# Chapter 7. Response of First-Order RL and RC Circuits

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural esponses 7.5. equenial wiching 7.6. Unbounded esponse 7.7. The Inegraing Amplifier 1

2 7.3 The ep esponse of L and C Circuis Finding he currens and volages in firs-order L or C circuis when eiher dc volage or curren sources are suddenly applied. The ep esponse of an L Circui The circui is shown in Fig Energy sored in he inducor a he ime he swich is closed is given in erms of a nonzero iniial curren i(). The ask is o find he expressions for he curren in he circui and for he volage across he inducor afer he swich has been closed. We derive he differenial equaion ha describes he circui and we solve he equaion. 2

3 Afer he swich has been closed, Kirchhoff s volage law requires ha di = i + L (7.29) d which can be solved for he curren by separaing he variables i and, hen inegraing. The firs sep is o solve Eq. (7.29) for di d : di d = i + = i (7.3) L L Nex, we muliply boh sides by d. di i = d (7.31) L We now separae he variables in Eq. (7.32) o ge di = d i ( / ) L and hen inegrae boh sides. Using variables for he inegraion, we obain x and (7.32) y as 3

4 = ) ( ) / ( i I dy L x dx (7.33) where I is he curren a = and ) ( i is he curren a any >. Therefore L I i = ) / ( ) / ( ) ( ln (7.34) from which L e I i ) / ( ) / ( ) / ( ) ( = or L e I i ) / ( ) ( + = (7.35) When he iniial energy in he inducor is zero, I is zero. Thus eq. (7.35) reduces o 4

5 i( ) ( / L) = e (7.36) Eq. (7.36) indicaes ha afer he swich has been closed, he curren increases exponenially from zero o a final value /. The ime consan of he circui, L /, deermines he rae of increase. One ime consan afer he swich has been closed, he curren will have reached approximaely 63% of is final value, or i( τ ) = e (7.37) If he curren were o coninue o increase a is iniial rae, i would reach is final value a = τ ; ha is because di 1 / τ / τ = e = e (7.38) d τ L he iniial rae a which i () increases is di d ( ) = (7.39) L 5

6 If he curren were o coninue o increase a his rae, he expression for i would be i = (7.4) L from which, a = τ, i L = = (7.41) L Equaions (7.36) and (7.4) are ploed in Fig The values given by Eqs. (7.37) and (7.41) are also shown in his figure. The volage across an inducor is + (7.35), for, L di d, so from Eq. v L ( / L) ( I ) e ( / L) = L I e = (7.42) The volage across he inducor is zero before he swich is closed. Eq. (7.42) indicaes ha he inducor volage jumps o I a he insan he swich is closed and hen decays exponenially o zero. 6

7 Does he value of v a + = makes sense? Because he iniial curren is I and he inducor prevens an insananeous change in curren, he curren is I in he insan afer he swich has been closed. The volage drop across he resisor is I, and he volage impressed across he inducor is he source volage minus he volage drop, ha is, I. When he iniial inducor curren is zero, Eq. (7.42) simplifies o v ( / L) = e (7.43) If he iniial curren is zero, he volage across he inducor jumps o. We also expec he inducor volage o approach zero as increases, because he curren in he circui is approaching he consan value of. 7

8 Fig shows he plo of Eq. (7.43) and he relaionship beween he ime consan and he iniial rae a which he inducor volage is decreasing. If here is an iniial curren in he inducor, Eq. (7.35) gives he soluion for i. The algebraic sign of I is posiive if he iniial curren is in he same direcion as ; oherwise, I carries a negaive sign. i Example 7.5 The swich shown in Fig has been in posiion a long ime. A =, he swich moves from a o b. The swich is a make-before-break ype; so, here is no inerrupion of curren hrough he inducor. a) Find he expression i () for b) Wha is he iniial volage across he inducor jus afer he swich has been moved o posiion b? c) Does he iniial volage make sense in erms of circui behavior? d) How many milliseconds afer he swich has been moved does he inducor volage equal 24? e) Plo boh i () and v () versus. 8

