9. Capacitor and Resistor Circuits

Size: px
Start display at page:

Download "9. Capacitor and Resistor Circuits"

Transcription

1 ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren (volage) DC. Now we sar o consider various combinaions of componens and much of he ineresing behavior depends upon ime so we will also consider AC or alernaing curren (volage) sources which are signal generaors. he firs combinaion we consider is a resisor in series wih a capacior and a baery. he RC Circui Consider he resisor-capacior circui indicaed below: When he swich is closed, Kirchoff's loop equaion for his circui is V= Q C + ir (1) for >0 where boh Q[] and i[] are funcions of ime. here are wo unknown quaniies Q[] and i[] in equaion (1) and we need an addiional equaion namely

2 ElecronicsLab9.nb d = d () You can eliminae one of he unknowns beween equaions (1) and () by aking he derivaive of equaion (1) wih respec o ime obaining 0= 1 d d + R C d d (3) and using equaion () o eliminae he derivaive of he charge 0= 1 C d + R d () I is easy enough o solve equaion () since by rearrangemen d d = -1 RC (5) Furher à 1 i âi = -1 RC à â () Inegraion yields LogB i0 F- (7) RC where i0 is a consan of inegraion which we will deermine shorly. Using a propery of he exponenial funcion, we obain from equaion (7) = i0 ExpB- RC F () Iniially a =0, when he swich is closed, he capacior has zero charge and herefore here is zero poenial across i. he curren in he circui is deermined enirely by he baery poenial V and he resisance R hrough Ohm's law R = V or = V (9) R as iniially he capacior C play no role. Seing =0 in equaion () and using equaion (9) yields = i0 = V R so we have deermined he consan of inegraion. finally he soluion as () Uilizaion of equaion () in equaion () yields

3 ElecronicsLab9.nb 3 à = V R ExpB- RC F (11) he produc RC has unis of ime and usually is called he ime consan =RC (1) Graph of he Soluion for he curren Suppose he numerical values V= vols, R=,000 ohms, and C=.5 microfarads as indicaed hen V = ; R = 000.; Cap =.5 * - ; = R * Cap; Consan =",, " sec"d ime Consan =0.0 sec IMPORAN: C is a proec variable assigned o somehing specific in Mahemaica so insead we use Cap as he symbol for capaciance. := V R ExpB- F 0, * <, AxesLabel "ime", ime So iniially, righ afer he swich is closed, he curren i[] is a maximum and hereafer is decreases exponenially. he iniial curren is

4 ElecronicsLab9.nb So iniially, righ afer he swich is closed, he curren i[] is a maximum and hereafer is decreases exponenially. he iniial curren is which agrees wih he graph above. he ime consan (=0.0 seconds in his case) deermines he rae of decay. Afer a ime he curren has decreased o and his is equal o equaion (11) wih = namely * ã Noe ha ã so afer one ime = he curren has dropped 37% in is value. Afer =, he curren is * D which is 1% of he original value of he curren since ã and so on. he volage across he resisor is i*r so we may graph his volage as

5 ElecronicsLab9.nb 5 Vr = * R,, 0, * <, AxesLabel "ime", ime Graph of he Charge Q[] Combining equaions () and (11) yields d d = V R ExpB- RC F (13) and inegraion yields = + V R à ExpB 0 ' F â' (1) where he iniial charge on he capacior is zero Q[0]=0. he inegral is easily obained ' F â' à ExpB 0 - ã- Combining his wih equaion (1) and recalling equaion (1) we obain = VC 1 - ExpBwhich we can also graph. F (15)

6 ElecronicsLab9.nb V = ; R = 000.; Cap =.5 * - ; = R * Cap; := V * Cap 1 - ExpB- F 0, * <, AxesLabel "ime", ime Iniially he charge on he capacior is zero 0. and his agrees wih he above graph. Afer a ime = he charge on he capacior is and his can also be obained approximaely from he graph. Afer a very long ime he charge has is maximum value * D which is almos he same as

7 ElecronicsLab9.nb 7 V * Cap he volage across he capacior is VC = PloB Cap Q C and we may graph his using,, 0, * <, AxesLabel "ime", ime Replace he Baery and Swich by a Signal Generaor having a Square Wave he circui diagram now appears

8 ElecronicsLab9.nb Suppose he square wave generaor has a frequency f given by he square of he signal generaor can be graph using = ; 1 f= ; =", f, "Hz"D frequency =50.Hz Noice ha he period of he signal generaor is chosen o be he same as he ime consan in he RC circui. We will discuss his more laer. Suppose he volage ampliude of he signal generaor is vols (he same as he baery volage) he square wave of he signal generaor is graphed using

9 ElecronicsLab9.nb 9 V0 =.; := IfB <, V0, 0F 0, <D Effecively having he signal generaor in he circui is he same as having he baery in he circui for ime 0<< seconds so he equaion (11) for he curren and equaion (15) for he charge hold for hese imes. he Volage Across he Capacior We may graph he volage across he capacior ogeher wih he signal generaor volage and obain

