# 1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,

Save this PDF as:

Size: px
Start display at page:

Download "1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,"

## Transcription

1 Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens.. y 5y + 6y = 2e Soluion: Characerisic equaion is r 2 5r +6 = 0, herefore r = 2, r 2 =, and y () = e 2, y 2 () = e. Wronskian W (y, y 2 )() = 2e 2 = e5 e2 e e Using he formula given in he ex, we have e Y () = e 2 2e e + e 2 2e e 5 e 5 = 2e 2 e + 2e e 2 = e. 2. y y 2y = 2e Soluion: Characerisic equaion is r 2 r 2 = 0, herefore r =, r 2 = 2, and y () = e, y 2 () = e 2. Wronskian W (y, y 2 )() = e e = e Using he formula given in he ex, we have e Y () = e 2 2e e + e 2 2e 2e e = 2 e 2 9 e We can choose Y () = 2 e. In problem 5 2 find he general soluion of he given equaion. 5. y + y = an, 0 < < π/2. Soluion: Characerisic equaion is r 2 + = 0, herefore r = i, r 2 = i, and y () = cos, y 2 () = sin. Wronskian W (y, y 2 )() = cos sin sin cos =. e 2 2e 2

2 Using he formula given in he ex, we have Y () = cos sin an + sin cos an sin 2 = cos + sin sin cos sin 2 = cos sin 2 d(sin ) sin cos = cos ( sin 2 ) d(sin ) sin cos = cos ( sin + + sin ln ) sin cos 2 sin = 2 cos ln + sin sin = cos ln + sin cos or Y () = cos ln(sec + an ). Noe he range for guaranees he funcion inside ln is posiive. 0. y 2y + y = e /( + 2 ) Soluion: Characerisic equaion is r 2 2r + = 0, herefore r = r 2 =, and y () = e, y 2 () = e. Wronskian W (y, y 2 )() = e e e e + e = e2 Using he formula given in he ex, we have Y () = e + e = 2 e ln( + 2 ) + e arcan., In problems 20 verify ha he given funcions y and y 2 are soluions o he corresponding homogeneous equaion; hen find a paricular soluion of he given nonhomogeneous equaion.. 2 y 2y = 2, > 0, y = 2, y 2 = Soluion: I s easy o verify ha he given funcions are soluions o he homogeneous equaion. We will concenrae on finding a paricular soluion. Firs rewrie he equaion so ha he leading coefficien is. y 2 2 y = 2. The Wronskian is W (y, y 2 )() = 2 2 / 2 = 2

3 and Y () = 2 ( / 2 ) = 2 ( ln ) ( ) = 2 ln ( / 2 ) 5. y ( + )y + y = 2 e 2, > 0, y = +, y 2 = e Soluion: Rewrie he equaion so ha he leading coefficien is. The Wronskian is and y + y + y = e2. W (y, y 2 )() = + e e = e e (e 2 ) ( + )e Y () = ( + ) + e 2 e e = ( + ) e 2 + e ( + )e = + 2 e2 + e (( + )e e ) = 2 e2 + 2 e2 = 2 e2 ( )..8 In problems 4 deermine ω 0, R, and δ so as o wrie he given expression in he form u = R cos(ω 0 δ).. u = cos sin 2 Soluion: u = 5( 5 cos sin 2) = 5 cos(2 arccos 5 ) Therefore R = 5, ω 0 = 2, δ = arccos(/5). 2. u = cos + sin Soluion: u = 2( 2 cos + 2 sin ) = 2 cos( 2π ). Therefore R = 2, ω 0 =, δ = 2π/.