9 We can also describe he volage v () across he inducor direcly, no jus in erms of he circui curren. We begin by noing ha he volage across he resisor is he difference beween he source volage and he inducor volage. We wrie v( ) i( ) = (7.44) where is a consan. Differeniaing boh sides wih respec o ime yields di d dv = 1 (7.45) d Muliply each side of Eq. (7.45) by he inducance L. v L dv = (7.46) d Puing Eq. (7.46) ino sandard form yields 9

10 dv d + v L = (7.47) erify ha he soluion o Eq. (7.47) is idenical o ha given in Eq. (7.42). v L ( / L) ( I ) e ( / L) = L I e = (7.42) A his poin, a general observaion abou he sep response of an L circui is perinen. When we derived he differenial equaion for he inducor curren, we obained Eq. (7.29). We now di rewrie Eq. (7.29) = i + L as d di + i = (7.48) d L L Observe ha Eqs. (7.47) and (7.48) have he same form. pecifically, each equaes he sum of he firs derivaive of he variable and a consan imes he variable o a consan value. 1

11 In (7.47), he consan on he righ-hand side is zero; hence his equaion akes on he same form as he naural response equaions. In boh (7.47) and (7.48), he consan muliplying he dependen variable is he reciprocal of he ime consan, 1 ha is, =. L τ We encouner a similar siuaion in he derivaions for he sep response of an C circui. 11

12 The ep esponse of an C Circui We can find he sep response of a firs-order C circui by analyzing he circui shown in Fig For mahemaical convenience, we choose he Noron equivalen of he nework conneced o he equivalen capacior. umming he currens away from he op node in Fig generaes he differenial equaion Division by C gives dv d v + I (7.49) C C C = 12

13 dv d vc I + (7.5) C C C = Comparing Eq. (7.5) wih Eq. (7.48) di d + i = (7.48) L L reveals ha he form of he soluion for v C is he same as ha for he curren in he inducive circui, namely, Eq. (7.35). ( / L) i( ) = + I e (7.35) Therefore, by simply subsiuing he appropriae variables and coefficiens, we can wrie he soluion for v C direcly. The ranslaion requires ha I replace C replace L 1 replace replace I. We ge / C ( I ) e, vc = I + (7.51) 13

14 A similar derivaion for he curren in he capacior yields he differenial equaion di d 1 + i C = (7.52) Eq. (7.52) has he same form as Eq. (7.47) dv + v = (7.47) d L hence he soluion for i is obained by using he same ranslaions used for he soluion of Eq. (7.5). Thus i = I + / C e, (7.53) where is he iniial value for v C, he volage across he capacior. Le s see if he soluions for he C circui make sense in erms of known circui behavior. 14

15 From Eq. (7.51), noe ha he iniial volage across he capacior is, he final volage across he capacior is, and he ime consan of he circui is C. I Also noe ha he soluion for v C is valid for. These observaions are consisen wih he behavior of a capacior in parallel wih a resisor when driven by a consan curren source. Equaion (7.53) predics ha he curren in he capacior + a = is I. This predicion makes sense because he capacior volage canno change insananeously, and herefore he iniial curren in he resisor is. The capacior branch curren changes insananeously + from zero a = o I a =. The capacior curren is zero a =. Also noe ha he final value of v = I. Example 7.6 The swich in he circui shown in Fig has been in posiion 1 for a long ime. A =, he swich moves o posiion 2. Find a) v ( ) for + b) i ( ) for 15

16 7.4 A General oluion for ep and Naural esponse The general approach o finding eiher he naural response of he sep response of he firs-order L and C circuis shown in Fig is based on heir differenial equaions being he same. To generalize he soluion of hese four possible circuis, we le x () represen he unknown quaniy, giving x () four possible values. I can represen he curren or volage a he erminals of an inducor or he curren or volage a he erminals of a capacior. From he previous eqs. (7.47), (7.48), (7.5), and (7.52), we know ha he differenial equaion describing any one of he four circuis in Fig. (7.24) akes he form dx x x + = K (7.54) τ where he value of he consan K can be zero. 16

