Imagine a Source (S) of sound waves that emits waves having frequency f and therefore


 Peter Sims
 2 years ago
 Views:
Transcription
1 heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing relaie o () will also obsere ha he sound wae has requency. I on he oher hand () is moing relaie o (), () will deec a dieren requency ha is shied o eiher a higher or lower alue depending upon he deails o he relaie moion beween (), () and he medium in which he sound waes propagae (usually Air (A)). In all ha ollow we will assume ha he elociy o sound is quoed relaie o he elociy o he medium, and ha all speeds o hings oher han sound waes are all less han he speed o sound regardless o he common reerence rame in which all o hem are quoed. ais ais Wae ron emied by ource () a and receied by eecor () a PF Creaed wih deskpf PF Wrier  rial :: hp://
2 he wae ron emied by he ource () a raels a oal disance o d in a oal ime o beore being receied by he eecor (). he sound wae raels along he  ais wih elociy rom () o (). his means ha d. Equae he epressions or d : Group ogeher all erms inoling : ( ) he wae ron emied by () a arries a () a. o be deinie le s imagine ha he wae ron we are alking abou is a cerain cres o he sound wae. he ery ne cres is hen emied by () a ime, he period o oscillaion o he source as measured relaie o is own res rame. Le be he ime when his ne wae ron is receied by (). ais ais Wae ron emied by ource () a receied by eecor () a and PF Creaed wih deskpf PF Wrier  rial :: hp://
3 3 Using eacly he same argumen as aboe, we can relae he siuaion a o he siuaion a. In he ime ineral he second wae ron raels a disance o d. Again, he sound wae raels wih a elociy along he ais o so d. We can equae he epressions or d and sole or o ind he second wae ron hen arries a () a. Beween emiing he successie cress () moes hrough a displacemen along he  ais o, and in his same ime ineral () moes hrough a displacemen o. his means ha a he insan he second cres is emied by (), he separaion beween () and () is ( ). ubsiuing his epression ino he one or we obain ( ). o, according o () we hae a wae ron emied a ollowed by he ne equialen wae ron emied a. his is he deiniion o he period o he wae as obsered by (). I we ask () wha i hinks is own requency is, he answer will be. According o () he irs wae ron arries a and he ne equialen wae ron arries a. he period o he wae according o () is hen. We can clean his up by geing a common denominaor and simpliying. PF Creaed wih deskpf PF Wrier  rial :: hp://
4 Now, i we ask () or he requency o he receied sound wae, he answer will be. he resul describes he oppler requency shi due o relaie moion o he ource () and he eecor (): o use his resul consisenly, we mus deine an ais upon along which () and () are moing relaie o one anoher. Our rame o reerence is se by he assumpion ha all elociies are quoed relaie o he medium in which he sound wae propagaes. In a momen we will see wha o do in he een ha we know he elociies o () and/or () relaie o he ground, he elociy o sound relaie o he medium, and he elociy o he medium relaie o he ground. Firs, le s igure ou how o ge he signs correc, hen we will allow he wind o blow. he power o using he elociy componens in deriing he oppler shi is ha i makes easy work o geing he signs righ. By answering a series o our simple quesions abou a gien siuaion, we can essenially assure a correc soluion. () Which direcion is he posiie direcion? () In which direcion is () moing? (i.e. wha is he sign o (3) In which direcion is () moing? (i.e. wha is he sign o (4) In which direcion mus sound rael o go rom () o ()? (i.e. wha is he sign o ome pecial Cases. uppose () moes away rom a saionary ource () a speed. Le he speed o sound relaie o he air be ais 4 PF Creaed wih deskpf PF Wrier  rial :: hp://
5 () he posiie direcion is o he righ as shown. () () is no moing relaie o he air,. (3) () is moing in he posiie direcion relaie o he air, (4) he sound mus rael in he posiie direcion relaie o he air in order o go rom () o (),. I () emis a requency hen () deecs a requency. uppose () moes away rom a saionary ource () a speed. Le he speed o sound relaie o he air be. his ime le s pu () o he le o (). () he posiie direcion is o he righ as shown. () () is no moing relaie o he air,. ais (3) () is moing in he negaie direcion relaie o he air, (4) he sound mus rael in he negaie direcion relaie o he air in order o go rom () o (),. I () emis a requency hen () deecs a requency ( ) ( ) As i mus be, his resul is he same as he preious one. Boh cases describe a eecor () receding rom he ource (). No maer wha direcion we label he posiie direcion () always measures a oppler shi o lower requency when i recedes rom (). 5 PF Creaed wih deskpf PF Wrier  rial :: hp://
