CHARGE AND DISCHARGE OF A CAPACITOR


 Felicia Wright
 1 years ago
 Views:
Transcription
1 REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens: The Oscilloscope and Signal Generaor  Model 19 Sanley Wor and Richard F.M. Smih, Suden Reference Manual for Elecronic Insrumenaion Laboraories (Prenice Hall 1990). Also see he video  Physics Skills; How o use he Oscilloscope  sarring Dr D.M. Harrison. Circui Wiring: This Laboraory Manual: Circui Wiring Techniques: Commonly Used Insrumens; he Oscilloscope. OBJECTIVES This lab will give you experience in: developing sraegies o handle complex equipmen such as oscilloscopes using an oscilloscope o measure a signal which varies regularly in ime planning and wiring a simple circui analyzing an exponenial funcion obained from daa readings using he daa analysis program on he Faraday compuer INTRODUCTION of oher comparable exponenial processes. There are numerous naural processes in which he rae of change of a quaniy is proporional o ha quaniy. One biological example is he case of populaion growh in which he rae of increase of he number of members of a species is proporional o he number presen. In his case he populaion is said o grow exponenially. A radioacive example is he case in which he rae of loss of he number of nuclei is proporional o he number of nuclei presen. The number of nuclei decreases exponenially. You migh hink
2 An elecrical example of exponenial decay is ha of he discharge of a capacior hrough a resisor. A capacior sores charge, and he volage V across he capacior is proporional o he charge q sored, given by he relaionship V = q/c, where C is called he capaciance. A resisor dissipaes elecrical energy, and he volage V across i is proporional o he curren (which is jus he rae of flow of dq charge) hrough i, given by V R #, where R is called d he resisance. When a charged capacior is conneced o a resisor, he charge flows ou of he capacior and he rae of loss of charge on he capacior as he charge flows hrough he resisor is proporional o he volage, and hus o he oal charge presen. This can be expressed as : R dq q dq so ha 1 (1) d C d RC q RC which has he exponenial soluion q q o e where q o is he iniial charge on he capacior (a ime = 0). As he volage across he capacior is proporional o is charge, he volage V displays RC he same exponenial behaviour ; divide boh sides by C o obain V V o e. This exponenial decay of volage may be likened o a waer ank wih a small hole in he boom, filled wih waer, in which he flow or rae of loss of volume of waer in he ank (analogous o he rae of loss of elecrical charge from he capacior) is proporional o he pressure of he waer as i exers iself on he hole (analogous o he volage across he resisor). As he Figure 2. pressure is proporional o he heigh of waer in he ank, which is in urn proporional o he oal volume of waer, we find ha he volume of waer and he pressure exhibi exponenial decay. In his experimen, insead of merely discharging an already charged capacior, you will be using an Alernaing Curren (AC) square wave volage supply o charge he capacior hrough he resisor many imes per second, firs in a posiivedirecion and hen in a negaive direcion. The charging process also exhibis he same exponenial behaviour as he discharge. However his ime he exponenial curve approaches a consan asympoic value raher han a zero value.
3 THE EXPONENTIAL The exponenial volage funcion, which is derived from equaion (1),  V() V (2) o e is shown in Figure 3. I has a slope (rae of change) which is proporional o he value of he funcion (V) no maer where you are on he curve. Noe ha, in equaion (2), when = , V() falls o 1/e = of is original value (a = 0).  is called he ime consan for he exponenial decay. The ime o drop o 1/e of a previous value is consan, no maer where on he curve you ake your "iniial" value. Figure 3 illusraes he exponenial decay for a discharging capacior, while Figure 4 illusraes he volage change for a charging capacior. In he laer case, he volage increases, bu sill approaches a consan value; his is sill exponenial decay, bu because he volage sars from a lower value and hen rises o is asympoic value, an addiional consan erm is needed in he analogue o Equaion (2). The full expression in his case is V() V o (1 e  ). In his experimen you will be observing repeaed exponenial curves; you can confirm wheher he decay in volage is exponenial, and measure he ime consan for ha decay.. Capacior Discharging Figure 3. Capacior Charging Figure 4.