10 ElecronicsLab9.nb = ; PloB: Cap, :, 0, >F If he period of he signal generaor is longer, for example =*, hen he capacior has more ime o charge = ; PloB:, :, 0, >F Cap Furher if he period of he signal generaor is longer sill, for example =3*, hen he capacior has more ime o charge

11 ElecronicsLab9.nb 11 = 3 ; PloB:, :, 0, >F Cap and he capacior almos has ime o fully charge and have all he vols appear across i. Abou vols now appears across he capacior. he Volage Across he Resisor We may graph he volage across he resisor ogeher wih he signal generaor volage and obain = ; R, :, 0, >, PloRange 0, <F If he period of he signal generaor is longer, for example =*, hen he curren ges smaller sill and he volage across he resisor is reduced furher

12 ElecronicsLab9.nb 1 If he period of he signal generaor is longer, for example =*, hen he curren ges smaller sill and he volage across he resisor is reduced furher = ; R, :, 0, >, PloRange 0, <F If he period of he signal generaor is longer, for example =3*, hen he curren ges smaller sill and he volage across he resisor is reduced furher = 3 ; R, :, 0, >, PloRange 0, <F Abou vols now appears across he resisor. he Second Par of he Square Wave of he Signal Generaor.

13 ElecronicsLab9.nb 13 he Second Par of he Square Wave of he Signal Generaor. During he second par of he period of he signal generaor for imes < <, he volage is zero in he original circui. I helps make he analysis simpler o change he wave form a lile and have he signal generaor volage zero during he firs par of he cycle and a consan V0 during he second par of he cycle = ; V0 =.;, 0, V0 F SigGen = 0, <D := IfB < his corresponds o he imes in he range sec < < 0.0 sec in he previous diagram. Effecively for he firs par of he cycle he baery is removed from he circui and replaced by a shoring wire and he circui looks like

14 ElecronicsLab9.nb 1 Kirchoff circui law afer he swich is closed is 0= Q C + ir (1) which is he same as equaion (1) wihou he baery. aking he ime derivaive of equaion (1) and using equaion () yields d d i=- i (17) RC Equaion (17) can be solved using he same echniques as before and we obain again equaion (11) d d = = i0 ExpB- F (1) However, he iniial condiion i0 is differen his ime as we shall see. Equaion (1) can be inegraed for he charge Q[] obaining = + i0 1 - ExpB- F (19) he capacior is assumed fully charged iniially (which can happen if he ime consan is shor compared wih he period of he square wave) so iniially = C V (0) and when =0 he par of equaion (19) involving he exponenial funcion vanishes. For long imes here is no charge on he capacior Q[ ]=0. Since ExpA- E=0 and equaion (19) reduces o D = C V + i0 = 0 (1) and i follows ha i0 = - CV =- V () R Combining equaions (0) and () wih equaion (19) yields = C V + VC ExpB- F - 1 = V C ExpB- F (3) Equaion (3) should make inuiive sence, since during he second half of he square wave cycle, he Q capacior is discharging. he volage across he capacior is V= C iniially so

15 ElecronicsLab9.nb 15 = ; V =.; := IfB < PloB:V * ExpB-, 0, VF F, :, 0, >F Furher if he signal generaor is longer say hree imes he ime consan, =3 hen he capacior has even more ime o discharge

16 ElecronicsLab9.nb 1 = 3 * ; V =.; := IfB < PloB:V * ExpB-, V0, 0F F, :, 0, >F he Volage Across he Resisor he curren in he circui is obained by aking he derivaive of he charge equaion (3) obaining = - VC ExpB- F=- V R ExpB- F () and he volage across he resisor is jus R*i[]. Graphing he volage across he capacior and he volage across he resisor for he second half he cycle yields

17 ElecronicsLab9.nb 17 = ; V =.; PloB:V * ExpB- F, - V * ExpB- F>, :, 0, >F Noice he sum of he volage of he capacior and he volage of he resisor is jus zero as required by Kirchoff's law. If he signal generaor period is wice he ime consan hen we obain = * ; V =.; PloB:V * ExpB- F, - V * ExpB- F>, :, 0, >F

18 ElecronicsLab9.nb 1 If he signal generaor period is hree he ime consan hen we obain = 3 * ; V =.; PloB:V * ExpB- F, - V * ExpB- F>, :, 0, >F Laboraory Exercises PAR A: Place a signal generaor in series wih a resisor and capacior. Prey much any oupu level (he oupu volage) of he signal generaor will do OK bu afer you ge he oscilloscope working properly make a noe of he maximum volage in your lab noebook. Choose a square wave and make he 1 frequency f of he signal generaor such ha f= wih ==RC a firs. Wih channel 1 of he oscilloscope, measure he volage across he signal generaor and wih channel measure he volage across he capacior. Compare wih he graphs of he firs example above. Make he frequency f of he signal generaor smaller ( larger) so he capacior has more ime o charge. Keep decreasing f. Skech he oscilloscope figures you ge and indicae he values of he volage on he verical scale and he ime on he horizonal scales. Example: Suppose C=0.1 mf and R=. kw hen he ime consan =RC=0.000 sec. as indicaed below:

19 ElecronicsLab9.nb 19 R =. 3 ; c = ; = R c NOE: he value of R and C you use need no be he values given above. Use your digial ohmmeer o measure he value of he resisor and make sure i is he same as given by he color code. Use your digial capacior meer o measured he value of he capacior and i should agree wih he capacior code (which is no ha sandardized so check wih he maker of he capacior and use your meer For example, a capacior labeled 50 B means 1 is he firs digi and 5 is he second digi for he capaciance. is he muliplier in powers of so his capacior is C=5 0 mf = 5 mf where mf=- F. Capaciors can be much smaller and pf = -1 F is ofen used is he ime i ake he capacior o charge o 7% of he maximum volage (which is he maximum volage of he signal generaor). he signal generaor frequency should be se o have a period = a firs bu wha you acually conrol is he frequency f of he signal generaor where f=1/. For he example above, = ; f = So he frequency f=1,70 Hz= 1.5 khz corresponds o one ime consan. he horizonal ime scale of he oscilloscope had beer be somehing like his frequency f. If he oscilloscope is se a oo high a frequency, he ime will be oo shor o see he volage rise. On he oher hand, if he oscilloscope is se a oo low a frequency, here will no be enough ime o see he volage rise across he capacior. You also mus make sure o se he volage scale a roughly he oupu volage of he oscilloscope which you should have measured firs before connecing he capacior and resisor in he circui. PAR B: Wih channel 1 of he oscilloscope, measure he volage across he signal generaor and wih channel measure he volage across he resisor. Compare wih he graphs of he second example above. Make he frequency f of he signal generaor smaller ( larger) so he capacior has more ime o charge. Keep decreasing f he frequency of he signal generaor. Skech he oscilloscope figures you ge. PAR C: Call he capacior used above C1. ake a second capacior and call i C. Combine he wo capaciors in SERIES wihou he signal generaor and oscilloscope aached. he effecive capaciance is given by 1 Ceff = 1 C1 + 1 C Compue he numerical value of he effecive capaciance and check i wih he digial capaciance meer. Noe he effecive capaciance of wo capaciors in SERIES is less han boh C1 and C. Use he SERIES combinaion of C1 and C ogeher wih he signal generaor and oscilloscope and repea he measuremens of PAR A above.

20 ElecronicsLab9.nb 0 Compue he numerical value of he effecive capaciance and check i wih he digial capaciance meer. Noe he effecive capaciance of wo capaciors in SERIES is less han boh C1 and C. Use he SERIES combinaion of C1 and C ogeher wih he signal generaor and oscilloscope and repea he measuremens of PAR A above. PAR D: Call he capacior used above C1. ake a second capacior and call i C. Combine he wo capaciors in PARALLEL wihou he signal generaor and oscilloscope aached. he effecive capaciance is given by Ceff = C1 + C Compue he numerical value of he effecive capaciance and check i wih he digial capaciance meer. Noe he effecive capaciance of wo capaciors in PARALLEL is less han boh C1 and C. Use he PARALLEL combinaion of C1 and C ogeher wih he signal generaor and oscilloscope and repea he measuremens of PAR A above.

Experiment RC Circuits

Experiment RC Circuits Experimen I. Inroducion A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. In is simples form, a capacior consiss of wo conducing plaes separaed by

More information

Experiment Guide for RC Circuits

Experiment Guide for RC Circuits Experimen Guide for I. Inroducion A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical capacior

More information

CHARGE AND DISCHARGE OF A CAPACITOR

CHARGE AND DISCHARGE OF A CAPACITOR REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

RC (Resistor-Capacitor) Circuits. AP Physics C

RC (Resistor-Capacitor) Circuits. AP Physics C (Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED

More information

PES 1120 Spring 2014, Spendier Lecture 24/Page 1

PES 1120 Spring 2014, Spendier Lecture 24/Page 1 PES 1120 Spring 2014, Spendier Lecure 24/Page 1 Today: - circuis (ime-varying currens) - Elecric Eel Circuis Thus far, we deal only wih circuis in which he currens did no vary wih ime. Here we begin a

More information

Chapter 7. Response of First-Order RL and RC Circuits

Chapter 7. Response of First-Order RL and RC Circuits Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

More information

Experiment 10 RC and RL circuits: Measuring the time constant.

Experiment 10 RC and RL circuits: Measuring the time constant. Experimen 1 C and circuis: Measuring he ime consan. Objec: The objec of his lab is o measure he ime consan of an C circui and a circui. In addiion, one can observe he characerisics of hese wo circuis and

More information

Chabot College Physics Lab RC Circuits Scott Hildreth

Chabot College Physics Lab RC Circuits Scott Hildreth Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard

More information

Capacitance and the RC Circuit

Capacitance and the RC Circuit Capaciance and he Circui Inroducion Unlike resisors you experimened previously, capaciors have a differen propery. A capacior has capabiliy o sore charges whose parameer is called capaciance, C. The uni

More information

RC Circuits RC 2 RC

RC Circuits RC 2 RC ircuis a b a b + + -- 2 2 q ( / ) q = 1 e q q = e / esisor-capacior circuis Le s add a apacior o our simple circui ecall volage drop on? V = Wrie KVL: = d Use = Now eqn. has only : d KVL gives Differenial

More information

Lab 9: CMOS inverter propagation delay.