6 3. uppose () and () muually approach one anoher wih speeds relaie o he air o and, respeciely. ais () he posiie direcion is o he righ as shown. () () is moing in he negaie direcion relaie o he air,. (3) () is moing in he posiie direcion relaie o he air, (4) he sound mus rael in he negaie direcion relaie o he air in order o go rom () o (),. I () emis a requency hen () deecs a requency ( ) ( ) ( ) ( ) Wha i he medium in which he sound wae propagaes moes relaie o he ground? emember Physics 3 and how you learned o rea relaie elociies. Here we will be ineresed mainly in he componens o relaie elociies along a paricular ais which we will coninue o label as he  ais. As a reminder, consider wo objecs and moing along he  ais. ais he componen o elociy o objec () relaie o he Ground (G) is componen o elociy o objec () relaie o he Ground is elociy o objec relaie o objec is G G G G and . he componen o. We can relae hese elociies using. he elociy o () relaie o () lierally means he elociy ha () 6 PF Creaed wih deskpf PF Wrier  rial :: hp://
7 has when obsered rom he poin o iew o (). In considering wo objecs i is easy o swich he poin o iew rom one o he oher,. As ar as elociies and iew poins go, here is nohing special abou eiher objec, he ground, he air, or any oher poin o reerence. We can use his idea along wih he abiliy o swich reerence rame by inroducing a minus sign o deelop a simple rule o humb or relaing relaie elociies. We hae already saed ha. uppose we epress he second G erm on he righ side rom he poin o iew o () raher han he (G), resul is G. G G G. he he rule: he elociy o () relaie o () is gien by he elociy o () relaie o (G) PLU he elociy o (G) relaie o (). he subscrips o he resulan relaie elociy are he ouer subscrips o he ecor sum, he common reerence rame ha links he elociies o he objecs is labeled by he inner subscrips o he ecor sum. G common reerence rame G G Velociy o () relaie o () We wan o use his idea o rea he siuaion in which he medium (A or Air) hrough which he sound wae propagaes moes relaie o he Ground (G). A ypical siuaion is he one in which we are ineresed in he elociy o sound relaie o he Air (A), A, and he elociies o he ource () and eecor () relaie o he Ground (G), G and G, respeciely. he new wrinkle is ha he Air (A) is no necessarily a res relaie o he Ground (A). We mus connec he elociies o () and () wih ha o ound using he Air (A) as he common rame o reerence. We already hae a oppler ormula in which all elociies are epressed relaie o he Air (A), so as long as we careully coninue epress elociies relaie o (A), we can use he same ormula. In he deriaion o he oppler ormula we simply assumed ha AG, we are now going o see how o generalize ha condiion. uppose we know all o he ollowing:  he elociy o sound relaie o he Air (A), A  he elociy o he Air (A) relaie o he Ground (G), AG 7 PF Creaed wih deskpf PF Wrier  rial :: hp://
8  he elociy o he ource () relaie o he Ground (G), G  he elociy o he eecor () relaie o he Ground (G), G  he requency emied by () as measured in is own reerence rame, We wish o know he requency as deeced by (),. I we were o epress all elociies relaie o (A), we could immediaely wrie down he answer: A A A A I is conenien o use he elociies o () and () relaie o (G), o do his we use he rule or relaie elociies, For he eecor (): A G GA A G AG For he ource (): A G GA A G AG he oppler eec in he presence o a moing medium is hen epressed in erms o he elociy o sound relaie o he medium AN he elociies o () and () relaie o he Ground (G) as A A [ ] G AG [ ] G AG Now, we should answer a series o ie simple quesions abou a gien siuaion i we wan o se eeryhing up correcly. () Which direcion is he posiie direcion? () In which direcion is () moing relaie o (G)? (i.e. wha is he sign o G (3) In which direcion is () moing relaie o (G)? (i.e. wha is he sign o G (4) In which direcion mus sound rael o go rom () o ()? (i.e. wha is he sign o A (5) In which direcion does he Air (A) rael relaie o he Ground (G) (i.e. wha is he sign o AG 8 PF Creaed wih deskpf PF Wrier  rial :: hp://
Chapter 2 Kinematics in One Dimension
Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how
More informationAnswer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prinou should hae 1 quesions. Muliplechoice quesions may coninue on he ne column or page find all choices before making your selecion. The
More informationMOTION ALONG A STRAIGHT LINE
Chaper 2: MOTION ALONG A STRAIGHT LINE 1 A paricle moes along he ais from i o f Of he following alues of he iniial and final coordinaes, which resuls in he displacemen wih he larges magniude? A i =4m,
More informationPhysics 107 HOMEWORK ASSIGNMENT #2
Phsics 7 HOMEWORK ASSIGNMENT # Cunell & Johnson, 7 h ediion Chaper : Problem 5 Chaper : Problems 44, 54, 56 Chaper 3: Problem 38 *5 MulipleConcep Example 9 deals wih he conceps ha are imporan in his problem.