4 6. A mass of 00 g sreches a spring 5 cm. If he mass is se in moion from is equilibrium posiion wih a downward velociy of 0 cm/sec, and if here is no damping, deermine he posiion u of he mass a any ime. When does he mass firs reurn o is equilibrium posiion? Soluion: m = 00 = 0. kg, L = 5 = 0.05 m, u(0) = 0 m, u (0) = 0 = 0. m/sec. Therefore k = /0.05 = 98/5 N/m. The equaion for he sysem is 0 u u = 0 Solving he characerisic equaion we ge r = ±4i. Therefore he general soluion is u() = C cos 4 + C 2 sin 4. Using he iniail condiion we ge C = 0, C 2 = /40. Thus u() = sin Seing u() = 0 we ge = π/4 sec as he ime when he mass firs reurn o is equilibrium posiion.. A cerain vibraing sysem saisfies he equaion u + γu + u = 0. Find he value of he damping coefficien γ for which he quasi period of he damped moion is 50% geaer han he period of he corresponding undamped moion. Soluion: We can solve he equaion o find he quasi period direcly. Bu since here is a formula in he ex for he raio of he quasi period o he period of he undamped sysem we simply use ha one. By his formula (28) in he ex, and noice ha m =, k =, we have T d ( T = γ2 4km solving for γ we ge γ = 2 5. ) /2 ) /2 = ( γ2 = 50% = 4 2, 7. A mass weighing 8 lb sreches a sping.5 in. The mass is also aached o a damper wih coefficien γ. Deermine he value of γ for which he sysem is criically damped; be sure o give he unis for γ. Soluion: m = 8/2 = /4 lb sec 2 /f, L =.5/2 = /8 f. Thus k = 8/(/8) = 64 lb/f. Thus he equaion is 4 u + γu + 64u = 0. So in order for he sysem o be criically damped we need or γ = 8 lb sec/f. γ 2 = 4mk = 64 4

5 9. Assume he sysem decribed by he equaion mu + γu + ku = 0 is criically damped or overdamped. Show ha he mass can pass hrough he equilibrium posiion a mos once, regardless of he iniial condiion. Soluion: Firs assume he sysem is criically damped, hen he general soluion o he equaion is u = C e r + C 2 e r where r is he double roo o he characerisic equaion, and r is negaive. Se u = 0 and we ge e r (C + C 2 ) = 0. Clearly his equaion has no soluion if C 2 = 0 and exacly one soluion if C 2 0. For he overdamped case he general soluion is u = C e r + C 2 e r 2 and he proof is similar A mass of 6 kg sreches a spring 0 cm. The mass is aced on by an exernal force of 0 sin(/2) N and moves in a medium ha impars a viscous force of 2 N when he speed of he mass is 4 cm/sec. If he mass is se in mosion from is equilibrium posiion wih an iniial velociy of cm/sec, formulae he iniial value problem describing he moion of he mass. Soluion: m = 5 kg, L = 0.m, γ = 2/4 N sec/cm = 50 N sec/m, k = 5 9.8/0. = 490 N/m. Therefore he equaion is 5u + 50u + 490u = 0 sin /2. Iniial condiion is u(0) = 0, u (0) = /00 m/sec. 8. (a) Find he soluion of he iniial value problem in Problem 6. (b) Idenify he ransien and seady-sae pars of he soluion. (c) Plo he graph of he seady-sae soluion. (d) If he given exernal force is replaced by a force 2 cos ω of frequency ω, find he value of ω for which he ampliude of he forced response is maximum. Soluion (a) Solving he characerisic equaion we ge r = 5 ± 7i, so he general soluion o he homogeneous equaion is e 5 (C cos 7 + C 2 sin 7). One way o find a paricular soluion is using undeermined coefficiens, bu ha s a bi edious. Wha we will do here is o use equaion (8) and (9) in he ex. Le s firs rewrie he equaion as u + 0u + 98u = 2 sin /2. Thus m =, γ = 0, ω 0 = 7, ω = /2, F 0 = 2. Then according o equaion (9) = m 2 (ω0 2 ω 2 ) 2 + γ 2 ω 2 = 72.92, 5

6 and R = F 0 / = , δ = cos m(ω0 2 ω2 ) = cos = However we canno say u() = R cos(ω δ) is a paricular soluion o our equaion since ha s a soluion o equaion () in he ex in which he righ hand side is F 0 cos ω, while in our equaion he righ hand side is F 0 sin ω. To remedy he siuaion we consider he funcion u() = R sin(ω δ). I s easy o check ha his is a paricular soluion o our equaion. Therefore u() = e 5 (C cos 7 + C 2 sin 7) sin( ) is he general soluion. Using he iniial condiion we ge C = m = 0.87 cm, C 2 = m = 0.62 cm. (b) The ransien par is u() = e 5 (0.87 cos sin 7) cm, seady-sae par is u() = 2.74 sin( ) cm. (c) Use your calculaor (or compuer :). (d) The ampliude of he forced response R is given as F 0 /, herefore in order for i o reach maximum should reach he minimum. Noe = m 2 (ω 2 0 ω 2 ) 2 + γ 2 ω 2. To find he minimum we ake he derivaive of 2 wih respec o ω and se i o 0. Thus 2m 2 (ω0 2 ω 2 )( 2ω) + 2γ 2 ω = 0 ω = ω0 2 γ2 2m = If an undamped spring-mass sysem wih a mass ha weighs 6 lb and a spring consan lb/in. is suddenly se in moion a = 0 by an exernal force of 4 cos 7 lb, deermine he posiion of he mass a any ime and draw a graph of he displacemen versus. Soluion: m = 6/2 = /6 lb sec 2 /f, k = 2 lb/f, hus he equaion is 6 u +2u = 4 cos 7 wih iniial condiion u(0) = 0, u (0) = 0. Rewrie he equaion as u + 64u = 64 cos 7 we see ha ω 0 = 64 = 8. Using equaion (5) in he ex we have he soluion u = F 0 m(ω 2 0 ω 2 ) (cos ω cos ω 0) = 64 (cos 7 cos 8) Consider he forced bu undamped sysem described by he iniial value problem (a) Find he soluion u() for ω. u + u = cos ω, u(0) = 0, u (0) = 0. (b) Plo he soluion u() versus for ω = 0.7, ω = 0.8 and ω = 0.9. Describe how he response u() changes as ω varies in his inerval. Wha happens as ω akes on values closer and closer o? Noe ha he naural frequency of he unforced sysem is ω 0 =. Soluion: (a) Again using equaion (5) we ge he soluion u() = (cos ω cos ). ω2 6

7 (b) We will no show he graph here, bu we can describe wha happens as ω ges closer o. Rewrie he soluion as u() = 2( ω 2 ) sin ω sin + ω 2 2 We may view his as a vibraion wih a varying ampliude 2( ω 2 ) closer o he erm 2( ω 2 ) sin ω. As ω ges 2 becomes very large, which means he maximal ampliude is very big and also he period according o which he ampliude changes ges very big oo since i s equal o 4π/( ω). 7

### 5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance.

5.8 Resonance 231 5.8 Resonance The sudy of vibraing mechanical sysems ends here wih he heory of pure and pracical resonance. Pure Resonance The noion of pure resonance in he differenial equaion (1) ()

### The Transport Equation

The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

### Inductance and Transient Circuits

Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

### Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

### Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m

Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m

### Chapter 7. Response of First-Order RL and RC Circuits

Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

### AP Calculus AB 2013 Scoring Guidelines

AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was

### Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

### AP Calculus AB 2007 Scoring Guidelines

AP Calculus AB 7 Scoring Guidelines The College Board: Connecing Sudens o College Success The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and

### AP Calculus AB 2010 Scoring Guidelines

AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College

### Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

### Chapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr

Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i

### Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The

### RC, RL and RLC circuits

Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

### Differential Equations and Linear Superposition

Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

### Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is \$613.

Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

### AP Calculus BC 2010 Scoring Guidelines

AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board

### Solution of a differential equation of the second order by the method of NIGAM

Tire : Résoluion d'une équaion différenielle du second[...] Dae : 16/02/2011 Page : 1/6 Soluion of a differenial equaion of he second order by he mehod of NIGAM Summarized: We presen in his documen, a

### 17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides

7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion

### Section 5.1 The Unit Circle

Secion 5.1 The Uni Circle The Uni Circle EXAMPLE: Show ha he poin, ) is on he uni circle. Soluion: We need o show ha his poin saisfies he equaion of he uni circle, ha is, x +y 1. Since ) ) + 9 + 9 1 P

### PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

### A Curriculum Module for AP Calculus BC Curriculum Module

Vecors: A Curriculum Module for AP Calculus BC 00 Curriculum Module The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy.

### Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar

Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 0-7-380-7 Ifeachor

### Second Order Linear Differential Equations

Second Order Linear Differenial Equaions Second order linear equaions wih consan coefficiens; Fundamenal soluions; Wronskian; Exisence and Uniqueness of soluions; he characerisic equaion; soluions of homogeneous

### 9. Capacitor and Resistor Circuits

ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren

### Circuit Types. () i( t) ( )

Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All

### RC (Resistor-Capacitor) Circuits. AP Physics C

(Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED

### Signal Processing and Linear Systems I

Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons

### Revisions to Nonfarm Payroll Employment: 1964 to 2011

Revisions o Nonfarm Payroll Employmen: 1964 o 2011 Tom Sark December 2011 Summary Over recen monhs, he Bureau of Labor Saisics (BLS) has revised upward is iniial esimaes of he monhly change in nonfarm

### Newton s Laws of Motion

Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The

### Rotational Inertia of a Point Mass

Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha

### Graduate Macro Theory II: Notes on Neoclassical Growth Model

Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.

### Present Value Methodology

Presen Value Mehodology Econ 422 Invesmen, Capial & Finance Universiy of Washingon Eric Zivo Las updaed: April 11, 2010 Presen Value Concep Wealh in Fisher Model: W = Y 0 + Y 1 /(1+r) The consumer/producer

### Hedging with Forwards and Futures

Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buy-side of a forward/fuures

### Stochastic Optimal Control Problem for Life Insurance

Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian

### Technical Appendix to Risk, Return, and Dividends

Technical Appendix o Risk, Reurn, and Dividends Andrew Ang Columbia Universiy and NBER Jun Liu UC San Diego This Version: 28 Augus, 2006 Columbia Business School, 3022 Broadway 805 Uris, New York NY 10027,

### Transient Analysis of First Order RC and RL circuits

Transien Analysis of Firs Order and iruis The irui shown on Figure 1 wih he swih open is haraerized by a pariular operaing ondiion. Sine he swih is open, no urren flows in he irui (i=0) and v=0. The volage

### 4.2 Trigonometric Functions; The Unit Circle

4. Trigonomeric Funcions; The Uni Circle Secion 4. Noes Page A uni circle is a circle cenered a he origin wih a radius of. Is equaion is as shown in he drawing below. Here he leer represens an angle measure.

### Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling

Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)

### Equation for a line. Synthetic Impulse Response 0.5 0.5. 0 5 10 15 20 25 Time (sec) x(t) m

Fundamenals of Signals Overview Definiion Examples Energy and power Signal ransformaions Periodic signals Symmery Exponenial & sinusoidal signals Basis funcions Equaion for a line x() m x() =m( ) You will

### 2.5 Life tables, force of mortality and standard life insurance products

Soluions 5 BS4a Acuarial Science Oford MT 212 33 2.5 Life ables, force of moraliy and sandard life insurance producs 1. (i) n m q represens he probabiliy of deah of a life currenly aged beween ages + n

### Chapter 4: Exponential and Logarithmic Functions

Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion

### Chapter 2 Kinematics in One Dimension

Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how

### MA261-A Calculus III 2006 Fall Homework 4 Solutions Due 9/29/2006 8:00AM

MA6-A Calculus III 006 Fall Homework 4 Soluions Due 9/9/006 00AM 97 #4 Describe in words he surface 3 A half-lane in he osiive x and y erriory (See Figure in Page 67) 97 # Idenify he surface cos We see

### A Probability Density Function for Google s stocks

A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural

### Module 3 Design for Strength. Version 2 ME, IIT Kharagpur

Module 3 Design for Srengh Lesson 2 Sress Concenraion Insrucional Objecives A he end of his lesson, he sudens should be able o undersand Sress concenraion and he facors responsible. Deerminaion of sress

### Acceleration Lab Teacher s Guide

Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion

### cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

### Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur

Module 3 - & -C Transiens esson 0 Sudy of DC ransiens in - and -C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series

### Motion Along a Straight Line

Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his

### Stability. Coefficients may change over time. Evolution of the economy Policy changes

Sabiliy Coefficiens may change over ime Evoluion of he economy Policy changes Time Varying Parameers y = α + x β + Coefficiens depend on he ime period If he coefficiens vary randomly and are unpredicable,

### Chabot College Physics Lab RC Circuits Scott Hildreth

Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard

### Optimal Stock Selling/Buying Strategy with reference to the Ultimate Average

Opimal Sock Selling/Buying Sraegy wih reference o he Ulimae Average Min Dai Dep of Mah, Naional Universiy of Singapore, Singapore Yifei Zhong Dep of Mah, Naional Universiy of Singapore, Singapore July

### MTH6121 Introduction to Mathematical Finance Lesson 5

26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random

### Chapter 2: Principles of steady-state converter analysis

Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

### Using RCtime to Measure Resistance

Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a buil-in ADC (Analog o Digial Converer)

### DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper

### RC Circuit and Time Constant

ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisor-capacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he

### Nikkei Stock Average Volatility Index Real-time Version Index Guidebook

Nikkei Sock Average Volailiy Index Real-ime Version Index Guidebook Nikkei Inc. Wih he modificaion of he mehodology of he Nikkei Sock Average Volailiy Index as Nikkei Inc. (Nikkei) sars calculaing and

### Chapter 6: Business Valuation (Income Approach)

Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he

### Stochastic Calculus and Option Pricing

Sochasic Calculus and Opion Pricing Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Sochasic Calculus 15.450, Fall 2010 1 / 74 Ouline 1 Sochasic Inegral 2 Iô s Lemma 3 Black-Scholes

### A Mathematical Description of MOSFET Behavior

10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical

### m m m m m correct

Version 055 Miderm 1 OConnor (05141) 1 This prin-ou should have 36 quesions. Muliple-choice quesions ma coninue on he ne column or pae find all choices before answerin. V1:1, V:1, V3:3, V4:, V5:1. 001

### Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa

### 11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

### THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS

VII. THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS The mos imporan decisions for a firm's managemen are is invesmen decisions. While i is surely

### Longevity 11 Lyon 7-9 September 2015

Longeviy 11 Lyon 7-9 Sepember 2015 RISK SHARING IN LIFE INSURANCE AND PENSIONS wihin and across generaions Ragnar Norberg ISFA Universié Lyon 1/London School of Economics Email: ragnar.norberg@univ-lyon1.fr

### I. Basic Concepts (Ch. 1-4)

(Ch. 1-4) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing

### THE PRESSURE DERIVATIVE

Tom Aage Jelmer NTNU Dearmen of Peroleum Engineering and Alied Geohysics THE PRESSURE DERIVATIVE The ressure derivaive has imoran diagnosic roeries. I is also imoran for making ye curve analysis more reliable.

### Communication Networks II Contents

3 / 1 -- Communicaion Neworks II (Görg) -- www.comnes.uni-bremen.de Communicaion Neworks II Conens 1 Fundamenals of probabiliy heory 2 Traffic in communicaion neworks 3 Sochasic & Markovian Processes (SP

### Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.

Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, bouzaev@ya.ru Why principal componens are needed Objecives undersand he evidence of more han one

### 4 Convolution. Recommended Problems. x2[n] 1 2[n]

4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.

### LECTURE 7 Interest Rate Models I: Short Rate Models

LECTURE 7 Ineres Rae Models I: Shor Rae Models Spring Term 212 MSc Financial Engineering School of Economics, Mahemaics and Saisics Birkbeck College Lecurer: Adriana Breccia email: abreccia@emsbbkacuk

### DETERMINISTIC INVENTORY MODEL FOR ITEMS WITH TIME VARYING DEMAND, WEIBULL DISTRIBUTION DETERIORATION AND SHORTAGES KUN-SHAN WU

Yugoslav Journal of Operaions Research 2 (22), Number, 6-7 DEERMINISIC INVENORY MODEL FOR IEMS WIH IME VARYING DEMAND, WEIBULL DISRIBUION DEERIORAION AND SHORAGES KUN-SHAN WU Deparmen of Bussines Adminisraion

### Research on Inventory Sharing and Pricing Strategy of Multichannel Retailer with Channel Preference in Internet Environment

Vol. 7, No. 6 (04), pp. 365-374 hp://dx.doi.org/0.457/ijhi.04.7.6.3 Research on Invenory Sharing and Pricing Sraegy of Mulichannel Reailer wih Channel Preference in Inerne Environmen Hanzong Li College

### Cointegration: The Engle and Granger approach

Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be non-saionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require

### CHARGE AND DISCHARGE OF A CAPACITOR

REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

### Journal Of Business & Economics Research September 2005 Volume 3, Number 9

Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy Yi-Kang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo

### Capacitors and inductors

Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

### Part II Converter Dynamics and Control

Par II onverer Dynamics and onrol 7. A equivalen circui modeling 8. onverer ransfer funcions 9. onroller design 1. Inpu filer design 11. A and D equivalen circui modeling of he disconinuous conducion mode