17 Because he sources in he circui are consan volages and/or currens, he final value of x will be consan; ha is, he final value mus saisfy (7.54), and, when x reaches is final value, he derivaive dx d mus be zero. Hence x f = Kτ (7.55) where x f represens he final value of he variable. We solve (7.54) by separaing he variables, beginning by solving for he firs derivaive: dx d ( x Kτ ) ( x x f ) x = + K = = (7.56) τ τ τ In wriing (7.56), we used (7.55) o subsiue K τ. We now muliply boh sides of (7.56) by divide by x x f o obain dx 1 = d x x τ f x f d for and (7.57) Inegrae (7.57). To obain as general a soluion as possible, we use ime as he lower limi and as he upper limi. 17

18 Time corresponds o he ime of he swiching or oher change. Previously we assumed ha =, bu his change allows he swiching o ake place a any ime. Using u and v as symbols of inegraion, we ge x( ) du x 1 = x( ) u f τ dv (7.58) Carrying ou he inegraion called for in (7.58) gives 18

19 x( ) f ( ) / τ [ x( ) X ] e = x + (7.59) f The significance of his equaion is he unknown variable as a = funcion of ime he final value of he variable he iniial [ ime of swiching] ime consan + value of he value of he variable he final variable e (7.6) In many cases, he ime of swiching - - is zero. 19

20 When compuing he sep and naural response of circuis, follow hese seps: 1. Idenify he variable of ineres for he circui. For C circuis, i is mos convenien o choose he capaciive volage; for L circuis, i is bes o choose he inducive curren. 2. Deermine he iniial value of he variable, which is is value a. Noe ha if we choose capaciive volage or inducive curren as variable of ineres, i is no necessary o disinguish beween + = and =. This is because hey boh are coninuous variables. If we choose anoher variable, we need o remember ha is iniial + value is defined a. = 3. Calculae he final value of he variable, which is he value as. 4. Calculae he ime consan for he circui. Wih hese quaniies we can use Eq. (7.6) o produce an equaion describing he variable of ineres as a funcion of ime. 2

21 21

### Circuit Types. () i( t) ( )

Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All

### RC (Resistor-Capacitor) Circuits. AP Physics C

(Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED

### Inductance and Transient Circuits

Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

### Capacitors and inductors

Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1 - TRANSIENTS

EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67 - FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1 - RANIEN Uni conen 2 Undersand he ransien behaviour of resisor-capacior (R) and resisor-inducor (RL) D circuis

### Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,

### Differential Equations and Linear Superposition

Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

### Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

### 4kq 2. D) south A) F B) 2F C) 4F D) 8F E) 16F

efore you begin: Use black pencil. Wrie and bubble your SU ID Number a boom lef. Fill bubbles fully and erase cleanly if you wish o change! 20 Quesions, each quesion is 10 poins. Each quesion has a mos

### 9. Capacitor and Resistor Circuits

ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren

### RC Circuit and Time Constant

ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisor-capacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he

### Chabot College Physics Lab RC Circuits Scott Hildreth

Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard

### Chapter 2: Principles of steady-state converter analysis

Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

### CHARGE AND DISCHARGE OF A CAPACITOR

REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

### Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1

Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

### Basic Circuit Elements - Prof J R Lucas

Basic Circui Elemens - Prof J ucas An elecrical circui is an inerconnecion of elecrical circui elemens. These circui elemens can be caegorized ino wo ypes, namely acive elemens and passive elemens. Some

### Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur

Module 3 - & -C Transiens esson 0 Sudy of DC ransiens in - and -C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series

### 6.003 Homework #4 Solutions

6.3 Homewk #4 Soluion Problem. Laplace Tranfm Deermine he Laplace ranfm (including he region of convergence) of each of he following ignal: a. x () = e 2(3) u( 3) X = e 3 2 ROC: Re() > 2 X () = x ()e d