More informationRelative velocity in one dimension
Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies
More informationKinematics in 1D From Problems and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, morin@physics.harvard.
Chaper 2 Kinemaics in 1D From Problems and Soluions in Inroducory Mechanics (Draf ersion, Augus 2014) Daid Morin, morin@physics.harard.edu As menioned in he preface, his book should no be hough of as
More informationChapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr
Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i
More information1. The graph shows the variation with time t of the velocity v of an object.
1. he graph shows he variaion wih ime of he velociy v of an objec. v Which one of he following graphs bes represens he variaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a 2. A ball, iniially
More informationcooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
More informationChapter 7. Response of FirstOrder RL and RC Circuits
Chaper 7. esponse of FirsOrder L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
More informationFACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures
FACULY OF MAHEMAICAL SUDIES MAHEMAICS FOR PAR I ENGINEERING Lecures MODULE 3 FOURIER SERIES Periodic signals Wholerange Fourier series 3 Even and odd uncions Periodic signals Fourier series are used in
More informationAppendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area workedou s o OddNumbered Eercises Do no read hese workedou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
More informationRotational Inertia of a Point Mass
Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha
More informationPhysic 231 Lecture 6. Main points of today s lecture: Trajectories of objects in 2 dimensions:
Main poins of oda s lecure: Trajecories of objecs in dimensions: Relaie Veloci Phsic 31 Lecure 6 Main poins of las lecure: Two dimension coordinae ssems Vecors and componens Trajecories of objecs in dimensions:
More informationRandom Walk in 1D. 3 possible paths x vs n. 5 For our random walk, we assume the probabilities p,q do not depend on time (n)  stationary
Random Walk in D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes
More informationLenz's Law. Definition from the book:
Lenz's Law Definiion from he book: The induced emf resuling from a changing magneic flux has a polariy ha leads o an induced curren whose direcion is such ha he induced magneic field opposes he original
More informationSignal Rectification
9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, halfwae and fullwae. Le s firs consider he ideal
More informationLecture 2: Telegrapher Equations For Transmission Lines. Power Flow.
Whies, EE 481 Lecure 2 Page 1 of 13 Lecure 2: Telegraher Equaions For Transmission Lines. Power Flow. Microsri is one mehod for making elecrical connecions in a microwae circui. I is consruced wih a ground
More informationAP Calculus AB 2013 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a missiondriven noforprofi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was
More information2. Waves in Elastic Media, Mechanical Waves
2. Waves in Elasic Media, Mechanical Waves Wave moion appears in almos ever branch of phsics. We confine our aenion o waves in deformable or elasic media. These waves, for eample ordinar sound waves in
More informationChapter 11A Angular Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chaper 11A Angular Moion A PowerPoin Presenaion by Paul E. Tippens, Proessor o Physics Souhern Polyechnic Sae Universiy 007 WIND TUBINES such as hese can generae signiican energy in a way ha is environmenally
More informationChapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m
Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m
More informationAcceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
More informationSection 7.1 Angles and Their Measure
Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed
More informationchapter Describing Motion chapter outline chapter overview unit one
Describing Moion chaper 2 chaper oeriew The main purpose of his chaper is o proide clear definiions and illusraions of he erms used in physics o describe moion, such as he moion of he car described in
More informationA ball rolls up and down an incline A ball tossed up which comes down along the same path
Lecure 4 Moion nd Kinemics Reiew Turning Poins Inerpreing Moion Grphs Ls ime we lef off lking bou ccelerion nd urning poins. Recll ccelerion is wh chnges n iniil elociy o finl elociy. A chnge in elociy
More informationWHAT ARE OPTION CONTRACTS?
WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be
More informationSection A: Forces and Motion
I is very useful o be able o make predicions abou he way moving objecs behave. In his chaper you will learn abou some equaions of moion ha can be used o calculae he speed and acceleraion of objecs, and
More informationFullwave rectification, bulk capacitor calculations Chris Basso January 2009
ullwave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal
More informationModule 4. Singlephase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Singlephase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
More informationYTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.
. Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure
More information11. Tire pressure. Here we always work with relative pressure. That s what everybody always does.
