage price change of -9.0%. he pricing aspec of Convexiy is much less imporan now since mos people have access o calculaors and compuers ha can do he pricing. he more imporan use of convexiy is ha i provides insigh ino how a bond will reac o yield changes. Again from Exhibi 3 and Figure we see ha he price reacion o changes in yield is no symmeric. For a given change in yield, bond prices drop less for a given increase in yield and increase more for he same decreases in yield. he downside is less and he upside is more. his is clearly a desirable propery. he higher he Convexiy of a bond he more his is rue. hus, bonds wih high convexiy are more desirable. Summary Each of he price sensiiviy measures discussed in his noe is par of he everyday language and hinking of fixed income invesors. hey are relaive risk measures ha help invesmen professionals hink abou he risks hey face.

Hedging with Forwards and Futures

Hedging with Forwards and Futures Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buy-side of a forward/fuures

More information

YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.

YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment. . Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure

More information

Chapter 6 Interest Rates and Bond Valuation

Chapter 6 Interest Rates and Bond Valuation Chaper 6 Ineres Raes and Bond Valuaion Definiion and Descripion of Bonds Long-erm deb-loosely, bonds wih a mauriy of one year or more Shor-erm deb-less han a year o mauriy, also called unfunded deb Bond-sricly

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO Profi Tes Modelling in Life Assurance Using Spreadshees, par wo PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO Erik Alm Peer Millingon Profi Tes Modelling in Life Assurance Using Spreadshees,

More information

Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities

Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17

More information

FIN 472 Fixed-Income Securities Approximating Price Changes: From Duration to Convexity Professor Robert B.H. Hauswald Kogod School of Business, AU

FIN 472 Fixed-Income Securities Approximating Price Changes: From Duration to Convexity Professor Robert B.H. Hauswald Kogod School of Business, AU FIN 47 Fixed-Income Securiies Approximaing rice Changes: From Duraion o Convexiy rofessor Rober B.H. Hauswald Kogod School of Business, AU Bond rice Volailiy Consider only IR as a risk facor Longer M means

More information

Chapter 9 Bond Prices and Yield

Chapter 9 Bond Prices and Yield Chaper 9 Bond Prices and Yield Deb Classes: Paymen ype A securiy obligaing issuer o pay ineress and principal o he holder on specified daes, Coupon rae or ineres rae, e.g. 4%, 5 3/4%, ec. Face, par value

More information

Morningstar Investor Return

Morningstar Investor Return Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion

More information

BALANCE OF PAYMENTS. First quarter 2008. Balance of payments

BALANCE OF PAYMENTS. First quarter 2008. Balance of payments BALANCE OF PAYMENTS DATE: 2008-05-30 PUBLISHER: Balance of Paymens and Financial Markes (BFM) Lena Finn + 46 8 506 944 09, lena.finn@scb.se Camilla Bergeling +46 8 506 942 06, camilla.bergeling@scb.se

More information

Present Value Methodology

Present Value Methodology Presen Value Mehodology Econ 422 Invesmen, Capial & Finance Universiy of Washingon Eric Zivo Las updaed: April 11, 2010 Presen Value Concep Wealh in Fisher Model: W = Y 0 + Y 1 /(1+r) The consumer/producer

More information

Graphing the Von Bertalanffy Growth Equation

Graphing the Von Bertalanffy Growth Equation file: d:\b173-2013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and

More information

Risk Modelling of Collateralised Lending

Risk Modelling of Collateralised Lending Risk Modelling of Collaeralised Lending Dae: 4-11-2008 Number: 8/18 Inroducion This noe explains how i is possible o handle collaeralised lending wihin Risk Conroller. The approach draws on he faciliies

More information

Markit Excess Return Credit Indices Guide for price based indices

Markit Excess Return Credit Indices Guide for price based indices Marki Excess Reurn Credi Indices Guide for price based indices Sepember 2011 Marki Excess Reurn Credi Indices Guide for price based indices Conens Inroducion...3 Index Calculaion Mehodology...4 Semi-annual

More information

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion

More information

Equities: Positions and Portfolio Returns

Equities: Positions and Portfolio Returns Foundaions of Finance: Equiies: osiions and orfolio Reurns rof. Alex Shapiro Lecure oes 4b Equiies: osiions and orfolio Reurns I. Readings and Suggesed racice roblems II. Sock Transacions Involving Credi