4 THE EXPERIMENT Connec he signal generaor in series wih he resisor and capacior as shown in Figure 5. Noe: As wih all elecrical circuis, connec up he componens of he circui firs, hen inroduce he measuring equipmen (in his case he oscilloscope) only aferwards. Figure 5. Figure 6. Connecing he Y B and Y B channels of he oscilloscope as in Figure 5 will allow you o simulaneously observe he applied volage from he signal generaor (he square wave) wih beam A of he dual race oscilloscope, and he volage across he capacior, V C, wih beam B. The ground leads (black) of he coaxial cables, which should be conneced o he ground oupu of he signal generaor (also black), are denoed by G. The pairs of leads (G, Y A ) and (G, Y B ) represen he coaxial cables leading o he oscilloscope. Adjus he DC OFFSET of he generaor so ha he generaor oupu alernaes beween a posiive volage and zero volage. Use he manufacurer's values for C and R in your comparison of observaion and heory. You may noice ha he load placed on he signal generaor by he circui ends o disor he applied square wave; experimen wih he oupu volage of he signal generaor o minimize his effec. Repea your measuremens for a leas wo differen values for R C and hus for he ime consan. POINTS TO CONSIDER: The daa you ake should es wheher he volage across he discharging capacior V C shows exponenial behaviour Iniially choose values of frequency f which allow he capacior o charge or discharge fully in each period. (The period of he signal from he signal generaor T = 1/f should be several imes he ime consan .) Try ou a variey of values of he signal generaor frequency and see wha
5 i does o your display. Obain a quick value for he ime consan , by measuring, on he oscilloscope screen, he ime required for he volage o fall owards he asympoic value by a facor of 1/e. Use he oscilloscope o deermine ime and volage values for paricular values of R and C and record V C as a funcion of. If you use he daa creaion and analysis program on he Faraday compuer o analyze your resuls, noe ha he noaion used for ln(x), he naural logarihm of x, is Log[x]. Before dismanling he circui, you migh change he applied signal from a square wave o a sinusoidal volage; compare he applied volage o he volage across he capacior in his case. Make a qualiaive record of your observaions; can you give a qualiaive explanaion? COMMENTS ON THE OSCILLOSCOPE: One of he chief pieces of learning in his experimen is finding ou how o drive an oscilloscope. Thus, i is imporan ha you play wih he insrumen, learning wha he numerous conrols do by rying hem ou. The following commens may guide you o some of he conrol seings: The AC0DC swiches on he Y A and Y B secions should normally be se o DC. 0 is used if you wan o check wha he acual posiion of 0 vols is on he screen. AC alers he signal in a way ha is ofen very useful, bu i also disors he signal. Never use AC excep for special effecs ha you will learn abou in second year or if you ask your demonsraor. There are hree ses of rigger conrol buons. These ell he oscilloscope when (a wha poin) in he signal on he screen you wan he race o sar o be displayed. For he rigger source conrols, use Y A, or Y B, depending on wheher you wan he synchronizaion o ake place from he A or he B signal. For he rigger slope conrols (TRIG.) choose "+" or "", depending on wheher you wan he race on he screen o sar when i is rising (posiive slope) of falling (negaive slope). For he rigger mode conrols, choose eiher AUTO or AC, depending on which gives you he mos sable race. If you use AC mode, you may have o play wih he LEVEL conrol in order o ge a complee race. Noe ha he TIME/CM dial affecs he horizonal scaling only, and in no way moves your race up or down. Similarly, he wo Y A and Y B, AMPL dials affec he verical scales only, and in no way move he race sideways. When making quaniaive measuremens, make sure ha he small knobs on he op of he main TIME/CM and AMPL conrols are se o he CAL ( CALIBRATED ) posiion. (cp1992,1993;k,jbv1995)
RC, RL and RLC circuits
Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.
