Newton s Laws of Motion

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Newton s Laws of Motion"

Transcription

1 Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The rae of change of momenum of a body is equal o he ne force on he F = dp d Khan Academy Newon II. Third Law force on body A. If body A exers a force on body B hen body B exers an equal and opposie F AB = F BA F BA B Khan Academy Newon III. A F AB Noe ha Newon s hird law does no require he equal and opposie forces o ac along he same line of acion (e.g. wo charged paricles ineracing hrough he magneic field). 1

2 MS4414, Theoreical Mechanics 2 F BA B A F AB 1 Forces A force is a push or a pull on a body. The unis of force are newons, N. In his course we will encouner he following forces: Conac forces These are forces which preven wo bodies occupying he same space a he same ime. (Ulimaely hey resul from he Pauli exclusion principle of quanum mechanics which saes ha wo paricles canno possess he same se of quanum numbers.) Fricion forces These forces preven or oppose he moion of a body. Graviaional forces Aracive forces beween wo bodies by virue of heir mass. Elasic forces These forces arise as deformed bodies aemp o recover heir original shape. 2 The firs and second laws Newon s firs and second laws can be wrien ogeher as a single equaion F = dp d = d (mv) (1) d where F is he imposed force, m is he mass of he body and v is is velociy. The vecor mv = p is called he momenum. If and only if he mass of he body is consan (no he case Khan Academy Momenum.

3 MS4414, Theoreical Mechanics 3 for a rocke for example) his equaion can be rewrien as F = m dv d (2) F = ma (3) Worked Example F = ma. Show ha Newon s firs law of moion can be derived from he equaion Worked Example force F? Wha is he rajecoryx() of a paricle of mass,m, subjec o a consan 3 Newon s Third Law and Conservaion of Momenum N.B. proving he law of conservaion of momenum (or angular momenum) ofen comes up in exams. Newon s hird law saes ha if body A exers a force F BA on body B, hen he force exered by body B on body A,F AB, is equal in magniude and opposie in direcion i.e. F BA = F AB.

4 MS4414, Theoreical Mechanics 4 F BA B A F AB Theorem Conservaion of momenum. If a collecion of paricles inerac wih each oher bu no wih any exernal eniies, he oal momenum pi = of he collecion is independen of ime. i Proof 1 (wih words) Newon s second law of moion saes ha he rae of change of he momenum of a paricle is equal o he oal acing on i. Therefore he rae of change of he oal momenum of all he paricles in he collecion is he oal exered on all he paricles. Newon s hird law saes ha forces come in and pairs. Therefore he oal force acing on he collecion of paricles is. Therefore he rae of change of he momenum of he collecion of paricles is. Therefore he momenum is a (vecor) consan. Proof 2 If here is a collecion of pariclesi, (i = 1...n) ineracing wih each oher bu no wih any exernal paricles. If F ij is he force exered on paricle i by paricle j. The rae of change of he oal momenum of paricle i is given by = d d (m iv i )

5 MS4414, Theoreical Mechanics 5 The rae of change of he oal momenum of all he paricles = i=1 d d (m iv i ) I can rewrie he sum as 1 2 i=1 (F ij +F ji ) = j=1 i=1 d d (m iv i ) Now using Newon s hird lawf ij = F ji = d d (m i v i ) i=1 Inegraing once where consan is a vecor consan. consan = (m i v i ) i=1 In paricular he oal momenum before and afer a collision is he same. Noe ha he proof required forces o be equal and opposie bu no acing along he same line. (This will be required for conservaion of angular momenum.) 4 Inelasic Collisions Collisions can be elasic or inelasic. Elasic collisions In an elasic collision he oal energy is conserved as well as he oal momenum. The collisions in Newon s cradle are approximaely elasic. Inelasic collisions paricle. In an inelasic collision he colliding paricles coalesce ino a single

6 MS4414, Theoreical Mechanics Two paricles in one dimension Two paricles wih masses m 1,2 and velociies v 1,2 collide and coalesce. Wha is he velociy, V, of he final paricle? Iniially he oal momenum of he sysem is p iniial = Afer he collision and coalescence he sysem consiss of a single paricle of mass m 1 +m 2 ravelling wih velociy V. The final momenum of he sysem is given by p final = By conservaion of momenum p final = So m 1 v 1 +m 2 v 2 = (m 1 +m 2 )V and herefore V = To saisicians he final velociy is he mass weighed average of he iniial velociies of he paricles. Worked Example A paricle of mass 1 kg ravelling a 2 m s 1 collides wih a paricle of unknown mass ravelling in he opposie direcion a 4 m s 1. The paricles coalesce and he final assembly moves a a velociy of 1 m s 1 in he direcion he firs paricle was ravelling in. Wha is he mass of he second paricle? Khan Academy Conservaion of Momenum.

7 MS4414, Theoreical Mechanics 7 Worked Example speeds. Is his reasonable? In films people sho by handguns are ofen hurled backwards a high 4.2 Two paricles in higher dimensions Two paricles wih masses m 1,2 and velociies v 1,2 collide and coalesce. Wha is he (vecor) velociy of he coalesced paricle? Iniial momenum p iniial = Final momenum p final = Conservaion of momenum p iniial = And so V =. Exam Quesion 2007 Three paricles of masses 1 kg, 3 kg and 2 kg, simulaneously collide: Before he collision, he middle paricle was moionless, whereas he velociies of he oher wo were 1 m s 1 and 3 m s 1 (see he diagram). Assuming ha he paricles collide non

8 MS4414, Theoreical Mechanics 8 elasically and coalesce, find heir velociy afer he collision. Which way will hey be moving? 5 Forces during a collision The law of conservaion of momenum allows us o calculae he velociies of paricles wihou worrying abou he deails of he forces. Someimes i is useful o undersand he deails of hose forces. Consider wo paricles boh of massm, one is moving wih velociyv, he oher is saionary. A F v F B When hey collide, he paricles coalesce. By conservaion of momenum, he velociy of he compound paricle is v/2. A B v 2 As he paricles collide hey exer forces on each oher. Paricle B exers a forcef on paricle A and, by Newon s hird law, paricle A exers an equal and opposie force, F, on paricle B. The force is ime dependenf = F(). The force F() = m dv A d F() = m dv B d

9 MS4414, Theoreical Mechanics 9 Inegrae wih respec o ime unil boh paricles have he same velociy u and show ha u mus be he velociy prediced by conservaion of momenum u = v/2 F() d = m u 0 v dv A 0 F() d = m u 0 dv B Evaluae he righ hand side inegrals 0 F() d = = Solving he equaion forugivesu = v/2. This resul is independen of he form off(); only he area under he graph of F() is imporan. 6 The Sledgehammer Trick In Jearl Walker s sledgehammer rick, really don ry his a home, here is an inelasic collision in which he sledge hammer, iniially ravelling downwards wih speed v 0, is brough o res. The concree block (while fracuring) exers a force F() on he sledgehammer. Newon s hird law ells us ha his force is exchanged beween: The sledgehammer and he concree block, The concree block and he upper bed of nails, The upper bed of nails and Jearl Walker, Jearl Walker and he lower bed of nails, The lower bed of nails and he ground. Ideally ha force should remain below he value needed o drive he nails ino any bones or imporan organs. The value of he inegral of F() wih respec o ime is fixed. If he collision sars a = 0 and ends a = T T 0 F() d = mv 0.

10 MS4414, Theoreical Mechanics 10 Bu, by increasing he ime of he collision, he average value of he force. F =, can be reduced FT = mv 0 = F =. v 0 v No block v 0 v Block F No block F Block Area = mv 0 Area = mv 0 The same idea is used in cars wih crumple zones, collapsible seering columns and airbags. v F v 0 Sledgehammer rebounds A imid sledgehammer wielder who does no hi he concree block hard enough o fracure i can be very dangerous

1. The graph shows the variation with time t of the velocity v of an object.

1. The graph shows the variation with time t of the velocity v of an object. 1. he graph shows he variaion wih ime of he velociy v of an objec. v Which one of he following graphs bes represens he variaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a 2. A ball, iniially

More information

Relative velocity in one dimension

Relative velocity in one dimension Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies

More information

Chapter 2 Kinematics in One Dimension

Chapter 2 Kinematics in One Dimension Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how

More information

Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m

Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m

More information

Discussion Examples Chapter 10: Rotational Kinematics and Energy

Discussion Examples Chapter 10: Rotational Kinematics and Energy Discussion Examples Chaper : Roaional Kinemaics and Energy 9. The Crab Nebula One o he mos sudied objecs in he nigh sky is he Crab nebula, he remains o a supernova explosion observed by he Chinese in 54.

More information

Lenz's Law. Definition from the book:

Lenz's Law. Definition from the book: Lenz's Law Definiion from he book: The induced emf resuling from a changing magneic flux has a polariy ha leads o an induced curren whose direcion is such ha he induced magneic field opposes he original

More information

Chapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr

Chapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i

More information

Rotational Inertia of a Point Mass

Rotational Inertia of a Point Mass Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha

More information

AP1 Kinematics (A) (C) (B) (D) Answer: C

AP1 Kinematics (A) (C) (B) (D) Answer: C 1. A ball is hrown verically upward from he ground. Which pair of graphs bes describes he moion of he ball as a funcion of ime while i is in he air? Neglec air resisance. y a v a (A) (C) y a v a (B) (D)

More information

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE Chaper 2: MOTION ALONG A STRAIGHT LINE 1 A paricle moes along he ais from i o f Of he following alues of he iniial and final coordinaes, which resuls in he displacemen wih he larges magniude? A i =4m,

More information

Section 7.1 Angles and Their Measure

Section 7.1 Angles and Their Measure Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed

More information

Week #9 - The Integral Section 5.1

Week #9 - The Integral Section 5.1 Week #9 - The Inegral Secion 5.1 From Calculus, Single Variable by Hughes-Halle, Gleason, McCallum e. al. Copyrigh 005 by John Wiley & Sons, Inc. This maerial is used by permission of John Wiley & Sons,

More information

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

More information

Chapter 7. Response of First-Order RL and RC Circuits

Chapter 7. Response of First-Order RL and RC Circuits Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

More information

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins) Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

More information

RC (Resistor-Capacitor) Circuits. AP Physics C

RC (Resistor-Capacitor) Circuits. AP Physics C (Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED

More information

Inductance and Transient Circuits

Inductance and Transient Circuits Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

More information

AP Calculus AB 2013 Scoring Guidelines

AP Calculus AB 2013 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was

More information

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches. Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa

More information

AP Calculus BC 2010 Scoring Guidelines

AP Calculus BC 2010 Scoring Guidelines AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board

More information

4kq 2. D) south A) F B) 2F C) 4F D) 8F E) 16F

4kq 2. D) south A) F B) 2F C) 4F D) 8F E) 16F efore you begin: Use black pencil. Wrie and bubble your SU ID Number a boom lef. Fill bubbles fully and erase cleanly if you wish o change! 20 Quesions, each quesion is 10 poins. Each quesion has a mos

More information

Section A: Forces and Motion

Section A: Forces and Motion I is very useful o be able o make predicions abou he way moving objecs behave. In his chaper you will learn abou some equaions of moion ha can be used o calculae he speed and acceleraion of objecs, and

More information

Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS 2204 FINAL EXAMINATION. June 2009.

Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS 2204 FINAL EXAMINATION. June 2009. Name: Teacher: DO NOT OPEN THE EXMINTION PPER UNTIL YOU RE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS 2204 FINL EXMINTION June 2009 Value: 100% General Insrucions This examinaion consiss of wo pars. Boh pars

More information

A Curriculum Module for AP Calculus BC Curriculum Module

A Curriculum Module for AP Calculus BC Curriculum Module Vecors: A Curriculum Module for AP Calculus BC 00 Curriculum Module The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy.

More information

SOLUTIONS RADIOLOGICAL FUNDAMENTALS PRACTICE PROBLEMS FOR TECHNICAL MAJORS

SOLUTIONS RADIOLOGICAL FUNDAMENTALS PRACTICE PROBLEMS FOR TECHNICAL MAJORS SOLUTIONS RADIOLOGICAL FUNDAMENTALS PRACTICE PROBLEMS FOR TECHNICAL MAJORS Noe: Two DOE Handbooks are used in conjuncion wih he pracice quesions and problems below o provide preparaory maerial for he NPS

More information

DIFFERENTIAL EQUATIONS with TI-89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations

DIFFERENTIAL EQUATIONS with TI-89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations DIFFERENTIAL EQUATIONS wih TI-89 ABDUL HASSEN and JAY SCHIFFMAN We will assume ha he reader is familiar wih he calculaor s keyboard and he basic operaions. In paricular we have assumed ha he reader knows

More information

( ) in the following way. ( ) < 2

( ) in the following way. ( ) < 2 Sraigh Line Moion - Classwork Consider an obbec moving along a sraigh line eiher horizonally or verically. There are many such obbecs naural and man-made. Wrie down several of hem. Horizonal cars waer

More information

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer) Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

More information

Morningstar Investor Return

Morningstar Investor Return Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion

More information

State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University

State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

Graphing the Von Bertalanffy Growth Equation

Graphing the Von Bertalanffy Growth Equation file: d:\b173-2013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and

More information

Acceleration Lab Teacher s Guide

Acceleration Lab Teacher s Guide Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion

More information

Chapter 15: Superposition and Interference of Waves

Chapter 15: Superposition and Interference of Waves Chaper 5: Superposiion and Inerference of Waves Real waves are rarely purely sinusoidal (harmonic, bu hey can be represened by superposiions of harmonic waves In his chaper we explore wha happens when

More information

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1 Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Velocity & Acceleration Analysis

Velocity & Acceleration Analysis Velociy & Acceleraion Analysis Secion 4 Velociy analysis deermines how fas pars of a machine are moving. Linear Velociy (v) Sraigh line, insananeous speed of a poin. ds s v = d Linear velociy is a vecor.

More information

1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,

1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t, Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..

More information

Chabot College Physics Lab RC Circuits Scott Hildreth

Chabot College Physics Lab RC Circuits Scott Hildreth Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard

More information

Two Compartment Body Model and V d Terms by Jeff Stark

Two Compartment Body Model and V d Terms by Jeff Stark Two Comparmen Body Model and V d Terms by Jeff Sark In a one-comparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics - By his, we mean ha eliminaion is firs order and ha pharmacokineic

More information

LAB 6: SIMPLE HARMONIC MOTION

LAB 6: SIMPLE HARMONIC MOTION 1 Name Dae Day/Time of Lab Parner(s) Lab TA Objecives LAB 6: SIMPLE HARMONIC MOTION To undersand oscillaion in relaion o equilibrium of conservaive forces To manipulae he independen variables of oscillaion:

More information

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)

More information

9. Capacitor and Resistor Circuits

9. Capacitor and Resistor Circuits ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren

More information

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay 324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find

More information

Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Solutions Question 5 Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

More information

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations. Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given

More information

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613. Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

More information

AP Calculus AB 2010 Scoring Guidelines

AP Calculus AB 2010 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College

More information

Motion Along a Straight Line

Motion Along a Straight Line Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his

More information

The Kinetics of the Stock Markets

The Kinetics of the Stock Markets Asia Pacific Managemen Review (00) 7(1), 1-4 The Kineics of he Sock Markes Hsinan Hsu * and Bin-Juin Lin ** (received July 001; revision received Ocober 001;acceped November 001) This paper applies he

More information

MA261-A Calculus III 2006 Fall Homework 4 Solutions Due 9/29/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 4 Solutions Due 9/29/2006 8:00AM MA6-A Calculus III 006 Fall Homework 4 Soluions Due 9/9/006 00AM 97 #4 Describe in words he surface 3 A half-lane in he osiive x and y erriory (See Figure in Page 67) 97 # Idenify he surface cos We see

More information

and Decay Functions f (t) = C(1± r) t / K, for t 0, where

and Decay Functions f (t) = C(1± r) t / K, for t 0, where MATH 116 Exponenial Growh and Decay Funcions Dr. Neal, Fall 2008 A funcion ha grows or decays exponenially has he form f () = C(1± r) / K, for 0, where C is he iniial amoun a ime 0: f (0) = C r is he rae

More information

INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS

INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS Ilona Tregub, Olga Filina, Irina Kondakova Financial Universiy under he Governmen of he Russian Federaion 1. Phillips curve In economics,

More information

11. Tire pressure. Here we always work with relative pressure. That s what everybody always does.

11. Tire pressure. Here we always work with relative pressure. That s what everybody always does. 11. Tire pressure. The graph You have a hole in your ire. You pump i up o P=400 kilopascals (kpa) and over he nex few hours i goes down ill he ire is quie fla. Draw wha you hink he graph of ire pressure

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,

More information

2. Waves in Elastic Media, Mechanical Waves

2. Waves in Elastic Media, Mechanical Waves 2. Waves in Elasic Media, Mechanical Waves Wave moion appears in almos ever branch of phsics. We confine our aenion o waves in deformable or elasic media. These waves, for eample ordinar sound waves in

More information

SOLID MECHANICS TUTORIAL GEAR SYSTEMS. This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 3.

SOLID MECHANICS TUTORIAL GEAR SYSTEMS. This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 3. SOLI MEHNIS TUTORIL GER SYSTEMS This work covers elemens of he syllabus for he Edexcel module 21722P HN/ Mechanical Principles OUTOME 3. On compleion of his shor uorial you should be able o do he following.

More information

Chapter 6. First Order PDEs. 6.1 Characteristics The Simplest Case. u(x,t) t=1 t=2. t=0. Suppose u(x, t) satisfies the PDE.

Chapter 6. First Order PDEs. 6.1 Characteristics The Simplest Case. u(x,t) t=1 t=2. t=0. Suppose u(x, t) satisfies the PDE. Chaper 6 Firs Order PDEs 6.1 Characerisics 6.1.1 The Simples Case Suppose u(, ) saisfies he PDE where b, c are consan. au + bu = 0 If a = 0, he PDE is rivial (i says ha u = 0 and so u = f(). If a = 0,

More information

Understanding Sequential Circuit Timing

Understanding Sequential Circuit Timing ENGIN112: Inroducion o Elecrical and Compuer Engineering Fall 2003 Prof. Russell Tessier Undersanding Sequenial Circui Timing Perhaps he wo mos disinguishing characerisics of a compuer are is processor

More information

m m m m m correct

m m m m m correct Version 055 Miderm 1 OConnor (05141) 1 This prin-ou should have 36 quesions. Muliple-choice quesions ma coninue on he ne column or pae find all choices before answerin. V1:1, V:1, V3:3, V4:, V5:1. 001

More information

Using RCtime to Measure Resistance

Using RCtime to Measure Resistance Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a buil-in ADC (Analog o Digial Converer)

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Graduate Macro Theory II: Notes on Neoclassical Growth Model

Graduate Macro Theory II: Notes on Neoclassical Growth Model Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.

More information

Signal Rectification

Signal Rectification 9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, half-wae and fullwae. Le s firs consider he ideal

More information

Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that

Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that Mah 344 May 4, Complex Fourier Series Par I: Inroducion The Fourier series represenaion for a funcion f of period P, f) = a + a k coskω) + b k sinkω), ω = π/p, ) can be expressed more simply using complex

More information

Steps for D.C Analysis of MOSFET Circuits

Steps for D.C Analysis of MOSFET Circuits 10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.

More information

Kinematics in 1-D From Problems and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, morin@physics.harvard.

Kinematics in 1-D From Problems and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, morin@physics.harvard. Chaper 2 Kinemaics in 1-D From Problems and Soluions in Inroducory Mechanics (Draf ersion, Augus 2014) Daid Morin, morin@physics.harard.edu As menioned in he preface, his book should no be hough of as

More information

Emergence of Fokker-Planck Dynamics within a Closed Finite Spin System

Emergence of Fokker-Planck Dynamics within a Closed Finite Spin System Emergence of Fokker-Planck Dynamics wihin a Closed Finie Spin Sysem H. Niemeyer(*), D. Schmidke(*), J. Gemmer(*), K. Michielsen(**), H. de Raed(**) (*)Universiy of Osnabrück, (**) Supercompuing Cener Juelich

More information

Chapter 11A Angular Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 11A Angular Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chaper 11A Angular Moion A PowerPoin Presenaion by Paul E. Tippens, Proessor o Physics Souhern Polyechnic Sae Universiy 007 WIND TUBINES such as hese can generae signiican energy in a way ha is environmenally

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULY OF MAHEMAICAL SUDIES MAHEMAICS FOR PAR I ENGINEERING Lecures MODULE 3 FOURIER SERIES Periodic signals Whole-range Fourier series 3 Even and odd uncions Periodic signals Fourier series are used in

More information

1 The basic circulation problem

1 The basic circulation problem 2WO08: Graphs and Algorihms Lecure 4 Dae: 26/2/2012 Insrucor: Nikhil Bansal The Circulaion Problem Scribe: Tom Slenders 1 The basic circulaion problem We will consider he max-flow problem again, bu his

More information

Signal Processing and Linear Systems I

Signal Processing and Linear Systems I Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons

More information

Imagine a Source (S) of sound waves that emits waves having frequency f and therefore

Imagine a Source (S) of sound waves that emits waves having frequency f and therefore heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing

More information

Density Dependence. births are a decreasing function of density b(n) and deaths are an increasing function of density d(n).

Density Dependence. births are a decreasing function of density b(n) and deaths are an increasing function of density d(n). FW 662 Densiy-dependen populaion models In he previous lecure we considered densiy independen populaion models ha assumed ha birh and deah raes were consan and no a funcion of populaion size. Long-erm

More information

HANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed.

HANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed. Inverse Funcions Reference Angles Inverse Trig Problems Trig Indeniies HANDOUT 4 INVERSE FUNCTIONS KEY POINTS A.) Inroducion: Many acions in life are reversible. * Examples: Simple One: a closed door can

More information

Fourier Series Approximation of a Square Wave

Fourier Series Approximation of a Square Wave OpenSax-CNX module: m4 Fourier Series Approximaion of a Square Wave Don Johnson his work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License. Absrac Shows how o use Fourier

More information

4. International Parity Conditions

4. International Parity Conditions 4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency

More information

CHARGE AND DISCHARGE OF A CAPACITOR

CHARGE AND DISCHARGE OF A CAPACITOR REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

More information

Economics 140A Hypothesis Testing in Regression Models

Economics 140A Hypothesis Testing in Regression Models Economics 140A Hypohesis Tesing in Regression Models While i is algebraically simple o work wih a populaion model wih a single varying regressor, mos populaion models have muliple varying regressors 1

More information

4.2 Trigonometric Functions; The Unit Circle

4.2 Trigonometric Functions; The Unit Circle 4. Trigonomeric Funcions; The Uni Circle Secion 4. Noes Page A uni circle is a circle cenered a he origin wih a radius of. Is equaion is as shown in he drawing below. Here he leer represens an angle measure.

More information

A Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM)

A Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM) A Brief Inroducion o he Consumpion Based Asse Pricing Model (CCAPM We have seen ha CAPM idenifies he risk of any securiy as he covariance beween he securiy's rae of reurn and he rae of reurn on he marke

More information

Usefulness of the Forward Curve in Forecasting Oil Prices

Usefulness of the Forward Curve in Forecasting Oil Prices Usefulness of he Forward Curve in Forecasing Oil Prices Akira Yanagisawa Leader Energy Demand, Supply and Forecas Analysis Group The Energy Daa and Modelling Cener Summary When people analyse oil prices,

More information

Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur

Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur Module 3 - & -C Transiens esson 0 Sudy of DC ransiens in - and -C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series

More information

Cointegration: The Engle and Granger approach

Cointegration: The Engle and Granger approach Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be non-saionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require

More information

Making Use of Gate Charge Information in MOSFET and IGBT Data Sheets

Making Use of Gate Charge Information in MOSFET and IGBT Data Sheets Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have

More information

Revisions to Nonfarm Payroll Employment: 1964 to 2011

Revisions to Nonfarm Payroll Employment: 1964 to 2011 Revisions o Nonfarm Payroll Employmen: 1964 o 2011 Tom Sark December 2011 Summary Over recen monhs, he Bureau of Labor Saisics (BLS) has revised upward is iniial esimaes of he monhly change in nonfarm

More information

4 Convolution. Recommended Problems. x2[n] 1 2[n]

4 Convolution. Recommended Problems. x2[n] 1 2[n] 4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.

More information

Technical Appendix to Risk, Return, and Dividends

Technical Appendix to Risk, Return, and Dividends Technical Appendix o Risk, Reurn, and Dividends Andrew Ang Columbia Universiy and NBER Jun Liu UC San Diego This Version: 28 Augus, 2006 Columbia Business School, 3022 Broadway 805 Uris, New York NY 10027,

More information

Physics 107 HOMEWORK ASSIGNMENT #2

Physics 107 HOMEWORK ASSIGNMENT #2 Phsics 7 HOMEWORK ASSIGNMENT # Cunell & Johnson, 7 h ediion Chaper : Problem 5 Chaper : Problems 44, 54, 56 Chaper 3: Problem 38 *5 Muliple-Concep Example 9 deals wih he conceps ha are imporan in his problem.

More information

YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.

YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment. . Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure

More information

Chapter 2 Motion in One Dimension

Chapter 2 Motion in One Dimension Chaper Moion in One Dimension Concepual Problems 5 Sand in he cener of a large room. Call he direcion o your righ posiie, and he direcion o your lef negaie. Walk across he room along a sraigh line, using

More information

THE PRESSURE DERIVATIVE

THE PRESSURE DERIVATIVE Tom Aage Jelmer NTNU Dearmen of Peroleum Engineering and Alied Geohysics THE PRESSURE DERIVATIVE The ressure derivaive has imoran diagnosic roeries. I is also imoran for making ye curve analysis more reliable.

More information

Supply Chain Management Using Simulation Optimization By Miheer Kulkarni

Supply Chain Management Using Simulation Optimization By Miheer Kulkarni Supply Chain Managemen Using Simulaion Opimizaion By Miheer Kulkarni This problem was inspired by he paper by Jung, Blau, Pekny, Reklaii and Eversdyk which deals wih supply chain managemen for he chemical

More information

Debt Portfolio Optimization Eric Ralaimiadana

Debt Portfolio Optimization Eric Ralaimiadana Deb Porfolio Opimizaion Eric Ralaimiadana 27 May 2016 Inroducion CADES remi consiss in he defeasance of he Social Securiy and Healh public deb To achieve is ask, he insiuion has been assigned a number

More information

Fourier series. Learning outcomes

Fourier series. Learning outcomes Fourier series 23 Conens. Periodic funcions 2. Represening ic funcions by Fourier Series 3. Even and odd funcions 4. Convergence 5. Half-range series 6. The complex form 7. Applicaion of Fourier series

More information

AP Calculus AB 2007 Scoring Guidelines

AP Calculus AB 2007 Scoring Guidelines AP Calculus AB 7 Scoring Guidelines The College Board: Connecing Sudens o College Success The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and

More information

Differential Equations and Linear Superposition

Differential Equations and Linear Superposition Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

More information

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

More information

Math 201 Lecture 12: Cauchy-Euler Equations

Math 201 Lecture 12: Cauchy-Euler Equations Mah 20 Lecure 2: Cauchy-Euler Equaions Feb., 202 Many examples here are aken from he exbook. The firs number in () refers o he problem number in he UA Cusom ediion, he second number in () refers o he problem

More information

WHAT ARE OPTION CONTRACTS?

WHAT ARE OPTION CONTRACTS? WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be

More information