Lab 9: CMOS inverter propagation delay. Sae Universiy of New York a Sony Brook ESE 314 Elecronics Laboraory B Deparmen of Elecrical and ompuer Engineering Fall 1 Leon Sherengas Lab 9: MOS inverer propagaion delay. 1. OBJETIES Deermine inverer

More information

Capacitors and inductors

Capacitors and inductors Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

More information

Practical 1 RC Circuits

Practical 1 RC Circuits Objecives Pracical 1 Circuis 1) Observe and qualiaively describe he charging and discharging (decay) of he volage on a capacior. 2) Graphically deermine he ime consan for he decay, τ =. Apparaus DC Power

More information

Circuit Types. () i( t) ( )

Circuit Types. () i( t) ( ) Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All

More information

We leave the regime of just working with DC currents and open our view to electronics behaviour over time, using alternating currents (AC).

We leave the regime of just working with DC currents and open our view to electronics behaviour over time, using alternating currents (AC). Analogue Elecronics 3: A ircuis capaciors We leave he regime of jus working wih D currens and open our view o elecronics behaviour over ime, using alernaing currens (A). apaciors an analogue componen wih

More information

Math 308 Week 2 Solutions

Math 308 Week 2 Solutions Mah 308 Week Soluions Here are soluions o he even-numbered suggesed problems. The answers o he oddnumbered problems are in he back of your exbook, and he soluions are in he Soluion Manual, which you can

More information

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1 Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Using RCtime to Measure Resistance

Using RCtime to Measure Resistance Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a buil-in ADC (Analog o Digial Converer)

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,

More information

Inductance and Transient Circuits

Inductance and Transient Circuits Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

More information

RC Circuit and Time Constant

RC Circuit and Time Constant ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisor-capacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he

More information

Natural and Step Response of Series & Parallel RLC Circuits (Second-order Circuits)

Natural and Step Response of Series & Parallel RLC Circuits (Second-order Circuits) Naural and Sep Response of Series & Parallel RLC Circuis (Second-order Circuis) Objecives: Deermine he response form of he circui Naural response parallel RLC circuis Naural response series RLC circuis

More information

4kq 2. D) south A) F B) 2F C) 4F D) 8F E) 16F

4kq 2. D) south A) F B) 2F C) 4F D) 8F E) 16F efore you begin: Use black pencil. Wrie and bubble your SU ID Number a boom lef. Fill bubbles fully and erase cleanly if you wish o change! 20 Quesions, each quesion is 10 poins. Each quesion has a mos

More information

Differential Equations and Linear Superposition

Differential Equations and Linear Superposition Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

More information

PHYS245 Lab: RC circuits

PHYS245 Lab: RC circuits PHYS245 Lab: C circuis Purpose: Undersand he charging and discharging ransien processes of a capacior Display he charging and discharging process using an oscilloscope Undersand he physical meaning of

More information

ELECTRICAL CIRCUITS 7. NON-LINEAR COMPARATOR OSCILLATORS

ELECTRICAL CIRCUITS 7. NON-LINEAR COMPARATOR OSCILLATORS 87 ELETIAL IUITS 7. NON-LEA OMPAATO OSILLATOS Inroducion A linear oscillaor is a basic feedback conrol sysem ha has been made deliberaely unsable a he frequency of oscillaion. The linear oscillaor sysem

More information

RC Circuits In this lab you will be working with a variety of voltage sources each driving an RC circuit.

RC Circuits In this lab you will be working with a variety of voltage sources each driving an RC circuit. RC Circuis In his lab you will be working wih a variey of volage sources each driving an RC circui. RC Circuis Exponenial decay by discharge In his aciviy you will use he following circui o quickly charge

More information

( ) = RI R ( t) V R ( s) = RI R ( s) (1) ( t) = 1 C Q C. ( s) ( ) ( ) = 1 C I C ( t) ( ) ( ) V ( s) ( t) = L d dt I t C

( ) = RI R ( t) V R ( s) = RI R ( s) (1) ( t) = 1 C Q C. ( s) ( ) ( ) = 1 C I C ( t) ( ) ( ) V ( s) ( t) = L d dt I t C MTH 352 Real World LC Componens Fall 2008 Prof. Townsend (analysis by Paricia Mellodge) Real world capaciors and inducors include he ideal model along wih resisors and, perhaps, inducors and capaciors.