More information9. Capacitor and Resistor Circuits
ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren
More informationChabot College Physics Lab RC Circuits Scott Hildreth
Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard
More informationPHYS245 Lab: RC circuits
PHYS245 Lab: C circuis Purpose: Undersand he charging and discharging ransien processes of a capacior Display he charging and discharging process using an oscilloscope Undersand he physical meaning of
More informationChapter 7. Response of FirstOrder RL and RC Circuits
Chaper 7. esponse of FirsOrder L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
More information4kq 2. D) south A) F B) 2F C) 4F D) 8F E) 16F
efore you begin: Use black pencil. Wrie and bubble your SU ID Number a boom lef. Fill bubbles fully and erase cleanly if you wish o change! 20 Quesions, each quesion is 10 poins. Each quesion has a mos
More informationRC Circuit and Time Constant
ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisorcapacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he
More informationInductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College  Physics 2426  Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
More informationLaboratory #3 Diode Basics and Applications (I)
Laboraory #3 iode asics and pplicaions (I) I. Objecives 1. Undersand he basic properies of diodes. 2. Undersand he basic properies and operaional principles of some dioderecifier circuis. II. omponens
More information2.6 Limits at Infinity, Horizontal Asymptotes Math 1271, TA: Amy DeCelles. 1. Overview. 2. Examples. Outline: 1. Definition of limits at infinity
.6 Limis a Infiniy, Horizonal Asympoes Mah 7, TA: Amy DeCelles. Overview Ouline:. Definiion of is a infiniy. Definiion of horizonal asympoe 3. Theorem abou raional powers of. Infinie is a infiniy This
More informationCircuit Types. () i( t) ( )
Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All
More informationRC (ResistorCapacitor) Circuits. AP Physics C
(ResisorCapacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
More informationUsing RCtime to Measure Resistance
Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a builin ADC (Analog o Digial Converer)
More information11. Properties of alternating currents of LCRelectric circuits
WS. Properies of alernaing currens of Lelecric circuis. Inroducion Socalled passive elecric componens, such as ohmic resisors (), capaciors () and inducors (L), are widely used in various areas of science
More informationCapacitors and inductors
Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear
More informationRotational Inertia of a Point Mass
Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha
More informationModule 4. Singlephase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Singlephase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
More informationcooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
More informationMathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
More informationAcceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
More informationA Mathematical Description of MOSFET Behavior
10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical
More information4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay
324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find
More information11/6/2013. Chapter 14: Dynamic ADAS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic DS dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuingedge
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67  FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1  TRANSIENTS
EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67  FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1  RANIEN Uni conen 2 Undersand he ransien behaviour of resisorcapacior (R) and resisorinducor (RL) D circuis
More informationRepresenting Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1
Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals
More informationAppendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area workedou s o OddNumbered Eercises Do no read hese workedou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
More informationBrown University PHYS 0060 INDUCTANCE
Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide INTODUCTION INDUCTANCE Anyone who has ever grabbed an auomobile sparkplug wire a he wrong place, wih he engine running, has an appreciaion
More informationFourier series. Learning outcomes
Fourier series 23 Conens. Periodic funcions 2. Represening ic funcions by Fourier Series 3. Even and odd funcions 4. Convergence 5. Halfrange series 6. The complex form 7. Applicaion of Fourier series
More informationLenz's Law. Definition from the book:
Lenz's Law Definiion from he book: The induced emf resuling from a changing magneic flux has a polariy ha leads o an induced curren whose direcion is such ha he induced magneic field opposes he original
More informationGraphing the Von Bertalanffy Growth Equation
file: d:\b1732013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and
More information( ) in the following way. ( ) < 2
Sraigh Line Moion  Classwork Consider an obbec moving along a sraigh line eiher horizonally or verically. There are many such obbecs naural and manmade. Wrie down several of hem. Horizonal cars waer
More informationName: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling
Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: Solving Exponenial Equaions (The Mehod of Common Bases) Solving Exponenial Equaions (Using Logarihms)
More informationPhysics 111 Fall 2007 Electric Currents and DC Circuits
Physics 111 Fall 007 Elecric Currens and DC Circuis 1 Wha is he average curren when all he sodium channels on a 100 µm pach of muscle membrane open ogeher for 1 ms? Assume a densiy of 0 sodium channels
More informationNOTES ON OSCILLOSCOPES
NOTES ON OSCILLOSCOPES NOTES ON... OSCILLOSCOPES... Oscilloscope... Analog and Digial... Analog Oscilloscopes... Cahode Ray Oscilloscope Principles... 5 Elecron Gun... 5 The Deflecion Sysem... 6 Displaying
More informationand Decay Functions f (t) = C(1± r) t / K, for t 0, where
MATH 116 Exponenial Growh and Decay Funcions Dr. Neal, Fall 2008 A funcion ha grows or decays exponenially has he form f () = C(1± r) / K, for 0, where C is he iniial amoun a ime 0: f (0) = C r is he rae
More information11. Tire pressure. Here we always work with relative pressure. That s what everybody always does.