### Fourier Series and Fourier Transform

Fourier Series and Fourier ransform Complex exponenials Complex version of Fourier Series ime Shifing, Magniude, Phase Fourier ransform Copyrigh 2007 by M.H. Perro All righs reserved. 6.082 Spring 2007

### CHAPTER FIVE. Solutions for Section 5.1

CHAPTER FIVE 5. SOLUTIONS 87 Soluions for Secion 5.. (a) The velociy is 3 miles/hour for he firs hours, 4 miles/hour for he ne / hour, and miles/hour for he las 4 hours. The enire rip lass + / + 4 = 6.5

### Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given

### Option Pricing Under Stochastic Interest Rates

I.J. Engineering and Manufacuring, 0,3, 8-89 ublished Online June 0 in MECS (hp://www.mecs-press.ne) DOI: 0.585/ijem.0.03. Available online a hp://www.mecs-press.ne/ijem Opion ricing Under Sochasic Ineres

### Niche Market or Mass Market?

Niche Marke or Mass Marke? Maxim Ivanov y McMaser Universiy July 2009 Absrac The de niion of a niche or a mass marke is based on he ranking of wo variables: he monopoly price and he produc mean value.

### Time Consistency in Portfolio Management

1 Time Consisency in Porfolio Managemen Traian A Pirvu Deparmen of Mahemaics and Saisics McMaser Universiy Torono, June 2010 The alk is based on join work wih Ivar Ekeland Time Consisency in Porfolio Managemen

### MOTION ALONG A STRAIGHT LINE

Chaper 2: MOTION ALONG A STRAIGHT LINE 1 A paricle moes along he ais from i o f Of he following alues of he iniial and final coordinaes, which resuls in he displacemen wih he larges magniude? A i =4m,

### Chapter 1.6 Financial Management

Chaper 1.6 Financial Managemen Par I: Objecive ype quesions and answers 1. Simple pay back period is equal o: a) Raio of Firs cos/ne yearly savings b) Raio of Annual gross cash flow/capial cos n c) = (1

### WHAT ARE OPTION CONTRACTS?

WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be

### The option pricing framework

Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.

### Analysis of optimal liquidation in limit order books

Analysis of opimal liquidaion in limi order books James W. Blair, Paul V. Johnson, & Peer W. Duck Absrac In his paper we sudy he opimal rading sraegy of a passive rader who is rading in he limi order book.

### ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS

ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,

### Optimal Investment and Consumption Decision of Family with Life Insurance

Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker

### II.1. Debt reduction and fiscal multipliers. dbt da dpbal da dg. bal

Quarerly Repor on he Euro Area 3/202 II.. Deb reducion and fiscal mulipliers The deerioraion of public finances in he firs years of he crisis has led mos Member Saes o adop sizeable consolidaion packages.

### ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT

Teor Imov r.amaem.sais. Theor. Probabiliy and Mah. Sais. Vip. 7, 24 No. 7, 25, Pages 15 111 S 94-9(5)634-4 Aricle elecronically published on Augus 12, 25 ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE

Real-Time Scheduling Sysem Model Task is a schedulable eniy, i.e., a hread Time consrains of periodic ask T: - s: saring poin - e: processing ime of T - d: deadline of T - p: period of T Periodic ask T

### ABSTRACT KEYWORDS. Markov chain, Regulation of payments, Linear regulator, Bellman equations, Constraints. 1. INTRODUCTION

QUADRATIC OPTIMIZATION OF LIFE AND PENSION INSURANCE PAYMENTS BY MOGENS STEFFENSEN ABSTRACT Quadraic opimizaion is he classical approach o opimal conrol of pension funds. Usually he paymen sream is approximaed

### The Torsion of Thin, Open Sections

EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such

### BALANCE OF PAYMENTS. First quarter 2008. Balance of payments

BALANCE OF PAYMENTS DATE: 2008-05-30 PUBLISHER: Balance of Paymens and Financial Markes (BFM) Lena Finn + 46 8 506 944 09, lena.finn@scb.se Camilla Bergeling +46 8 506 942 06, camilla.bergeling@scb.se

### PRECISE positioning/tracking control is being studied

Design of High Accuracy Tracking Sysems wih H Preview Conrol Anonio Moran Cardenas, Javier G. Rázuri, Isis Bone, Rahim Rahmani, and David Sundgren Absrac Posiioning and racking conrol sysems are an imporan