More information

Convexity. Concepts and Buzzwords. Dollar Convexity Convexity. Curvature, Taylor series, Barbell, Bullet. Convexity 1

Convexity. Concepts and Buzzwords. Dollar Convexity Convexity. Curvature, Taylor series, Barbell, Bullet. Convexity 1 Deb Insrumens and Markes Professor Carpener Convexiy Conceps and Buzzwords Dollar Convexiy Convexiy Curvaure, Taylor series, Barbell, Bulle Convexiy Deb Insrumens and Markes Professor Carpener Readings

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion

More information

Chapter 6: Business Valuation (Income Approach)

Chapter 6: Business Valuation (Income Approach) Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he

More information

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES OPENGAMMA QUANTITATIVE RESEARCH Absrac. Exchange-raded ineres rae fuures and heir opions are described. The fuure opions include hose paying

More information

Chapter 8: Regression with Lagged Explanatory Variables

Chapter 8: Regression with Lagged Explanatory Variables Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One

More information

The yield curve, and spot and forward interest rates Moorad Choudhry

The yield curve, and spot and forward interest rates Moorad Choudhry he yield curve, and spo and forward ineres raes Moorad Choudhry In his primer we consider he zero-coupon or spo ineres rae and he forward rae. We also look a he yield curve. Invesors consider a bond yield

More information

Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.

Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya. Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, bouzaev@ya.ru Why principal componens are needed Objecives undersand he evidence of more han one

More information

Conceptually calculating what a 110 OTM call option should be worth if the present price of the stock is 100...

Conceptually calculating what a 110 OTM call option should be worth if the present price of the stock is 100... Normal (Gaussian) Disribuion Probabiliy De ensiy 0.5 0. 0.5 0. 0.05 0. 0.9 0.8 0.7 0.6? 0.5 0.4 0.3 0. 0. 0 3.6 5. 6.8 8.4 0.6 3. 4.8 6.4 8 The Black-Scholes Shl Ml Moel... pricing opions an calculaing

More information

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides 7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion

More information

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1 Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Individual Health Insurance April 30, 2008 Pages 167-170

Individual Health Insurance April 30, 2008 Pages 167-170 Individual Healh Insurance April 30, 2008 Pages 167-170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve

More information

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins) Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

More information

Option Put-Call Parity Relations When the Underlying Security Pays Dividends

Option Put-Call Parity Relations When the Underlying Security Pays Dividends Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 225-23 Opion Pu-all Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,

More information

The Greek financial crisis: growing imbalances and sovereign spreads. Heather D. Gibson, Stephan G. Hall and George S. Tavlas

The Greek financial crisis: growing imbalances and sovereign spreads. Heather D. Gibson, Stephan G. Hall and George S. Tavlas The Greek financial crisis: growing imbalances and sovereign spreads Heaher D. Gibson, Sephan G. Hall and George S. Tavlas The enry The enry of Greece ino he Eurozone in 2001 produced a dividend in he

More information

The Time Value of Money

The Time Value of Money THE TIME VALUE OF MONEY CALCULATING PRESENT AND FUTURE VALUES Fuure Value: FV = PV 0 ( + r) Presen Value: PV 0 = FV ------------------------------- ( + r) THE EFFECTS OF COMPOUNDING The effecs/benefis

More information

Economics 140A Hypothesis Testing in Regression Models

Economics 140A Hypothesis Testing in Regression Models Economics 140A Hypohesis Tesing in Regression Models While i is algebraically simple o work wih a populaion model wih a single varying regressor, mos populaion models have muliple varying regressors 1

More information

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer) Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

More information

Chapter 8 Copyright Henning Umland All Rights Reserved

Chapter 8 Copyright Henning Umland All Rights Reserved Chaper 8 Copyrigh 1997-2004 Henning Umland All Righs Reserved Rise, Se, Twiligh General Visibiliy For he planning of observaions, i is useful o know he imes during which a cerain body is above he horizon

More information

CALCULATION OF OMX TALLINN

CALCULATION OF OMX TALLINN CALCULATION OF OMX TALLINN CALCULATION OF OMX TALLINN 1. OMX Tallinn index...3 2. Terms in use...3 3. Comuaion rules of OMX Tallinn...3 3.1. Oening, real-ime and closing value of he Index...3 3.2. Index

More information

Return Calculation of U.S. Treasury Constant Maturity Indices

Return Calculation of U.S. Treasury Constant Maturity Indices Reurn Calculaion of US Treasur Consan Mauri Indices Morningsar Mehodolog Paper Sepeber 30 008 008 Morningsar Inc All righs reserved The inforaion in his docuen is he proper of Morningsar Inc Reproducion

More information

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

More information

Lecture Note on the Real Exchange Rate

Lecture Note on the Real Exchange Rate Lecure Noe on he Real Exchange Rae Barry W. Ickes Fall 2004 0.1 Inroducion The real exchange rae is he criical variable (along wih he rae of ineres) in deermining he capial accoun. As we shall see, his

More information

I. Basic Concepts (Ch. 1-4)

I. Basic Concepts (Ch. 1-4) (Ch. 1-4) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing

More information

1 HALF-LIFE EQUATIONS

1 HALF-LIFE EQUATIONS R.L. Hanna Page HALF-LIFE EQUATIONS The basic equaion ; he saring poin ; : wrien for ime: x / where fracion of original maerial and / number of half-lives, and / log / o calculae he age (# ears): age (half-life)

More information

Newton's second law in action

Newton's second law in action Newon's second law in acion In many cases, he naure of he force acing on a body is known I migh depend on ime, posiion, velociy, or some combinaion of hese, bu is dependence is known from experimen In

More information

USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES

USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES Mehme Nuri GÖMLEKSİZ Absrac Using educaion echnology in classes helps eachers realize a beer and more effecive learning. In his sudy 150 English eachers were

More information

2.5 Life tables, force of mortality and standard life insurance products

2.5 Life tables, force of mortality and standard life insurance products Soluions 5 BS4a Acuarial Science Oford MT 212 33 2.5 Life ables, force of moraliy and sandard life insurance producs 1. (i) n m q represens he probabiliy of deah of a life currenly aged beween ages + n

More information

Pricing Fixed-Income Derivaives wih he Forward-Risk Adjused Measure Jesper Lund Deparmen of Finance he Aarhus School of Business DK-8 Aarhus V, Denmark E-mail: jel@hha.dk Homepage: www.hha.dk/~jel/ Firs

More information

ABSTRACT KEYWORDS. Term structure, duration, uncertain cash flow, variable rates of return JEL codes: C33, E43 1. INTRODUCTION

ABSTRACT KEYWORDS. Term structure, duration, uncertain cash flow, variable rates of return JEL codes: C33, E43 1. INTRODUCTION THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS BY FRANK DE JONG 1 AND JACCO WIELHOUWER ABSTRACT Variable rae savings accouns have wo main feaures. The ineres rae paid on he accoun is variable

More information

Working Paper No. 482. Net Intergenerational Transfers from an Increase in Social Security Benefits

Working Paper No. 482. Net Intergenerational Transfers from an Increase in Social Security Benefits Working Paper No. 482 Ne Inergeneraional Transfers from an Increase in Social Securiy Benefis By Li Gan Texas A&M and NBER Guan Gong Shanghai Universiy of Finance and Economics Michael Hurd RAND Corporaion

More information

BALANCE OF PAYMENTS AND FINANCIAL MA REPORT 2015. All officiell statistik finns på: www.scb.se Statistikservice: tfn 08-506 948 01

BALANCE OF PAYMENTS AND FINANCIAL MA REPORT 2015. All officiell statistik finns på: www.scb.se Statistikservice: tfn 08-506 948 01 RKET BALANCE OF PAYMENTS AND FINANCIAL MA REPORT 2015 All officiell saisik finns på: www.scb.se Saisikservice: fn 08-506 948 01 All official saisics can be found a: www.scb.se Saisics service, phone +46

More information

Forecasting Sales: A Model and Some Evidence from the Retail Industry. Russell Lundholm Sarah McVay Taylor Randall

Forecasting Sales: A Model and Some Evidence from the Retail Industry. Russell Lundholm Sarah McVay Taylor Randall Forecasing Sales: A odel and Some Evidence from he eail Indusry ussell Lundholm Sarah cvay aylor andall Why forecas financial saemens? Seems obvious, bu wo common criicisms: Who cares, can we can look

More information

Indexing Executive Stock Options Relatively

Indexing Executive Stock Options Relatively Indexing Execuive Sock Opions Relaively Jin-Chuan Duan and Jason Wei Joseph L. Roman School of Managemen Universiy of Torono 105 S. George Sree Torono, Onario Canada, M5S 3E6 jcduan@roman.uorono.ca wei@roman.uorono.ca

More information

ACTUARIAL FUNCTIONS 1_05

ACTUARIAL FUNCTIONS 1_05 ACTUARIAL FUNCTIONS _05 User Guide for MS Office 2007 or laer CONTENT Inroducion... 3 2 Insallaion procedure... 3 3 Demo Version and Acivaion... 5 4 Using formulas and synax... 7 5 Using he help... 6 Noaion...