### AP Calculus AB 2013 Scoring Guidelines

AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was

### RC, RL and RLC circuits

Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

### Brown University PHYS 0060 INDUCTANCE

Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide INTODUCTION INDUCTANCE Anyone who has ever grabbed an auomobile spark-plug wire a he wrong place, wih he engine running, has an appreciaion

### Physics 111 Fall 2007 Electric Currents and DC Circuits

Physics 111 Fall 007 Elecric Currens and DC Circuis 1 Wha is he average curren when all he sodium channels on a 100 µm pach of muscle membrane open ogeher for 1 ms? Assume a densiy of 0 sodium channels

### 4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay

324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find

### 2 Electric Circuits Concepts Durham

Chaper 3 - Mehods Chaper 3 - Mehods... 3. nroducion... 2 3.2 Elecrical laws... 2 3.2. Definiions... 2 3.2.2 Kirchhoff... 2 3.2.3 Faraday... 3 3.2.4 Conservaion... 3 3.2.5 Power... 3 3.2.6 Complee... 4

### A Mathematical Description of MOSFET Behavior

10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical

### Math 201 Lecture 12: Cauchy-Euler Equations

Mah 20 Lecure 2: Cauchy-Euler Equaions Feb., 202 Many examples here are aken from he exbook. The firs number in () refers o he problem number in he UA Cusom ediion, he second number in () refers o he problem

### Transient Analysis of First Order RC and RL circuits

Transien Analysis of Firs Order and iruis The irui shown on Figure 1 wih he swih open is haraerized by a pariular operaing ondiion. Sine he swih is open, no urren flows in he irui (i=0) and v=0. The volage

### and Decay Functions f (t) = C(1± r) t / K, for t 0, where

MATH 116 Exponenial Growh and Decay Funcions Dr. Neal, Fall 2008 A funcion ha grows or decays exponenially has he form f () = C(1± r) / K, for 0, where C is he iniial amoun a ime 0: f (0) = C r is he rae

### 11. Properties of alternating currents of LCR-electric circuits

WS. Properies of alernaing currens of L-elecric circuis. Inroducion So-called passive elecric componens, such as ohmic resisors (), capaciors () and inducors (L), are widely used in various areas of science

### Chapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr

Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i

### Fourier Series Solution of the Heat Equation

Fourier Series Soluion of he Hea Equaion Physical Applicaion; he Hea Equaion In he early nineeenh cenury Joseph Fourier, a French scienis and mahemaician who had accompanied Napoleon on his Egypian campaign,

### 23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes

Even and Odd Funcions 23.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl

### INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS

INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS Ilona Tregub, Olga Filina, Irina Kondakova Financial Universiy under he Governmen of he Russian Federaion 1. Phillips curve In economics,

### ( ) in the following way. ( ) < 2

Sraigh Line Moion - Classwork Consider an obbec moving along a sraigh line eiher horizonally or verically. There are many such obbecs naural and man-made. Wrie down several of hem. Horizonal cars waer

### Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that

Mah 344 May 4, Complex Fourier Series Par I: Inroducion The Fourier series represenaion for a funcion f of period P, f) = a + a k coskω) + b k sinkω), ω = π/p, ) can be expressed more simply using complex

### cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

### Chapter 2 Kinematics in One Dimension

Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how

### AP Calculus BC 2010 Scoring Guidelines

AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board

### 23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes

Even and Odd Funcions 3.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl

### Graphing the Von Bertalanffy Growth Equation

file: d:\b173-2013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and

### Relative velocity in one dimension

Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies

### Signal Processing and Linear Systems I

Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons

### Full-wave rectification, bulk capacitor calculations Chris Basso January 2009

ull-wave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal

### Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling

Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)

### Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

### Using RCtime to Measure Resistance

Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a buil-in ADC (Analog o Digial Converer)

### Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m

Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m

### Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The

### Understanding Sequential Circuit Timing

ENGIN112: Inroducion o Elecrical and Compuer Engineering Fall 2003 Prof. Russell Tessier Undersanding Sequenial Circui Timing Perhaps he wo mos disinguishing characerisics of a compuer are is processor

### Fourier series. Learning outcomes

Fourier series 23 Conens. Periodic funcions 2. Represening ic funcions by Fourier Series 3. Even and odd funcions 4. Convergence 5. Half-range series 6. The complex form 7. Applicaion of Fourier series

### Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given

### DIFFERENTIAL EQUATIONS with TI-89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations

DIFFERENTIAL EQUATIONS wih TI-89 ABDUL HASSEN and JAY SCHIFFMAN We will assume ha he reader is familiar wih he calculaor s keyboard and he basic operaions. In paricular we have assumed ha he reader knows

### 1. The graph shows the variation with time t of the velocity v of an object.

1. he graph shows he variaion wih ime of he velociy v of an objec. v Which one of he following graphs bes represens he variaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a 2. A ball, iniially

### 3 Runge-Kutta Methods

3 Runge-Kua Mehods In conras o he mulisep mehods of he previous secion, Runge-Kua mehods are single-sep mehods however, muliple sages per sep. They are moivaed by he dependence of he Taylor mehods on he

### Chapter 6. First Order PDEs. 6.1 Characteristics The Simplest Case. u(x,t) t=1 t=2. t=0. Suppose u(x, t) satisfies the PDE.

Chaper 6 Firs Order PDEs 6.1 Characerisics 6.1.1 The Simples Case Suppose u(, ) saisfies he PDE where b, c are consan. au + bu = 0 If a = 0, he PDE is rivial (i says ha u = 0 and so u = f(). If a = 0,

### 11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

### 1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,

Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..

### µ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ

Page 9 Design of Inducors and High Frequency Transformers Inducors sore energy, ransformers ransfer energy. This is he prime difference. The magneic cores are significanly differen for inducors and high

### The Torsion of Thin, Open Sections

EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such

### Steps for D.C Analysis of MOSFET Circuits

10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.

### Section 5.1 The Unit Circle

Secion 5.1 The Uni Circle The Uni Circle EXAMPLE: Show ha he poin, ) is on he uni circle. Soluion: We need o show ha his poin saisfies he equaion of he uni circle, ha is, x +y 1. Since ) ) + 9 + 9 1 P

### CAPACITANCE AND INDUCTANCE

CHAPTER 6 CAPACITANCE AND INDUCTANCE THE LEARNING GOALS FOR THIS CHAPTER ARE: Know how o use circui models for inducors and capaciors o calculae volage, curren, and power Be able o calculae sored energy

### AP Calculus AB 2007 Scoring Guidelines

AP Calculus AB 7 Scoring Guidelines The College Board: Connecing Sudens o College Success The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and

### The Transport Equation

The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

### Permutations and Combinations

Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes - ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he k-value for he middle erm, divide

### Economics 140A Hypothesis Testing in Regression Models

Economics 140A Hypohesis Tesing in Regression Models While i is algebraically simple o work wih a populaion model wih a single varying regressor, mos populaion models have muliple varying regressors 1

### 5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance.

5.8 Resonance 231 5.8 Resonance The sudy of vibraing mechanical sysems ends here wih he heory of pure and pracical resonance. Pure Resonance The noion of pure resonance in he differenial equaion (1) ()

### YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.

. Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure

### MOTION ALONG A STRAIGHT LINE

Chaper 2: MOTION ALONG A STRAIGHT LINE 1 A paricle moes along he ais from i o f Of he following alues of he iniial and final coordinaes, which resuls in he displacemen wih he larges magniude? A i =4m,

### What is a differential equation? y = f (t).

Wha is a differenial equaion? A differenial equaion is any equaion conaining one or more derivaives. The simples differenial equaion, herefore, is jus a usual inegraion problem y f (). Commen: The soluion