11. Tire pressure. The graph You have a hole in your ire. You pump i up o P=400 kilopascals (kpa) and over he nex few hours i goes down ill he ire is quie fla. Draw wha you hink he graph of ire pressure
More informationChapter 4: Exponential and Logarithmic Functions
Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion
More information1. The graph shows the variation with time t of the velocity v of an object.
1. he graph shows he variaion wih ime of he velociy v of an objec. v Which one of he following graphs bes represens he variaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a 2. A ball, iniially
More informationPulseWidth Modulation Inverters
SECTION 3.6 INVERTERS 189 PulseWidh Modulaion Inverers Pulsewidh modulaion is he process of modifying he widh of he pulses in a pulse rain in direc proporion o a small conrol signal; he greaer he conrol
More informationWeek #9  The Integral Section 5.1
Week #9  The Inegral Secion 5.1 From Calculus, Single Variable by HughesHalle, Gleason, McCallum e. al. Copyrigh 005 by John Wiley & Sons, Inc. This maerial is used by permission of John Wiley & Sons,
More informationState Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University
Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween
More informationChapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr
Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i
More informationSection 7.1 Angles and Their Measure
Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed
More informationDifferential Equations and Linear Superposition
Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y
More informationVoltage level shifting
rek Applicaion Noe Number 1 r. Maciej A. Noras Absrac A brief descripion of volage shifing circuis. 1 Inroducion In applicaions requiring a unipolar A volage signal, he signal may be delivered from a bipolar
More informationTEACHER NOTES HIGH SCHOOL SCIENCE NSPIRED
Radioacive Daing Science Objecives Sudens will discover ha radioacive isoopes decay exponenially. Sudens will discover ha each radioacive isoope has a specific halflife. Sudens will develop mahemaical
More informationRelative velocity in one dimension
Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies
More informationAstable multivibrator using the 555 IC.(10)
Visi hp://elecronicsclub.cjb.ne for more resources THE 555 IC TIMER The 555 IC TIMER.(2) Monosable mulivibraor using he 555 IC imer...() Design Example 1 wih Mulisim 2001 ools and graphs..(8) Lile descripion
More informationUnderstanding Sequential Circuit Timing
ENGIN112: Inroducion o Elecrical and Compuer Engineering Fall 2003 Prof. Russell Tessier Undersanding Sequenial Circui Timing Perhaps he wo mos disinguishing characerisics of a compuer are is processor
More informationPROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
More informationHANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed.
Inverse Funcions Reference Angles Inverse Trig Problems Trig Indeniies HANDOUT 4 INVERSE FUNCTIONS KEY POINTS A.) Inroducion: Many acions in life are reversible. * Examples: Simple One: a closed door can
More informationMaking Use of Gate Charge Information in MOSFET and IGBT Data Sheets
Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have
More informationFullwave rectification, bulk capacitor calculations Chris Basso January 2009
ullwave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal
More informationINVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS
INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS Ilona Tregub, Olga Filina, Irina Kondakova Financial Universiy under he Governmen of he Russian Federaion 1. Phillips curve In economics,
More informationAP Calculus AB 2013 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a missiondriven noforprofi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was
More informationAP Calculus BC 2010 Scoring Guidelines
AP Calculus BC Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board
More informationDCDC Boost Converter with Constant Output Voltage for Grid Connected Photovoltaic Application System
DCDC Boos Converer wih Consan Oupu Volage for Grid Conneced Phoovolaic Applicaion Sysem PuiWeng Chan, Syafrudin Masri Universii Sains Malaysia Email: edmond_chan85@homail.com, syaf@eng.usm.my Absrac
More informationEntropy: From the Boltzmann equation to the Maxwell Boltzmann distribution
Enropy: From he Bolzmann equaion o he Maxwell Bolzmann disribuion A formula o relae enropy o probabiliy Ofen i is a lo more useful o hink abou enropy in erms of he probabiliy wih which differen saes are
More informationChapter 2 Kinematics in One Dimension
Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how
More informationChapter 2: Principles of steadystate converter analysis
Chaper 2 Principles of SeadySae Converer Analysis 2.1. Inroducion 2.2. Inducor volsecond balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer
More informationWhy Did the Demand for Cash Decrease Recently in Korea?
Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in
More information23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes
Even and Odd Funcions 23.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl
More informationAP1 Kinematics (A) (C) (B) (D) Answer: C
1. A ball is hrown verically upward from he ground. Which pair of graphs bes describes he moion of he ball as a funcion of ime while i is in he air? Neglec air resisance. y a v a (A) (C) y a v a (B) (D)
More informationSignal Rectification
9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, halfwae and fullwae. Le s firs consider he ideal
More informationGraduate Macro Theory II: Notes on Neoclassical Growth Model
Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.
More informationChapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m
Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m
More informationPart 1: White Noise and Moving Average Models
Chaper 3: Forecasing From Time Series Models Par 1: Whie Noise and Moving Average Models Saionariy In his chaper, we sudy models for saionary ime series. A ime series is saionary if is underlying saisical
More informationYTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.
. Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure
More informationDamped Harmonic Motion Closing Doors and Bumpy Rides
Prerequisies and Goal Damped Harmonic Moion Closing Doors and Bumpy Rides Andrew Forreser May 4, 21 Assuming you are familiar wih simple harmonic moion, is equaion of moion, and is soluions, we will now
More informationEconomics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
More informationTwo Compartment Body Model and V d Terms by Jeff Stark
Two Comparmen Body Model and V d Terms by Jeff Sark In a onecomparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics  By his, we mean ha eliminaion is firs order and ha pharmacokineic
More informationThe Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
More information23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes
Even and Odd Funcions 3.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl
More informationEconomics 140A Hypothesis Testing in Regression Models
Economics 140A Hypohesis Tesing in Regression Models While i is algebraically simple o work wih a populaion model wih a single varying regressor, mos populaion models have muliple varying regressors 1
More informationMOTION ALONG A STRAIGHT LINE
Chaper 2: MOTION ALONG A STRAIGHT LINE 1 A paricle moes along he ais from i o f Of he following alues of he iniial and final coordinaes, which resuls in he displacemen wih he larges magniude? A i =4m,
More informationSignal Processing and Linear Systems I
Sanford Universiy Summer 214215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 1415, Gibbons
More informationBasic Circuit Elements  Prof J R Lucas
Basic Circui Elemens  Prof J ucas An elecrical circui is an inerconnecion of elecrical circui elemens. These circui elemens can be caegorized ino wo ypes, namely acive elemens and passive elemens. Some
More informationFourier Series Solution of the Heat Equation
Fourier Series Soluion of he Hea Equaion Physical Applicaion; he Hea Equaion In he early nineeenh cenury Joseph Fourier, a French scienis and mahemaician who had accompanied Napoleon on his Egypian campaign,
More informationMotion Along a Straight Line
Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his
More informationSection A: Forces and Motion
I is very useful o be able o make predicions abou he way moving objecs behave. In his chaper you will learn abou some equaions of moion ha can be used o calculae he speed and acceleraion of objecs, and
More informationChapter 8 Student Lecture Notes 81
Chaper Suden Lecure Noes  Chaper Goals QM: Business Saisics Chaper Analyzing and Forecasing Series Daa Afer compleing his chaper, you should be able o: Idenify he componens presen in a ime series Develop
More informationModule 3. RL & RC Transients. Version 2 EE IIT, Kharagpur
Module 3  & C Transiens esson 0 Sudy of DC ransiens in  and C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series
More informationPermutations and Combinations
Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes  ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he kvalue for he middle erm, divide
More informationRevisions to Nonfarm Payroll Employment: 1964 to 2011
Revisions o Nonfarm Payroll Employmen: 1964 o 2011 Tom Sark December 2011 Summary Over recen monhs, he Bureau of Labor Saisics (BLS) has revised upward is iniial esimaes of he monhly change in nonfarm
More informationSwitching Regulator IC series Capacitor Calculation for Buck converter IC
Swiching Regulaor IC series Capacior Calculaion for Buck converer IC No.14027ECY02 This applicaion noe explains he calculaion of exernal capacior value for buck converer IC circui. Buck converer IIN IDD
More informationLecture III: Finish Discounted Value Formulation
Lecure III: Finish Discouned Value Formulaion I. Inernal Rae of Reurn A. Formally defined: Inernal Rae of Reurn is ha ineres rae which reduces he ne presen value of an invesmen o zero.. Finding he inernal
More informationLAB 6: SIMPLE HARMONIC MOTION
1 Name Dae Day/Time of Lab Parner(s) Lab TA Objecives LAB 6: SIMPLE HARMONIC MOTION To undersand oscillaion in relaion o equilibrium of conservaive forces To manipulae he independen variables of oscillaion:
More informationDensity Dependence. births are a decreasing function of density b(n) and deaths are an increasing function of density d(n).
FW 662 Densiydependen populaion models In he previous lecure we considered densiy independen populaion models ha assumed ha birh and deah raes were consan and no a funcion of populaion size. Longerm
More information6.5. Modelling Exercises. Introduction. Prerequisites. Learning Outcomes
Modelling Exercises 6.5 Inroducion This Secion provides examples and asks employing exponenial funcions and logarihmic funcions, such as growh and decay models which are imporan hroughou science and engineering.
More informationChapter 8 Copyright Henning Umland All Rights Reserved
Chaper 8 Copyrigh 19972004 Henning Umland All Righs Reserved Rise, Se, Twiligh General Visibiliy For he planning of observaions, i is useful o know he imes during which a cerain body is above he horizon
More informationConverter Topologies
High Sepup Raio DCDC Converer Topologies Par I Speaker: G. Spiazzi P. Teni,, L. Rosseo,, G. Spiazzi,, S. Buso,, P. Maavelli, L. Corradini Dep. of Informaion Engineering DEI Universiy of Padova Seminar
More informationµ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ
Page 9 Design of Inducors and High Frequency Transformers Inducors sore energy, ransformers ransfer energy. This is he prime difference. The magneic cores are significanly differen for inducors and high
More information1 HALFLIFE EQUATIONS
R.L. Hanna Page HALFLIFE EQUATIONS The basic equaion ; he saring poin ; : wrien for ime: x / where fracion of original maerial and / number of halflives, and / log / o calculae he age (# ears): age (halflife)
More informationChapter 6. First Order PDEs. 6.1 Characteristics The Simplest Case. u(x,t) t=1 t=2. t=0. Suppose u(x, t) satisfies the PDE.
Chaper 6 Firs Order PDEs 6.1 Characerisics 6.1.1 The Simples Case Suppose u(, ) saisfies he PDE where b, c are consan. au + bu = 0 If a = 0, he PDE is rivial (i says ha u = 0 and so u = f(). If a = 0,
More informationTable of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities
Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17
More informationDuration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVAF38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
More informationFE Review Basic Circuits. William Hageman
FE eview Basic Circuis William Hageman 804 FE opics General FE 4. Elecriciy, Power, and Magneism 7 A. Elecrical fundamenals (e.g., charge, curren, volage, resisance, power, energy) B. Curren and volage
More informationECEN4618: Experiment #1 Timing circuits with the 555 timer
ECEN4618: Experimen #1 Timing circuis wih he 555 imer cæ 1998 Dragan Maksimović Deparmen of Elecrical and Compuer Engineering Universiy of Colorado, Boulder The purpose of his lab assignmen is o examine
More informationSteps for D.C Analysis of MOSFET Circuits
10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.
More informationTHE PRESSURE DERIVATIVE
Tom Aage Jelmer NTNU Dearmen of Peroleum Engineering and Alied Geohysics THE PRESSURE DERIVATIVE The ressure derivaive has imoran diagnosic roeries. I is also imoran for making ye curve analysis more reliable.
More information