More information

Graduate Macro Theory II: Notes on Neoclassical Growth Model

Graduate Macro Theory II: Notes on Neoclassical Growth Model Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.

More information

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper

More information

Inductance and Transient Circuits

Inductance and Transient Circuits Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

More information

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

More information

2.6 Limits at Infinity, Horizontal Asymptotes Math 1271, TA: Amy DeCelles. 1. Overview. 2. Examples. Outline: 1. Definition of limits at infinity

2.6 Limits at Infinity, Horizontal Asymptotes Math 1271, TA: Amy DeCelles. 1. Overview. 2. Examples. Outline: 1. Definition of limits at infinity .6 Limis a Infiniy, Horizonal Asympoes Mah 7, TA: Amy DeCelles. Overview Ouline:. Definiion of is a infiniy. Definiion of horizonal asympoe 3. Theorem abou raional powers of. Infinie is a infiniy This

More information

Why Did the Demand for Cash Decrease Recently in Korea?

Why Did the Demand for Cash Decrease Recently in Korea? Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in

More information

Research. Michigan. Center. Retirement. Behavioral Effects of Social Security Policies on Benefit Claiming, Retirement and Saving.

Research. Michigan. Center. Retirement. Behavioral Effects of Social Security Policies on Benefit Claiming, Retirement and Saving. Michigan Universiy of Reiremen Research Cener Working Paper WP 2012-263 Behavioral Effecs of Social Securiy Policies on Benefi Claiming, Reiremen and Saving Alan L. Gusman and Thomas L. Seinmeier M R R

More information

The U.S. Treasury Yield Curve: 1961 to the Present

The U.S. Treasury Yield Curve: 1961 to the Present Finance and Economics Discussion Series Divisions of Research & Saisics and Moneary Affairs Federal Reserve Board, Washingon, D.C. The U.S. Treasury Yield Curve: 1961 o he Presen Refe S. Gurkaynak, Brian

More information

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay 324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find

More information

THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS

THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS VII. THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS The mos imporan decisions for a firm's managemen are is invesmen decisions. While i is surely

More information

Chabot College Physics Lab RC Circuits Scott Hildreth

Chabot College Physics Lab RC Circuits Scott Hildreth Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard

More information

A Mathematical Description of MOSFET Behavior

A Mathematical Description of MOSFET Behavior 10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical

More information

Foreign Exchange and Quantos

Foreign Exchange and Quantos IEOR E4707: Financial Engineering: Coninuous-Time Models Fall 2010 c 2010 by Marin Haugh Foreign Exchange and Quanos These noes consider foreign exchange markes and he pricing of derivaive securiies in

More information

Measuring macroeconomic volatility Applications to export revenue data, 1970-2005

Measuring macroeconomic volatility Applications to export revenue data, 1970-2005 FONDATION POUR LES ETUDES ET RERS LE DEVELOPPEMENT INTERNATIONAL Measuring macroeconomic volailiy Applicaions o expor revenue daa, 1970-005 by Joël Cariolle Policy brief no. 47 March 01 The FERDI is a

More information

CLASSIFICATION OF REINSURANCE IN LIFE INSURANCE

CLASSIFICATION OF REINSURANCE IN LIFE INSURANCE CLASSIFICATION OF REINSURANCE IN LIFE INSURANCE Kaarína Sakálová 1. Classificaions of reinsurance There are many differen ways in which reinsurance may be classified or disinguished. We will discuss briefly

More information

CVA calculation for CDS on super senior ABS CDO

CVA calculation for CDS on super senior ABS CDO MPRA Munich Personal RePEc Archive CVA calculaion for CDS on super senior AS CDO Hui Li Augus 28 Online a hp://mpra.ub.uni-muenchen.de/17945/ MPRA Paper No. 17945, posed 19. Ocober 29 13:33 UC CVA calculaion

More information

Entropy: From the Boltzmann equation to the Maxwell Boltzmann distribution

Entropy: From the Boltzmann equation to the Maxwell Boltzmann distribution Enropy: From he Bolzmann equaion o he Maxwell Bolzmann disribuion A formula o relae enropy o probabiliy Ofen i is a lo more useful o hink abou enropy in erms of he probabiliy wih which differen saes are

More information

1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,

1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t, Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..

More information

4. International Parity Conditions

4. International Parity Conditions 4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency

More information

Nikkei Stock Average Volatility Index Real-time Version Index Guidebook

Nikkei Stock Average Volatility Index Real-time Version Index Guidebook Nikkei Sock Average Volailiy Index Real-ime Version Index Guidebook Nikkei Inc. Wih he modificaion of he mehodology of he Nikkei Sock Average Volailiy Index as Nikkei Inc. (Nikkei) sars calculaing and

More information

The Grantor Retained Annuity Trust (GRAT)

The Grantor Retained Annuity Trust (GRAT) WEALTH ADVISORY Esae Planning Sraegies for closely-held, family businesses The Granor Reained Annuiy Trus (GRAT) An efficien wealh ransfer sraegy, paricularly in a low ineres rae environmen Family business

More information

Life insurance cash flows with policyholder behaviour

Life insurance cash flows with policyholder behaviour Life insurance cash flows wih policyholder behaviour Krisian Buchard,,1 & Thomas Møller, Deparmen of Mahemaical Sciences, Universiy of Copenhagen Universiesparken 5, DK-2100 Copenhagen Ø, Denmark PFA Pension,

More information

Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Solutions Question 5 Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

Total factor productivity growth in the Canadian life insurance industry: 1979-1989

Total factor productivity growth in the Canadian life insurance industry: 1979-1989 Toal facor produciviy growh in he Canadian life insurance indusry: 1979-1989 J E F F R E Y I. B E R N S T E I N Carleon Universiy and Naional Bureau of Economic Research 1. Inroducion Produciviy growh

More information

WHAT ARE OPTION CONTRACTS?

WHAT ARE OPTION CONTRACTS? WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be

More information

Chapter 7. Response of First-Order RL and RC Circuits

Chapter 7. Response of First-Order RL and RC Circuits Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

More information

SPECIAL REPORT May 4, Shifting Drivers of Inflation Canada versus the U.S.

SPECIAL REPORT May 4, Shifting Drivers of Inflation Canada versus the U.S. Paul Ferley Assisan Chief Economis 416-974-7231 paul.ferley@rbc.com Nahan Janzen Economis 416-974-0579 nahan.janzen@rbc.com SPECIAL REPORT May 4, 2010 Shifing Drivers of Inflaion Canada versus he U.S.

More information

FORWARD AND FUTURES CONTRACTS

FORWARD AND FUTURES CONTRACTS Page1 C H A P T E R 2 FORWARD AND FUTURES CONTRACTS 2.1 INTRODUCTION The main purpose of forward and fuures conracs is he managemen of risk. The exposure o risk as a resul of ransacing in he spo marke

More information

Price elasticity of demand for crude oil: estimates for 23 countries

Price elasticity of demand for crude oil: estimates for 23 countries Price elasiciy of demand for crude oil: esimaes for 23 counries John C.B. Cooper Absrac This paper uses a muliple regression model derived from an adapaion of Nerlove s parial adjusmen model o esimae boh

More information

Default Risk in Equity Returns

Default Risk in Equity Returns Defaul Risk in Equiy Reurns MRI VSSLOU and YUHNG XING * BSTRCT This is he firs sudy ha uses Meron s (1974) opion pricing model o compue defaul measures for individual firms and assess he effec of defaul

More information

Making Use of Gate Charge Information in MOSFET and IGBT Data Sheets

Making Use of Gate Charge Information in MOSFET and IGBT Data Sheets Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have

More information

Does Option Trading Have a Pervasive Impact on Underlying Stock Prices? *

Does Option Trading Have a Pervasive Impact on Underlying Stock Prices? * Does Opion Trading Have a Pervasive Impac on Underlying Sock Prices? * Neil D. Pearson Universiy of Illinois a Urbana-Champaign Allen M. Poeshman Universiy of Illinois a Urbana-Champaign Joshua Whie Universiy

More information

Rotational Inertia of a Point Mass

Rotational Inertia of a Point Mass Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha

More information

Chapter 1.6 Financial Management

Chapter 1.6 Financial Management Chaper 1.6 Financial Managemen Par I: Objecive ype quesions and answers 1. Simple pay back period is equal o: a) Raio of Firs cos/ne yearly savings b) Raio of Annual gross cash flow/capial cos n c) = (1

More information

Factors Affecting Initial Enrollment Intensity: Part-Time versus Full-Time Enrollment

Factors Affecting Initial Enrollment Intensity: Part-Time versus Full-Time Enrollment acors Affecing Iniial Enrollmen Inensiy: ar-time versus ull-time Enrollmen By Leslie S. Sraon Associae rofessor Dennis M. O Toole Associae rofessor James N. Wezel rofessor Deparmen of Economics Virginia

More information

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)

More information

The option pricing framework

The option pricing framework Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.

More information

Monetary Policy & Real Estate Investment Trusts *

Monetary Policy & Real Estate Investment Trusts * Moneary Policy & Real Esae Invesmen Truss * Don Bredin, Universiy College Dublin, Gerard O Reilly, Cenral Bank and Financial Services Auhoriy of Ireland & Simon Sevenson, Cass Business School, Ciy Universiy

More information

Credit Index Options: the no-armageddon pricing measure and the role of correlation after the subprime crisis

Credit Index Options: the no-armageddon pricing measure and the role of correlation after the subprime crisis Second Conference on The Mahemaics of Credi Risk, Princeon May 23-24, 2008 Credi Index Opions: he no-armageddon pricing measure and he role of correlaion afer he subprime crisis Damiano Brigo - Join work

More information

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The

More information

Lecture III: Finish Discounted Value Formulation

Lecture III: Finish Discounted Value Formulation Lecure III: Finish Discouned Value Formulaion I. Inernal Rae of Reurn A. Formally defined: Inernal Rae of Reurn is ha ineres rae which reduces he ne presen value of an invesmen o zero.. Finding he inernal

More information

The Economic Value of Medical Research

The Economic Value of Medical Research The Economic Value of Medical Research Kevin M. Murphy Rober Topel Universiy of Chicago Universiy of Chicago March 1998 Revised Sepember, 1999 Absrac Basic research is a public good, for which social reurns

More information

Diagnostic Examination

Diagnostic Examination Diagnosic Examinaion TOPIC XV: ENGINEERING ECONOMICS TIME LIMIT: 45 MINUTES 1. Approximaely how many years will i ake o double an invesmen a a 6% effecive annual rae? (A) 10 yr (B) 12 yr (C) 15 yr (D)

More information

Term Structure of Prices of Asian Options

Term Structure of Prices of Asian Options Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:

More information

Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m

Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m

More information

Real Return Bonds, Inflation Expectations, and the Break-Even Inflation Rate Ian Christensen, Frédéric Dion, and Christopher Reid

Real Return Bonds, Inflation Expectations, and the Break-Even Inflation Rate Ian Christensen, Frédéric Dion, and Christopher Reid Bank of Canada Banque du Canada Working Paper 2004-43 / Documen de ravail 2004-43 Real Reurn Bonds, Inflaion Expecaions, and he Break-Even Inflaion Rae by Ian Chrisensen, Frédéric Dion, and Chrisopher

More information

Fifth Quantitative Impact Study of Solvency II (QIS 5) National guidance on valuation of technical provisions for German SLT health insurance

Fifth Quantitative Impact Study of Solvency II (QIS 5) National guidance on valuation of technical provisions for German SLT health insurance Fifh Quaniaive Impac Sudy of Solvency II (QIS 5) Naional guidance on valuaion of echnical provisions for German SLT healh insurance Conens 1 Inroducion... 2 2 Calculaion of bes-esimae provisions... 3 2.1

More information

1. Explain why the theory of purchasing power parity is often referred to as the law of one price.

1. Explain why the theory of purchasing power parity is often referred to as the law of one price. Chaper Review Quesions. xplain why he heory of purchasing power pariy is ofen referred o as he law of one price. urchasing ower ariy () is referred o as he law of one price because he deerminaion of he

More information

FUTURES AND OPTIONS. Professor Craig Pirrong Spring, 2007

FUTURES AND OPTIONS. Professor Craig Pirrong Spring, 2007 FUTURES AND OPTIONS Professor Craig Pirrong Spring, 2007 Basics of Forwards and Fuures A forward conrac is an agreemen beween a buyer and a seller o ransfer ownership of some asse or commodiy ( he underlying

More information