### 17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides

7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion

### FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULY OF MAHEMAICAL SUDIES MAHEMAICS FOR PAR I ENGINEERING Lecures MODULE 3 FOURIER SERIES Periodic signals Whole-range Fourier series 3 Even and odd uncions Periodic signals Fourier series are used in

### Two Compartment Body Model and V d Terms by Jeff Stark

Two Comparmen Body Model and V d Terms by Jeff Sark In a one-comparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics - By his, we mean ha eliminaion is firs order and ha pharmacokineic

### 4. International Parity Conditions

4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency

### HANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed.

Inverse Funcions Reference Angles Inverse Trig Problems Trig Indeniies HANDOUT 4 INVERSE FUNCTIONS KEY POINTS A.) Inroducion: Many acions in life are reversible. * Examples: Simple One: a closed door can

### Rotational Inertia of a Point Mass

Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha

### Part II Converter Dynamics and Control

Par II onverer Dynamics and onrol 7. A equivalen circui modeling 8. onverer ransfer funcions 9. onroller design 1. Inpu filer design 11. A and D equivalen circui modeling of he disconinuous conducion mode

### Equation for a line. Synthetic Impulse Response 0.5 0.5. 0 5 10 15 20 25 Time (sec) x(t) m

Fundamenals of Signals Overview Definiion Examples Energy and power Signal ransformaions Periodic signals Symmery Exponenial & sinusoidal signals Basis funcions Equaion for a line x() m x() =m( ) You will

### Motion Along a Straight Line

Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his

### Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa

### A Probability Density Function for Google s stocks

A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural

### Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

### Second Order Linear Differential Equations

Second Order Linear Differenial Equaions Second order linear equaions wih consan coefficiens; Fundamenal soluions; Wronskian; Exisence and Uniqueness of soluions; he characerisic equaion; soluions of homogeneous

### 6.5. Modelling Exercises. Introduction. Prerequisites. Learning Outcomes

Modelling Exercises 6.5 Inroducion This Secion provides examples and asks employing exponenial funcions and logarihmic funcions, such as growh and decay models which are imporan hroughou science and engineering.

### Optimal Investment and Consumption Decision of Family with Life Insurance

Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker

### AP Calculus AB 2010 Scoring Guidelines

AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College

### State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University

Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween

### A Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM)

A Brief Inroducion o he Consumpion Based Asse Pricing Model (CCAPM We have seen ha CAPM idenifies he risk of any securiy as he covariance beween he securiy's rae of reurn and he rae of reurn on he marke

### Cointegration: The Engle and Granger approach

Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be non-saionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require

### Laboratory #3 Diode Basics and Applications (I)

Laboraory #3 iode asics and pplicaions (I) I. Objecives 1. Undersand he basic properies of diodes. 2. Undersand he basic properies and operaional principles of some dioderecifier circuis. II. omponens

Chaper 8 Copyrigh 1997-2004 Henning Umland All Righs Reserved Rise, Se, Twiligh General Visibiliy For he planning of observaions, i is useful o know he imes during which a cerain body is above he horizon

### Section 7.1 Angles and Their Measure

Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed

### PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

### A Curriculum Module for AP Calculus BC Curriculum Module

Vecors: A Curriculum Module for AP Calculus BC 00 Curriculum Module The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy.

### Voltage level shifting

rek Applicaion Noe Number 1 r. Maciej A. Noras Absrac A brief descripion of volage shifing circuis. 1 Inroducion In applicaions requiring a unipolar A volage signal, he signal may be delivered from a bi-polar

### 8. TIME-VARYING ELECTRICAL ELEMENTS, CIRCUITS, & THE DYNAMICS

8. TIMEVARYING ELECTRICAL ELEMENTS, CIRCUITS, & THE DYNAMICS 8..1 Timevarying Resisors Le us firs consider he case of a resisor, a simple saic device. In addiion o he wo variables, volage and curren, which

### Stochastic Optimal Control Problem for Life Insurance

Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian

### Chapter 4: Exponential and Logarithmic Functions

Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion