Transient Analysis of First Order RC and RL circuits

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Transient Analysis of First Order RC and RL circuits"

Transcription

1 Transien Analysis of Firs Order and iruis The irui shown on Figure 1 wih he swih open is haraerized by a pariular operaing ondiion. Sine he swih is open, no urren flows in he irui (i=0) and v=0. The volage aross he apaior, v, is no known and mus be defined. I ould be ha v=0 or ha he apaior has been harged o a erain volage v = V0. i v v Figure 1 e us assume he nonrivial iniial equilibrium or iniial seady sae ondiion for he apaior volage v = V 0 and le s lose he swih a ime = 0, resuling in he irui shown on Figure 2. i =0 v v Figure 2 Afer losing he swih, urren will begin o flow in he irui. Energy will be dissipaed in he resisor and evenually all energy iniially sored in he apaior, 1 2 E = v, will be dissipaed as hea in he resisor. Afer a long ime, he urren will 2 be zero and he irui will reah a new, albei rivial, equilibrium or seady sae ondiion (i=0, v=0, v=0). The ransien haraerisis of he irui desribes he behavior of he irui during he ransiion from one seady sae ondiion o anoher. In his lass we will develop he ools for desribing and undersanding his ransien phenomena / Spring 2006, hanioakis and ory 1

2 Soure Free irui As ou firs example le s onsider he soure free irui shown on Figure 3. i =0 v v Figure 3 e s assume ha iniially he ideal apaior is harged wih a volage v V. = = 0 A ime = 0, he swih is losed, urren begins o flow in he irui and we would like o obain he form of he volage v as a funion of ime for >0. Sine he volage aross he apaior mus be oninuous he volage a = 0 is also Vo. Our firs ask is o deermine he equaion ha desribes he behavior of his irui. This is aomplished by using Kirhhoff s laws. Here we use KV whih gives, v () v () = 0 (0.1) Using he urren volage relaionship of he resisor and he apaior, Equaion (0.1) beomes dv () v () = 0 (0.2) d Noe ha he produ has he uni of ime. (Ohm)(Farad) seonds is alled he ime onsan of he irui and i is ofen assigned he variable τ =. Equaion (0.2) along wih he iniial ondiion, v = 0 = V0 desribe he behavior of he irui for >0. In fa, sine he irui is no driven by any soure he behavior is also alled he naural response of he irui. Equaion (0.2) is a firs order homogeneous differenial equaion and is soluion may be easily deermined by separaing he variables and inegraing. However we will employ a more general approah ha will also help us o solve he equaions of more ompliaed iruis laer on. Assume ha a soluion o Equaion (0.2) is of he form given by s v() = Ae (0.3) / Spring 2006, hanioakis and ory 2

3 The parameers A and s are o be deermined by he speifi haraerisis of he sysem. By subsiuing equaion (0.3) ino equaion (0.2) we obain, s s Ase Ae = 0 (0.4) Or equivalenly, s s 1 Ae = 0 (0.5) ( ) The only nonrivial soluion of Equaion (0.5) follows from ( s 1) = 0 (0.6) This is alled he haraerisi equaion of he sysem. Therefore s is And he soluion is 1 s = (0.7) v() = Ae = Ae τ (0.8) The onsan A may now be deermined by applying he iniial ondiion v = 0 = V 0 whih gives A= V 0 (0.9) And he final soluion is v() = V e (0.10) The plo of he volage v is shown on Figure 4. A =0 he volage sars a and subsequenly i exponenially deays o zero. V 0 0 Figure / Spring 2006, hanioakis and ory 3

4 Soure Free irui Now le s onsider he irui shown on Figure 5. v a b =0 i v Figure 5 Iniially he swih is a posiion a and here is a urren I 0 irulaing in he loop onaining he ideal induor. This is he iniial equilibrium sae of he irui and is shemai is shown on Figure 6(a). A ime =0 he swih is moved from posiion a o posiion b. Now he resisor is inorporaed in he irui and he urren I 0 begins o flow hrough i as shown Figure 6(b). Io i() b a v v v (a) (b) Figure 6 Our goal is o deermine he form of he urren i(). We sar by deriving he equaion ha desribes he behavior of he irui for >0. KV around he mesh of he irui on Figure 6(b) gives. v () v () = 0 (0.11) Using he urren volage relaionship of he resisor and he induor, Equaion (0.11) beomes di () i () = 0 (0.12) d 6.071/ Spring 2006, hanioakis and ory 4

5 The raio has he unis of ime as an be seen by simple dimensional analysis. By assuming a soluion of he form, s i () = Be (0.13) Equaion (0.12) beomes afer subsiuion s 1 Be s = 0 (0.14) The nonrivial soluion of Equaion (0.14) is s = (0.15) And he soluion beomes / i () = Be (0.16) The onsan B may now be deermined by onsidering he iniial ondiion of he irui i = 0 = I 0, whih gives B = I0. And he ompleed soluion is 0 / i () = Ie (0.17) The raio is he haraerisi ime onsan of he irui. Figure 7 shows he normalized plo of i(). Figure / Spring 2006, hanioakis and ory 5

6 and iruis wih muliple resisors. The apaior of he irui on Figure 8 is iniially harged o a volage Vo. A ime =0 he swih is losed and urren flows in he irui. The apaior sees a Thevenin equivalen resisane whih is eq = ( 2 3) (0.18) 2 =0 i 3 1 v Figure 8 Therefore one he swih is losed, he equivalen irui beomes eq v The haraerisi ime is now given by And he evoluion of he volage v is Figure 9 τ = eq (0.19) eq () V0e v = (0.20) 6.071/ Spring 2006, hanioakis and ory 6

7 irui wih muliple resisors and induors. e s onsider he irui shown on Figure 10 whih onains muliple induors and resisors. Iniially he swih is losed and has been losed for a long ime. A ime =0 he swih opens and we would like o obain he ransien behavior of he irui for >0. In pariular we are ineresed in deermining he urren i() as indiaed on he irui of Figure 11 4 Io 0.5 < Figure 10 4 i() 0.5 > Figure 11 In order o find he iniial ( = 0 ) urren flowing in he irui we onsider he irui on Figure 10. The irui may be simplified by ombining he resisors and aking ino aoun he operaional haraerisis of he induor a equilibrium. Sine under D ondiions he induors a as shor iruis he orresponding irui beomes 4 Io 0.5 <0 2 2 Figure / Spring 2006, hanioakis and ory 7

8 And hus he urren Io = 2. Therefore a he momen ha he swih is opened, he urren is known. This is he iniial ondiion for our problem. Afer he swih is opened, he irui beomes 4 i() Figure 13 By ombining he resisors and he induors he irui redues o 2 5/3 i() Figure 14 Wih he iniial ondiion for he urren i = 0 = I0 = 2 he soluion for he urren i() beomes 6 5 i () = 2 e (0.21) For his example we have been able o ombine he induanes ino an equivalen induane and hus derive he firs order differenial equaion for he behavior of he irui. However, his reduion is no possible in general. If afer he reduion more han one reaive elemen remains in he irui he order of he sysem differenial equaion is equal o he number of reaive elemens. We will disuss he ransien behavior of hese higher order sysems nex lass / Spring 2006, hanioakis and ory 8

9 Fored esponse of iruis For he irui shown on Figure 15 he swih is losed a =0. This orresponds o a sep funion for he soure volage as shown on Figure 16.We would like o obain he apaior volage v as a funion of ime. The volage aross he apaior a =0 (he iniial volage) is Vo. i =0 v v Figure 15 Figure 16 The equaion ha desribes he sysem is obained by applying KV around he mesh. Whih by using he urrenvolage relaionships beomes v() v () = (0.22) dv () v () = (0.23) d By seing τ =, he ime onsan of he irui, Equaion (0.23) beomes dv () τ v () = (0.24) d The soluion of his equaion is he ombinaion (superposiion) of he homogeneous soluion v ( h ) and he pariular soluion vp (). v = vh v p (0.25) 6.071/ Spring 2006, hanioakis and ory 9

10 The homogeneous soluion saisfies he equaion And he pariular soluion he equaion dvh() τ vh() = 0 (0.26) d dvp () τ vp () = (0.27) d The homogeneous equaion orresponds o he soure free problem already invesigaed and is soluion is v () = Ae τ (0.28) h The onsan A is undefined a his poin bu any value will saisfy he differenial equaion. The pariular soluion is found by inspeion o be And hus he oal soluion beomes vp = (0.29) v () = Ae τ (0.30) The onsan A may now be deermined by onsidering he iniial ondiion of he apaior volage. The iniial apaior volage is Vo and hus A=Vo. And he omplee soluion is ( ) v () = Vo e τ (0.31) Figure 17 shows he plo of v() for Vo=1 Vol, =5 Vol as a funion of he normalized quaniy / τ. Noe ha afer 5 ime onsans he volage v is wihin 99% of he volage / Spring 2006, hanioakis and ory 10

11 Figure 17 Now le s onsider he irui shown on Figure 18. The swih has been a posiion a for a log ime and hus here is no volage aross he apaior plaes a ime =0. A ime =0 he wih is moved from posiion a o posiion b where i says for ime 1 and subsequenly reurned o posiion a. This swih aion orresponds o he reangular pulse shown on Figure 19. b a v v Figure Figure / Spring 2006, hanioakis and ory 11

12 We would like o obain he volage v(). Firs we know ha he iniial ondiion is v = 0 = 0. We also know ha afer a long ime (>>1) he volage will go bak o zero. The soluion of he sysem will ell us he evoluion of he volage v from ime =0 o =1 and for >1. The soluion for 1>>0 is v () = (1 e τ ) (0.32) For >1 he soluion is deermined by onsidering as he iniial ondiion, he volage aross he apaior a =1. 1 v (1) = (1 e τ ) (0.33) And he soluion for >1 is 1 τ τ v () = (1 e ) e (0.34) Figure 20 shows he omplee evoluion of he volage v where we have aken 1=2τ. Figure / Spring 2006, hanioakis and ory 12

13 Proedure for ransien analysis of and iruis. 1. Deermine he equivalen induane/apaiane (, ) 2. Deermine he Thevenin equivalen resisane, eq, seen by ( eq, eq ) eq 3. The haraerisi ime is now known τ = eqeq or τ = 4. alulae he iniial value for he volage/urren flowing in he irui a. apaior as as an open irui under d ondiions i. For a ransiion happening a = 0, v( = 0 ) = v( = 0 ) b. Induor as as a shor irui under d ondiions i. For a ransiion happening a = 0, i ( = 0 ) = i ( = 0 ) 5. Esimae he value of v, i as (final value) 6. The omplee soluion is: soluion = final value [ iniial value final value] e τ eq eq eq v() = v( ) v v ( 0 ) ( ) e τ = i() = i( ) i i ( 0 ) ( ) e τ = 6.071/ Spring 2006, hanioakis and ory 13

14 The operaion of he irui shown on Figure 21 is similar o he one disussed above. The swih has been a posiion a for a log ime and hus here is no volage aross he apaior plaes a ime =0. A ime =0 he wih is moved from posiion a o posiion b where i says for ime 1 and subsequenly reurned o posiion a. This swih aion reaes he reangular pulse shown on Figure b 2 v2 a v1 v Figure 21 The irui shown on has wo ime onsans. For 0<<1 he ime onsan is τ 1 = ( 1 2). For >1 he ime onsan is τ 2= 2. The soluion now is τ1 ( ) = (1 ) For 1 v e 1 τ1 τ2 v ( ) = (1 e ) e For > 1 (0.35) The plo of v() is shown on Figure 22 for 1 = 2, τ1 = 2( τ 2) and 1= 2( τ1) Time onsan τ 1 1 Time onsan τ 2 = ( τ1) 2 Figure / Spring 2006, hanioakis and ory 14

15 Problems. The fuse elemen is a resisor of resisane f whih is desroyed when he urren hrough i exeeds a erain value. The swih in he irui has been in he losed posiion for a long ime. A ime =0 he swih is opened. If he maximum urren ha an flow hrough he fuse is Im, alulae he minimum resisane of he fuse (f) as a funion of Im and he oher irui parameers. 2 =0 1 f Deermine 1 and 2 so ha v = 2 Vols and v ( = o ) ( = 1 ms) = 1 Vols 2 v Is 1 A =0 1 50mH 6.071/ Spring 2006, hanioakis and ory 15

Chapter 7. Response of First-Order RL and RC Circuits

Chapter 7. Response of First-Order RL and RC Circuits Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

More information

Circuit Types. () i( t) ( )

Circuit Types. () i( t) ( ) Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1 - TRANSIENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1 - TRANSIENTS EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67 - FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1 - RANIEN Uni conen 2 Undersand he ransien behaviour of resisor-capacior (R) and resisor-inducor (RL) D circuis

More information

RC Circuit and Time Constant

RC Circuit and Time Constant ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisor-capacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he

More information

RC (Resistor-Capacitor) Circuits. AP Physics C

RC (Resistor-Capacitor) Circuits. AP Physics C (Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED

More information

Capacitors and inductors

Capacitors and inductors Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

More information

Inductance and Transient Circuits

Inductance and Transient Circuits Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,

More information

O θ O ' X,X ' Fig. 11. Propagation of a flat wave

O θ O ' X,X ' Fig. 11. Propagation of a flat wave Y Y P 47.4. Doppler s effe Professor Tonnela s mehod The Doppler s effe is manifesed in he hange in he veloi of he signals refleed (radiaed) b moving objes [5] [6] [8] [39] [43] [45]. I lies in he basis

More information

Differential Equations and Linear Superposition

Differential Equations and Linear Superposition Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

and Decay Functions f (t) = C(1± r) t / K, for t 0, where

and Decay Functions f (t) = C(1± r) t / K, for t 0, where MATH 116 Exponenial Growh and Decay Funcions Dr. Neal, Fall 2008 A funcion ha grows or decays exponenially has he form f () = C(1± r) / K, for 0, where C is he iniial amoun a ime 0: f (0) = C r is he rae

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

Chabot College Physics Lab RC Circuits Scott Hildreth

Chabot College Physics Lab RC Circuits Scott Hildreth Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard

More information

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer) Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

More information

Signal Processing and Linear Systems I

Signal Processing and Linear Systems I Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons

More information

ELECTRICAL CIRCUITS 7. NON-LINEAR COMPARATOR OSCILLATORS

ELECTRICAL CIRCUITS 7. NON-LINEAR COMPARATOR OSCILLATORS 87 ELETIAL IUITS 7. NON-LEA OMPAATO OSILLATOS Inroducion A linear oscillaor is a basic feedback conrol sysem ha has been made deliberaely unsable a he frequency of oscillaion. The linear oscillaor sysem

More information

Two Compartment Body Model and V d Terms by Jeff Stark

Two Compartment Body Model and V d Terms by Jeff Stark Two Comparmen Body Model and V d Terms by Jeff Sark In a one-comparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics - By his, we mean ha eliminaion is firs order and ha pharmacokineic

More information

9. Capacitor and Resistor Circuits

9. Capacitor and Resistor Circuits ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren

More information

Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur

Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur Module 3 - & -C Transiens esson 0 Sudy of DC ransiens in - and -C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series

More information

Astable multivibrator using the 555 IC.(10)

Astable multivibrator using the 555 IC.(10) Visi hp://elecronicsclub.cjb.ne for more resources THE 555 IC TIMER The 555 IC TIMER.(2) Monosable mulivibraor using he 555 IC imer...() Design Example 1 wih Mulisim 2001 ools and graphs..(8) Lile descripion

More information

CHARGE AND DISCHARGE OF A CAPACITOR

CHARGE AND DISCHARGE OF A CAPACITOR REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

More information

1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,

1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t, Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..

More information

Relative velocity in one dimension

Relative velocity in one dimension Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies

More information

State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University

State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween

More information

11. Properties of alternating currents of LCR-electric circuits

11. Properties of alternating currents of LCR-electric circuits WS. Properies of alernaing currens of L-elecric circuis. Inroducion So-called passive elecric componens, such as ohmic resisors (), capaciors () and inducors (L), are widely used in various areas of science

More information

MTH6121 Introduction to Mathematical Finance Lesson 5

MTH6121 Introduction to Mathematical Finance Lesson 5 26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random

More information

5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance.

5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance. 5.8 Resonance 231 5.8 Resonance The sudy of vibraing mechanical sysems ends here wih he heory of pure and pracical resonance. Pure Resonance The noion of pure resonance in he differenial equaion (1) ()

More information

Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Solutions Question 5 Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

More information

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

More information

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins) Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

More information

Endogenous Growth Practice Questions Course 14.451 Macro I TA: Todd Gormley, tgormley@mit.edu

Endogenous Growth Practice Questions Course 14.451 Macro I TA: Todd Gormley, tgormley@mit.edu Endogenous Grow Praie Quesions Course 4.45 Maro I TA: Todd Gormley, gormley@mi.edu Here are wo example quesions based on e endogenous grow models disussed by Marios in lass on Wednesday, Mar 9, 2005. Tey

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

4kq 2. D) south A) F B) 2F C) 4F D) 8F E) 16F

4kq 2. D) south A) F B) 2F C) 4F D) 8F E) 16F efore you begin: Use black pencil. Wrie and bubble your SU ID Number a boom lef. Fill bubbles fully and erase cleanly if you wish o change! 20 Quesions, each quesion is 10 poins. Each quesion has a mos

More information

EE 201 ELECTRIC CIRCUITS LECTURE 25. Natural, Forced and Complete Responses of First Order Circuits

EE 201 ELECTRIC CIRCUITS LECTURE 25. Natural, Forced and Complete Responses of First Order Circuits EE 201 EECTRIC CIUITS ECTURE 25 The material overed in this leture will be as follows: Natural, Fored and Complete Responses of First Order Ciruits Step Response of First Order Ciruits Step Response of

More information

Voltage level shifting

Voltage level shifting rek Applicaion Noe Number 1 r. Maciej A. Noras Absrac A brief descripion of volage shifing circuis. 1 Inroducion In applicaions requiring a unipolar A volage signal, he signal may be delivered from a bi-polar

More information

Using RCtime to Measure Resistance

Using RCtime to Measure Resistance Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a buil-in ADC (Analog o Digial Converer)

More information

Brown University PHYS 0060 INDUCTANCE

Brown University PHYS 0060 INDUCTANCE Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide INTODUCTION INDUCTANCE Anyone who has ever grabbed an auomobile spark-plug wire a he wrong place, wih he engine running, has an appreciaion

More information

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay 324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find

More information

6.003 Homework #4 Solutions

6.003 Homework #4 Solutions 6.3 Homewk #4 Soluion Problem. Laplace Tranfm Deermine he Laplace ranfm (including he region of convergence) of each of he following ignal: a. x () = e 2(3) u( 3) X = e 3 2 ROC: Re() > 2 X () = x ()e d

More information

How to calculate effect sizes from published research: A simplified methodology

How to calculate effect sizes from published research: A simplified methodology WORK-LEARNING RESEARCH How o alulae effe sizes from published researh: A simplified mehodology Will Thalheimer Samanha Cook A Publiaion Copyrigh 2002 by Will Thalheimer All righs are reserved wih one exepion.

More information

Chapter 2 Kinematics in One Dimension

Chapter 2 Kinematics in One Dimension Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how

More information

A Mathematical Description of MOSFET Behavior

A Mathematical Description of MOSFET Behavior 10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical

More information

Special Relativity Being from Misunderstanding of Principle of Constant Speed of Light

Special Relativity Being from Misunderstanding of Principle of Constant Speed of Light Speial Relaii Being from Misundersanding of riniple of Consan Speed of Ligh Li ifeng Yanshan Uniersi Qinhuangdao Hebei 066004 China Absra Inrodues basi hpoheses and basi iewpoin of spae-ime in speial relaii.

More information

Physics 111 Fall 2007 Electric Currents and DC Circuits

Physics 111 Fall 2007 Electric Currents and DC Circuits Physics 111 Fall 007 Elecric Currens and DC Circuis 1 Wha is he average curren when all he sodium channels on a 100 µm pach of muscle membrane open ogeher for 1 ms? Assume a densiy of 0 sodium channels

More information

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1 Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations. Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given

More information

Chapter 6. First Order PDEs. 6.1 Characteristics The Simplest Case. u(x,t) t=1 t=2. t=0. Suppose u(x, t) satisfies the PDE.

Chapter 6. First Order PDEs. 6.1 Characteristics The Simplest Case. u(x,t) t=1 t=2. t=0. Suppose u(x, t) satisfies the PDE. Chaper 6 Firs Order PDEs 6.1 Characerisics 6.1.1 The Simples Case Suppose u(, ) saisfies he PDE where b, c are consan. au + bu = 0 If a = 0, he PDE is rivial (i says ha u = 0 and so u = f(). If a = 0,

More information

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

More information

Chapter 8: Regression with Lagged Explanatory Variables

Chapter 8: Regression with Lagged Explanatory Variables Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One

More information

INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS

INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS Ilona Tregub, Olga Filina, Irina Kondakova Financial Universiy under he Governmen of he Russian Federaion 1. Phillips curve In economics,

More information

Graphing the Von Bertalanffy Growth Equation

Graphing the Von Bertalanffy Growth Equation file: d:\b173-2013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and

More information

The Torsion of Thin, Open Sections

The Torsion of Thin, Open Sections EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such

More information

Having an average input power of 1 Watt, compute the S/N ratio at the output of the link, after 4 Km.

Having an average input power of 1 Watt, compute the S/N ratio at the output of the link, after 4 Km. Exerise 1 A miro-oaxial able wih aenuaion A(f) = 9 onnes wo elephone saions. The able arries a PCM binary signal a 4 Mbi/s and roll-off faor of he raised osine filer equal o 0.5. The able is a a noise

More information

Full-wave rectification, bulk capacitor calculations Chris Basso January 2009

Full-wave rectification, bulk capacitor calculations Chris Basso January 2009 ull-wave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal

More information

Fourier Series Approximation of a Square Wave

Fourier Series Approximation of a Square Wave OpenSax-CNX module: m4 Fourier Series Approximaion of a Square Wave Don Johnson his work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License. Absrac Shows how o use Fourier

More information

Math 201 Lecture 12: Cauchy-Euler Equations

Math 201 Lecture 12: Cauchy-Euler Equations Mah 20 Lecure 2: Cauchy-Euler Equaions Feb., 202 Many examples here are aken from he exbook. The firs number in () refers o he problem number in he UA Cusom ediion, he second number in () refers o he problem

More information

Diagnostic Examination

Diagnostic Examination Diagnosic Examinaion TOPIC XV: ENGINEERING ECONOMICS TIME LIMIT: 45 MINUTES 1. Approximaely how many years will i ake o double an invesmen a a 6% effecive annual rae? (A) 10 yr (B) 12 yr (C) 15 yr (D)

More information

Steps for D.C Analysis of MOSFET Circuits

Steps for D.C Analysis of MOSFET Circuits 10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.

More information

PHYS245 Lab: RC circuits

PHYS245 Lab: RC circuits PHYS245 Lab: C circuis Purpose: Undersand he charging and discharging ransien processes of a capacior Display he charging and discharging process using an oscilloscope Undersand he physical meaning of

More information

A Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM)

A Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM) A Brief Inroducion o he Consumpion Based Asse Pricing Model (CCAPM We have seen ha CAPM idenifies he risk of any securiy as he covariance beween he securiy's rae of reurn and he rae of reurn on he marke

More information

DIFFERENTIAL EQUATIONS with TI-89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations

DIFFERENTIAL EQUATIONS with TI-89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations DIFFERENTIAL EQUATIONS wih TI-89 ABDUL HASSEN and JAY SCHIFFMAN We will assume ha he reader is familiar wih he calculaor s keyboard and he basic operaions. In paricular we have assumed ha he reader knows

More information

Part II Converter Dynamics and Control

Part II Converter Dynamics and Control Par II onverer Dynamics and onrol 7. A equivalen circui modeling 8. onverer ransfer funcions 9. onroller design 1. Inpu filer design 11. A and D equivalen circui modeling of he disconinuous conducion mode

More information

( ) in the following way. ( ) < 2

( ) in the following way. ( ) < 2 Sraigh Line Moion - Classwork Consider an obbec moving along a sraigh line eiher horizonally or verically. There are many such obbecs naural and man-made. Wrie down several of hem. Horizonal cars waer

More information

Fourier Series Solution of the Heat Equation

Fourier Series Solution of the Heat Equation Fourier Series Soluion of he Hea Equaion Physical Applicaion; he Hea Equaion In he early nineeenh cenury Joseph Fourier, a French scienis and mahemaician who had accompanied Napoleon on his Egypian campaign,

More information

4 Convolution. Recommended Problems. x2[n] 1 2[n]

4 Convolution. Recommended Problems. x2[n] 1 2[n] 4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.

More information

1. The graph shows the variation with time t of the velocity v of an object.

1. The graph shows the variation with time t of the velocity v of an object. 1. he graph shows he variaion wih ime of he velociy v of an objec. v Which one of he following graphs bes represens he variaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a 2. A ball, iniially

More information

Basic Circuit Elements - Prof J R Lucas

Basic Circuit Elements - Prof J R Lucas Basic Circui Elemens - Prof J ucas An elecrical circui is an inerconnecion of elecrical circui elemens. These circui elemens can be caegorized ino wo ypes, namely acive elemens and passive elemens. Some

More information

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)

More information

Signal Rectification

Signal Rectification 9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, half-wae and fullwae. Le s firs consider he ideal

More information

THE PRESSURE DERIVATIVE

THE PRESSURE DERIVATIVE Tom Aage Jelmer NTNU Dearmen of Peroleum Engineering and Alied Geohysics THE PRESSURE DERIVATIVE The ressure derivaive has imoran diagnosic roeries. I is also imoran for making ye curve analysis more reliable.

More information

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches. Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa

More information

A GENERAL APPROACH TO TOTAL REPAIR COST LIMIT REPLACEMENT POLICIES

A GENERAL APPROACH TO TOTAL REPAIR COST LIMIT REPLACEMENT POLICIES 67 ORiON, Vol. 5, No. /2, pp. 67-75 ISSN 259-9-X A GENERAL APPROACH TO TOTAL REPAIR COST LIMIT REPLACEMENT POLICIES FRANK BEICHELT Deparmen of Saisis and Auarial Siene Universiy of he Wiwaersrand Johannesburg

More information

A Probability Density Function for Google s stocks

A Probability Density Function for Google s stocks A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural

More information

4. International Parity Conditions

4. International Parity Conditions 4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency

More information

HANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed.

HANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed. Inverse Funcions Reference Angles Inverse Trig Problems Trig Indeniies HANDOUT 4 INVERSE FUNCTIONS KEY POINTS A.) Inroducion: Many acions in life are reversible. * Examples: Simple One: a closed door can

More information

Understanding Sequential Circuit Timing

Understanding Sequential Circuit Timing ENGIN112: Inroducion o Elecrical and Compuer Engineering Fall 2003 Prof. Russell Tessier Undersanding Sequenial Circui Timing Perhaps he wo mos disinguishing characerisics of a compuer are is processor

More information

Estimation of Point Rainfall Frequencies

Estimation of Point Rainfall Frequencies Me Éireann Irish Meeorologial Servie Tehnial Noe 6 Esimaion of Poin Rainfall requenies D.L. izgerald Me Éireann, Glasnevin Hill, Dublin 9, Ireland UDC: 55.577.37 45 Oober, 2007 ISSN 393-905X ESTIMATION

More information

Chapter 15: Superposition and Interference of Waves

Chapter 15: Superposition and Interference of Waves Chaper 5: Superposiion and Inerference of Waves Real waves are rarely purely sinusoidal (harmonic, bu hey can be represened by superposiions of harmonic waves In his chaper we explore wha happens when

More information

2 Electric Circuits Concepts Durham

2 Electric Circuits Concepts Durham Chaper 3 - Mehods Chaper 3 - Mehods... 3. nroducion... 2 3.2 Elecrical laws... 2 3.2. Definiions... 2 3.2.2 Kirchhoff... 2 3.2.3 Faraday... 3 3.2.4 Conservaion... 3 3.2.5 Power... 3 3.2.6 Complee... 4

More information

Cosmology Should Directly Use the Doppler s Formula to Calculate the Red Shift of Ia Supernova

Cosmology Should Directly Use the Doppler s Formula to Calculate the Red Shift of Ia Supernova Inernaional Journal of Asronomy and Asrophysis,,, -7 hp://dx.doi.org/.46/ijaa..6 Published Online Sepember (hp://www.sirp.org/journal/ijaa) Cosmology Should Direly Use he Doppler s Formula o Calulae he

More information

AP Calculus AB 2013 Scoring Guidelines

AP Calculus AB 2013 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was

More information

Behavior Analysis of a Biscuit Making Plant using Markov Regenerative Modeling

Behavior Analysis of a Biscuit Making Plant using Markov Regenerative Modeling Behavior Analysis of a Biscui Making lan using Markov Regeneraive Modeling arvinder Singh & Aul oyal Deparmen of Mechanical Engineering, Lala Lajpa Rai Insiue of Engineering & Technology, Moga -, India

More information

Chapter 8 Copyright Henning Umland All Rights Reserved

Chapter 8 Copyright Henning Umland All Rights Reserved Chaper 8 Copyrigh 1997-2004 Henning Umland All Righs Reserved Rise, Se, Twiligh General Visibiliy For he planning of observaions, i is useful o know he imes during which a cerain body is above he horizon

More information

Section 7.1 Angles and Their Measure

Section 7.1 Angles and Their Measure Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed

More information

Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that

Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that Mah 344 May 4, Complex Fourier Series Par I: Inroducion The Fourier series represenaion for a funcion f of period P, f) = a + a k coskω) + b k sinkω), ω = π/p, ) can be expressed more simply using complex

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE Chaper 2: MOTION ALONG A STRAIGHT LINE 1 A paricle moes along he ais from i o f Of he following alues of he iniial and final coordinaes, which resuls in he displacemen wih he larges magniude? A i =4m,

More information

I. Basic Concepts (Ch. 1-4)

I. Basic Concepts (Ch. 1-4) (Ch. 1-4) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing

More information

Experimental Proposal for Determination of One-Way Velocity of Light with One Single Clock. JR Croca

Experimental Proposal for Determination of One-Way Velocity of Light with One Single Clock. JR Croca Experimenal Proposal for Deerminaion of One-Way Veloiy of igh wih One Single Clok JR Croa Deparmen of Physis Fauldade de Ciênias da Universidade de isboa Campo Grande, Ed C8 700 isboa, Porugal email: roa@f.ul.p

More information

Economics 140A Hypothesis Testing in Regression Models

Economics 140A Hypothesis Testing in Regression Models Economics 140A Hypohesis Tesing in Regression Models While i is algebraically simple o work wih a populaion model wih a single varying regressor, mos populaion models have muliple varying regressors 1

More information

Newton s Laws of Motion

Newton s Laws of Motion Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The

More information

Laboratory #3 Diode Basics and Applications (I)

Laboratory #3 Diode Basics and Applications (I) Laboraory #3 iode asics and pplicaions (I) I. Objecives 1. Undersand he basic properies of diodes. 2. Undersand he basic properies and operaional principles of some dioderecifier circuis. II. omponens

More information

Supply Chain Management Using Simulation Optimization By Miheer Kulkarni

Supply Chain Management Using Simulation Optimization By Miheer Kulkarni Supply Chain Managemen Using Simulaion Opimizaion By Miheer Kulkarni This problem was inspired by he paper by Jung, Blau, Pekny, Reklaii and Eversdyk which deals wih supply chain managemen for he chemical

More information

Chapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr

Chapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i

More information

Machine Learning in Pairs Trading Strategies

Machine Learning in Pairs Trading Strategies Machine Learning in Pairs Trading Sraegies Yuxing Chen (Joseph) Deparmen of Saisics Sanford Universiy Email: osephc5@sanford.edu Weiluo Ren (David) Deparmen of Mahemaics Sanford Universiy Email: weiluo@sanford.edu

More information

GNSS software receiver sampling noise and clock jitter performance and impact analysis

GNSS software receiver sampling noise and clock jitter performance and impact analysis Inernaional Global Navigaion Saellie Sysems Soiey IGNSS Symposium 3 Ourigger Gold Coas, Qld Ausralia 6-8 July, 3 GNSS sofware reeiver sampling noise and lok performane and impa analysis Chen JianYun ()

More information

Section 5.1 The Unit Circle

Section 5.1 The Unit Circle Secion 5.1 The Uni Circle The Uni Circle EXAMPLE: Show ha he poin, ) is on he uni circle. Soluion: We need o show ha his poin saisfies he equaion of he uni circle, ha is, x +y 1. Since ) ) + 9 + 9 1 P

More information

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides 7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion

More information

Lecture III: Finish Discounted Value Formulation

Lecture III: Finish Discounted Value Formulation Lecure III: Finish Discouned Value Formulaion I. Inernal Rae of Reurn A. Formally defined: Inernal Rae of Reurn is ha ineres rae which reduces he ne presen value of an invesmen o zero.. Finding he inernal

More information

µ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ

µ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ Page 9 Design of Inducors and High Frequency Transformers Inducors sore energy, ransformers ransfer energy. This is he prime difference. The magneic cores are significanly differen for inducors and high

More information