More information

Chapter 17 Engineering Electric Circuits: AC Electric Circuits 17.1 Alternating Current in a Resistor Homework # 145

Chapter 17 Engineering Electric Circuits: AC Electric Circuits 17.1 Alternating Current in a Resistor Homework # 145 Engineering Elecric ircuis: Elecric ircuis 17.1 lernaing urren in a esisor Homework # 145 This is a copy of Homework #116 iled "lernaing urren" in "haper 14-D Elecric ircuis". 01. n ac volage supply wih

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.1- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Response of an RC filter to a square wave:

Response of an RC filter to a square wave: 5// Circui Analysis Filered square wave Response of an RC filer o a square wave: The experimener ofen uses a square wave for iming and iggering purposes. Wha happens o a square wave afer passing hrough

More information

4.3 MOSFET Circuits at DC

4.3 MOSFET Circuits at DC 10//004 4_3 MOSFETs Circuis a C empy.doc 1/1 4.3 MOSFET Circuis a C Reading Assignmen: pp. 6-70 5.0 1K i Q: A: HO: Seps for C Analysis of MOSFET Circuis K = 04. ma 1K = 0. -5.0 Example: NMOS Circui Analysis

More information

11. Properties of alternating currents of LCR-electric circuits

11. Properties of alternating currents of LCR-electric circuits WS. Properies of alernaing currens of L-elecric circuis. Inroducion So-called passive elecric componens, such as ohmic resisors (), capaciors () and inducors (L), are widely used in various areas of science

More information

Newton's second law in action

Newton's second law in action Newon's second law in acion In many cases, he naure of he force acing on a body is known I migh depend on ime, posiion, velociy, or some combinaion of hese, bu is dependence is known from experimen In

More information

Figure 8-N1. where D, E, F and a are unknown constants. The constants D, E and F are described by. D = 0, E = 0, and E + F = 4 V

Figure 8-N1. where D, E, F and a are unknown constants. The constants D, E and F are described by. D = 0, E = 0, and E + F = 4 V Example 1: Figure 8-N1a shows a plo of he volage across he inducor in Figure 8-N1b. a) Deermine he equaion ha represens he inducor volage as a funcion of ime. b) Deermine he value of he resisance R. c)

More information

Physics 111 Fall 2007 Electric Currents and DC Circuits

Physics 111 Fall 2007 Electric Currents and DC Circuits Physics 111 Fall 007 Elecric Currens and DC Circuis 1 Wha is he average curren when all he sodium channels on a 100 µm pach of muscle membrane open ogeher for 1 ms? Assume a densiy of 0 sodium channels

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Deparmen of Elecrical and Compuer Engineering Experimen No. 4 Zener Diode lage Regulaor; Diode Clippers and Clampers Overview: The purpose of his experimen is

More information

3 Applications of Differential Equations

3 Applications of Differential Equations 3 Applicaions of Differenial Equaions A mahemaical model is a descripion of a real-world sysem using mahemaical language and ideas. Differenial equaions are absoluely fundamenal o modern science and engineering.

More information

24.2. Properties of the Fourier Transform. Introduction. Prerequisites. Learning Outcomes. Before starting this Section you should...

24.2. Properties of the Fourier Transform. Introduction. Prerequisites. Learning Outcomes. Before starting this Section you should... Properies of he Fourier Transform 4. Inroducion Prerequisies Before saring his Secion you should... Learning Oucomes Afer compleing his Secion you should be able o... . Lineariy Properies of he Fourier

More information

STEADY-STATE AC CIRCUIT ANALYSIS PAGE 2

STEADY-STATE AC CIRCUIT ANALYSIS PAGE 2 STEADY-STATE A IUIT ANAYSIS PAGE Noice ha v() has been expressed in he mos general form for a sinusoid. I is convenional o use he erms A volage and A curren when he volages and currens vary wih ime in

More information

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins) Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

More information

One Dimensional Kinematics

One Dimensional Kinematics Chaper B One Dimensional Kinemaics Blinn College - Physics 2425 - Terry Honan Kinemaics is he sudy of moion. This chaper will inroduce he basic definiions of kinemaics. The definiions of he velociy and

More information

24.2. Properties of the Fourier Transform. Introduction. Prerequisites. Learning Outcomes

24.2. Properties of the Fourier Transform. Introduction. Prerequisites. Learning Outcomes Properies of he Fourier Transform 4. Inroducion In his Secion we shall learn abou some useful properies of he Fourier ransform which enable us o calculae easily furher ransforms of funcions and also in

More information

Homework (lecture 14): 2, 4, 7, 9, 10, 14, 16, 23, 26, 29, 35, 39, 45, 49, 54, 59, 64, 69

Homework (lecture 14): 2, 4, 7, 9, 10, 14, 16, 23, 26, 29, 35, 39, 45, 49, 54, 59, 64, 69 Homework (lecure 14):, 4, 7, 9, 10, 14, 16, 3, 6, 9, 35, 39, 45, 49, 54, 59, 64, 69 . In he figure below, he magneic flux hrough he loop increases according o he relaion B = 6.0 + 7.0, where B is in milliwebers

More information

DC Circuits: Capacitors and Inductors Hasan Demirel

DC Circuits: Capacitors and Inductors Hasan Demirel DC Circuis: Hasan Demirel : Inroducion Inroducion Capaciors Series and Parallel Capaciors Inducors Series and Parallel Inducors : Inroducion Resisors are passive elemens which dissipae energy only. Two

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

Power MOSFET Basics: Understanding Gate Charge and Using it to Assess Switching Performance

Power MOSFET Basics: Understanding Gate Charge and Using it to Assess Switching Performance VISHAY SILICONIX www.vishay.com Power MOSFETs INTRODUCTION This noe is par of a series of applicaion noes ha define he fundamenal behavior of MOSFETs, boh as sandalone devices and as swiching devices implemened

More information

/30/2009. Perhaps the most important of all the applications of calculus is to differential equations. Modeling with Differential Equations

/30/2009. Perhaps the most important of all the applications of calculus is to differential equations. Modeling with Differential Equations 10 DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Perhaps he mos imporan of all he applicaions of calculus is o differenial equaions. DIFFERENTIAL EQUATIONS When physical or social scieniss use calculus,

More information

Laboratory #3 Diode Basics and Applications (I)

Laboratory #3 Diode Basics and Applications (I) Laboraory #3 iode asics and pplicaions (I) I. Objecives 1. Undersand he basic properies of diodes. 2. Undersand he basic properies and operaional principles of some dioderecifier circuis. II. omponens

More information

Physics 2001 Problem Set 2 Solutions

Physics 2001 Problem Set 2 Solutions Physics 2001 Problem Se 2 Soluions Jeff Kissel Sepember 12, 2006 1. An objec moves from one poin in space o anoher. Afer i arrives a is desinaion, is displacemen is (a) greaer han or equal o he oal disance

More information

Electricity & Electronics 9: Properties of Operational Amplifiers

Electricity & Electronics 9: Properties of Operational Amplifiers Elecriciy & Elecronics 9: Properies of Operaional Amplifiers AIM This uni and he nex one will look a an imporan analogue elecronics device called an operaional amplifier or opamp for shor. I has imporan

More information

Chapter 2: Principles of steady-state converter analysis. 2.1 Introduction Buck converter. Dc component of switch output voltage

Chapter 2: Principles of steady-state converter analysis. 2.1 Introduction Buck converter. Dc component of switch output voltage haper Principles of Seady-Sae onerer Analysis.. Inroducion.. Inducor ol-second balance, capacior charge balance, and he small ripple approximaion.3. Boos conerer example.4. uk conerer example.5. Esimaing

More information

Lab 1: One Dimensional Kinematics

Lab 1: One Dimensional Kinematics Lab 1: One Dimensional Kinemaics Lab Secion (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Name: Parners: Pre-Lab You are required o finish his secion before coming o he lab, which will be checked

More information

6.003 Homework #4 Solutions

6.003 Homework #4 Solutions 6.3 Homewk #4 Soluion Problem. Laplace Tranfm Deermine he Laplace ranfm (including he region of convergence) of each of he following ignal: a. x () = e 2(3) u( 3) X = e 3 2 ROC: Re() > 2 X () = x ()e d

More information

1) Draw a free body diagram for each of the following objects:

1) Draw a free body diagram for each of the following objects: Forces - Pracice 1) Draw a free body diagram for each of he following objecs: a) An apple (a res) siing on a able. b) A mass of 10 kg hanging from a single rope (a res, no swinging) c) A man falling off

More information

( ) in the following way. ( ) < 2

( ) in the following way. ( ) < 2 Sraigh Line Moion - Classwork Consider an obbec moving along a sraigh line eiher horizonally or verically. There are many such obbecs naural and man-made. Wrie down several of hem. Horizonal cars waer

More information

Physics 214 INTRODUCTION TO LABORATORY ELECTRONICS Lecture 3 Topics: capacitors, transients in RC (resistor + capacitor) circuits

Physics 214 INTRODUCTION TO LABORATORY ELECTRONICS Lecture 3 Topics: capacitors, transients in RC (resistor + capacitor) circuits Physics 4 INTRODUTION TO LABORATORY ELETRONIS Lecure 3 Topics: capaciors, ransiens in R (resisor + capacior) circuis As adverised, we now urn o devices ha have frequency dependen characerisics. A capacior

More information

EXPERIMENT #5 AM DETECTOR AND SYSTEM OPERATION

EXPERIMENT #5 AM DETECTOR AND SYSTEM OPERATION EXPERIMENT #5 AM DETECTOR AND SYSTEM OPERATION INTRODUCTION: Once he appropriae carrier signal has been seleced and amplified in a radio receiver, one of he final seps remaining is o recover he inelligence.

More information

Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that

Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that Mah 344 May 4, Complex Fourier Series Par I: Inroducion The Fourier series represenaion for a funcion f of period P, f) = a + a k coskω) + b k sinkω), ω = π/p, ) can be expressed more simply using complex

More information

Energy stored in capacitor

Energy stored in capacitor Energy sored in capacior V = V B harging capacior + Q V = V B - Q V = V B Sored charge + Q V = V B - Q V = V B Sored charge produces he curren + Q - Q V = V B 10mA R Energy sored in capacior Elecric Energy

More information

Trigonometric Functions c 2002 Donald Kreider and Dwight Lahr

Trigonometric Functions c 2002 Donald Kreider and Dwight Lahr Trigonomeric Funcions c 2002 Donald Kreider and Dwigh Lahr Modeling wih Trigonomeric Funcions: You firs me he rigonomeric funcions in algebra and rigonomery in high school. In a ypical rigonomery course

More information

Chapter 4 Logarithmic Functions

Chapter 4 Logarithmic Functions 4.1 Logarihms and Their Properies Chaper 4 Logarihmic Funcions Wha is a Logarihm? We define he common logarihm funcion, or simply he log funcion, wrien log 10 x or log x, as follows: If x is a posiive

More information

1. The graph shows the variation with time t of the velocity v of an object.

1. The graph shows the variation with time t of the velocity v of an object. 1. he graph shows he variaion wih ime of he velociy v of an objec. v Which one of he following graphs bes represens he variaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a 2. A ball, iniially

More information

Ohm s Law, Kirchhoff s Law, Single loop circuits, Single node-pair circuits. Kevin D. Donohue, University of Kentucky 1

Ohm s Law, Kirchhoff s Law, Single loop circuits, Single node-pair circuits. Kevin D. Donohue, University of Kentucky 1 Ohm s Law, Kirchhoff s Law, Single loop circuis, Single nodepair circuis Kevin D. Donohue, Universiy of Kenucky 1 The relaionship beween volage and curren hrough a maerial, characerized by resisance, is

More information

EXPERIMENT #8 FREQUENCY MODULATION

EXPERIMENT #8 FREQUENCY MODULATION EXPERIMENT #8 FREQUENCY MODULATION INTRODUCTION: Frequency modulaion, or FM, is an imporan mehod of impressing informaion on a carrier. I has many advanages over AM. Firs, since FM only changes he frequency

More information

Response of an RC filter to a square wave:

Response of an RC filter to a square wave: 9/7/7 Miscellaneous exercises Filered square wave Response of an RC filer o a square wave: The experimener ofen uses a square wave for iming and iggering purposes. Wha happens o a square wave afer passing

More information

The Discontinuous Conduction Mode

The Discontinuous Conduction Mode Chaper 5 The Disconinuous Conducion Mode When he ideal swiches of a dc-dc converer are implemened using currenunidirecional and/or volage-unidirecional semiconducor swiches, one or more new modes of operaion

More information

1.Blowdown of a Pressurized Tank

1.Blowdown of a Pressurized Tank .Blowdown of a ressurized Tank This experimen consiss of saring wih a ank of known iniial condiions (i.e. pressure, emperaure ec.) and exiing he gas hrough a choked nozzle. The objecive is o es he heory

More information

Signal Rectification

Signal Rectification 9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, half-wae and fullwae. Le s firs consider he ideal

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1 - TRANSIENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1 - TRANSIENTS EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67 - FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1 - RANIEN Uni conen 2 Undersand he ransien behaviour of resisor-capacior (R) and resisor-inducor (RL) D circuis

More information

State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University

State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween

More information

Objective of the Lecture

Objective of the Lecture s Order ircuis Objecive of he ecure Explain he ransien response of a circui As he capacior sores energy when here is: a ransiion in a uni sep funcion source, u- o or a volage or curren source is swiched

More information

Linear Systems of Differential Equations

Linear Systems of Differential Equations Linear Sysems of Differenial Equaions A firs order linear n-dimensional sysem of differenial equaions akes he form Y A Y + B, or, in expanded form, y y y n a a a n a a a n a n a n a nn y y y n + b b b

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

Math 308 Week 10 Solutions

Math 308 Week 10 Solutions Mah 8 Week Soluions Here are soluions o he even-numbered suggesed problems. The answers o he oddnumbered problems are in he back of our ebook, and he soluions are in he Soluion Manual, which ou can purchase

More information

Full-wave rectification, bulk capacitor calculations Chris Basso January 2009

Full-wave rectification, bulk capacitor calculations Chris Basso January 2009 ull-wave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal

More information

RESPONSE OF. C.T. Pan 1. C.T. Pan

RESPONSE OF. C.T. Pan 1. C.T. Pan ESPONSE OF FIST-ODE C AND L CICUITS C.T. Pan 1 7.1 The Naural esponse of an C Circui 7.2 The Naural esponse of an L Circui 7.3 Singulariy Funcions 7.4 The Sep esponse of C and L Circui C.T. Pan 2 7.1 The

More information

Astable multivibrator using the 555 IC.(10)

Astable multivibrator using the 555 IC.(10) Visi hp://elecronicsclub.cjb.ne for more resources THE 555 IC TIMER The 555 IC TIMER.(2) Monosable mulivibraor using he 555 IC imer...() Design Example 1 wih Mulisim 2001 ools and graphs..(8) Lile descripion

More information

A Mathematical Description of MOSFET Behavior

A Mathematical Description of MOSFET Behavior 10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical

More information

4.6 #2: Find a particular solution to the second-order differential equation. y + 4y = sec 2t.

4.6 #2: Find a particular solution to the second-order differential equation. y + 4y = sec 2t. 4.6 #: Find a paricular soluion o he second-order differenial equaion y + 4y = sec. Soluion: To find he paricular soluion, we use variaion of parameers. Firs, we need o find a fundamenal se of soluions

More information

Graphing the Von Bertalanffy Growth Equation

Graphing the Von Bertalanffy Growth Equation file: d:\b173-2013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and

More information

EE Control Systems LECTURE 4

EE Control Systems LECTURE 4 Copyrigh FL Lewis 999 All righs reserved EE 434 - Conrol Sysems LECTURE 4 Updaed: Wednesday, February 0, 999 TRANSFER FUNCTION AND ODE SOLUTION TRANSFER FUNCTION, POLES, ZEROS, STEP REPONSE The Laplace

More information

Making Use of Gate Charge Information in MOSFET and IGBT Data Sheets

Making Use of Gate Charge Information in MOSFET and IGBT Data Sheets Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have

More information

ICP/Physics 8 Dynamics Lab p. 1. Name Partner. Date TA Lab Day/Time. Lab 3: Dynamics

ICP/Physics 8 Dynamics Lab p. 1. Name Partner. Date TA Lab Day/Time. Lab 3: Dynamics ICP/Physics 8 Dynamics Lab p. 1 Name Parner Dae TA Lab Day/Time Inroducion Lab 3: Dynamics This lab has wo purposes. Firs, saring wih he prelab quesions, you ve already addressed increasingly difficul

More information

UIUC Physics 406 Acoustical Physics of Music. Beats Phenomenon

UIUC Physics 406 Acoustical Physics of Music. Beats Phenomenon UIUC Physics 406 Acousical Physics of Music Beas Phenomenon Linearly superpose (i.e. add) wo signals wih ampliudes A() and A(), and which have similar/comparable frequencies, () ~ (), wih insananeous phase

More information

Fourier series. Learning outcomes

Fourier series. Learning outcomes Fourier series 23 Conens. Periodic funcions 2. Represening ic funcions by Fourier Series 3. Even and odd funcions 4. Convergence 5. Half-range series 6. The complex form 7. Applicaion of Fourier series

More information

One-Dimensional Kinematics

One-Dimensional Kinematics One-Dimensional Kinemaics Michael Fowler Physics 14E Lec Jan 19, 009 Reference Frame Mechanics sars wih kinemaics, which is jus a quaniaive descripion of moion. Then i goes on o dynamics, which aemps o

More information

THE CATCH PROCESS. Deaths, both sources. M only F only Both sources. = N N_SMF 0 t. N_SM t. = N_SMF t. = N_SF t

THE CATCH PROCESS. Deaths, both sources. M only F only Both sources. = N N_SMF 0 t. N_SM t. = N_SMF t. = N_SF t THE CATCH PROCESS Usually we canno harves all he fish from a populaion all a he same ime. Insead, we cach fish over some period of ime and gradually diminish he size of he populaion. Now we will explore

More information

Hazard and Reliability Functions, Failure Rates

Hazard and Reliability Functions, Failure Rates Hazard and Reliabiliy Funcions, Failure Raes ECE 313 Probabiliy wih Engineering Applicaions Lecure 20 Professor Ravi K. Iyer Dep. of Elecrical and Compuer Engineering Universiy of Illinois a Urbana Champaign

More information

Experiment No. 10: Study of ZVS and ZCS in auxiliary switch active clamp buck converter

Experiment No. 10: Study of ZVS and ZCS in auxiliary switch active clamp buck converter Experimen No. : Sudy of ZVS and ZS in auxiliary swich acive clamp buck converer Objecive: The experimen demonsraes a mehod o implemen ZVS (Zero Volage Swiching) on he main swich of he Buck onverer by using

More information

Linear Op Amp Circuits

Linear Op Amp Circuits Linear Op Amp ircuis ircuis presened here have requencydependence properies incorporaed in he design Such circuis usually employ capaciors: diereniaor, inegraor, all phase shi circuis and opamp ampliiers

More information

Lab 2 Position and Velocity

Lab 2 Position and Velocity b Lab 2 Posiion and Velociy Wha You Need To Know: Working Wih Slope In las week s lab you deal wih many graphing ideas. You will coninue o use one of hese ideas in his week s lab, specifically slope. Howeer,

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO Profi Tes Modelling in Life Assurance Using Spreadshees, par wo PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO Erik Alm Peer Millingon Profi Tes Modelling in Life Assurance Using Spreadshees,

More information

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches. Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa

More information

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer) Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

More information

Straight Line Motion, Functions, average velocity and speed.

Straight Line Motion, Functions, average velocity and speed. Sraigh Line Moion, Funcions, average velociy and speed. Moion occurs whenever an objec changes posiion. Since objecs canno insananeously change posiion, raher hey do so progressively over ime, ime mus

More information

When v = e j is a standard basis vector, we write F

When v = e j is a standard basis vector, we write F 1. Differeniabiliy Recall he definiion of derivaive from one variable calculus Definiion 1.1. We say ha f : R R is differeniable a a poin a R if he quaniy f f(a + h f(a (a := h 0 h exiss. We hen call f

More information

AP Calculus BC 2010 Scoring Guidelines

AP Calculus BC 2010 Scoring Guidelines AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board

More information