11. Tire pressure. The graph You have a hole in your ire. You pump i up o P=400 kilopascals (kpa) and over he nex few hours i goes down ill he ire is quie fla. Draw wha you hink he graph of ire pressure
More informationA Probability Density Function for Google s stocks
A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural
More informationGraphing the Von Bertalanffy Growth Equation
file: d:\b1732013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and
More informationChapter 2 Motion in One Dimension
Chaper Moion in One Dimension Concepual Problems Wha is he aerage elociy oer he round rip of an objec ha is launched sraigh up from he ground and falls sraigh back down o he ground? Deermine he Concep
More informationChapter 2 Motion in One Dimension
Chaper Moion in One Dimension Concepual Problems 5 Sand in he cener of a large room. Call he direcion o your righ posiie, and he direcion o your lef negaie. Walk across he room along a sraigh line, using
More informationEconomics 140A Hypothesis Testing in Regression Models
Economics 140A Hypohesis Tesing in Regression Models While i is algebraically simple o work wih a populaion model wih a single varying regressor, mos populaion models have muliple varying regressors 1
More informationThe Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
More informationCHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
More informationAP Calculus BC 2010 Scoring Guidelines
AP Calculus BC Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board
More information( ) in the following way. ( ) < 2
Sraigh Line Moion  Classwork Consider an obbec moving along a sraigh line eiher horizonally or verically. There are many such obbecs naural and manmade. Wrie down several of hem. Horizonal cars waer
More informationPermutations and Combinations
Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes  ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he kvalue for he middle erm, divide
More informationDiscussion Examples Chapter 10: Rotational Kinematics and Energy
Discussion Examples Chaper : Roaional Kinemaics and Energy 9. The Crab Nebula One o he mos sudied objecs in he nigh sky is he Crab nebula, he remains o a supernova explosion observed by he Chinese in 54.
More informationLAB 6: SIMPLE HARMONIC MOTION
1 Name Dae Day/Time of Lab Parner(s) Lab TA Objecives LAB 6: SIMPLE HARMONIC MOTION To undersand oscillaion in relaion o equilibrium of conservaive forces To manipulae he independen variables of oscillaion:
More informationTwo Compartment Body Model and V d Terms by Jeff Stark
Two Comparmen Body Model and V d Terms by Jeff Sark In a onecomparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics  By his, we mean ha eliminaion is firs order and ha pharmacokineic
More information4kq 2. D) south A) F B) 2F C) 4F D) 8F E) 16F
efore you begin: Use black pencil. Wrie and bubble your SU ID Number a boom lef. Fill bubbles fully and erase cleanly if you wish o change! 20 Quesions, each quesion is 10 poins. Each quesion has a mos
More informationTHE EQUATIONS OF THE IDEAL LATCHES
THE EUATIONS OF THE IDEAL LATHES SERBAN E. VLAD Oradea iy Hall, iaa Unirii Nr., 4000, Oradea, Romania www.geociies.com/serban_e_lad, serban_e_lad@yahoo.com ABSTRAT We presen he eqaions ha model seeral
More information2.6 Limits at Infinity, Horizontal Asymptotes Math 1271, TA: Amy DeCelles. 1. Overview. 2. Examples. Outline: 1. Definition of limits at infinity
.6 Limis a Infiniy, Horizonal Asympoes Mah 7, TA: Amy DeCelles. Overview Ouline:. Definiion of is a infiniy. Definiion of horizonal asympoe 3. Theorem abou raional powers of. Infinie is a infiniy This
More informationChapter 6. First Order PDEs. 6.1 Characteristics The Simplest Case. u(x,t) t=1 t=2. t=0. Suppose u(x, t) satisfies the PDE.
Chaper 6 Firs Order PDEs 6.1 Characerisics 6.1.1 The Simples Case Suppose u(, ) saisfies he PDE where b, c are consan. au + bu = 0 If a = 0, he PDE is rivial (i says ha u = 0 and so u = f(). If a = 0,
More informationHANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed.
Inverse Funcions Reference Angles Inverse Trig Problems Trig Indeniies HANDOUT 4 INVERSE FUNCTIONS KEY POINTS A.) Inroducion: Many acions in life are reversible. * Examples: Simple One: a closed door can
More informationA Curriculum Module for AP Calculus BC Curriculum Module
Vecors: A Curriculum Module for AP Calculus BC 00 Curriculum Module The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy.
More informationMath 201 Lecture 12: CauchyEuler Equations
Mah 20 Lecure 2: CauchyEuler Equaions Feb., 202 Many examples here are aken from he exbook. The firs number in () refers o he problem number in he UA Cusom ediion, he second number in () refers o he problem
More informationEconomics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
More informationMotion Along a Straight Line
Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his
More informationWeek #9  The Integral Section 5.1
Week #9  The Inegral Secion 5.1 From Calculus, Single Variable by HughesHalle, Gleason, McCallum e. al. Copyrigh 005 by John Wiley & Sons, Inc. This maerial is used by permission of John Wiley & Sons,
More informationSOLID MECHANICS TUTORIAL GEAR SYSTEMS. This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 3.
SOLI MEHNIS TUTORIL GER SYSTEMS This work covers elemens of he syllabus for he Edexcel module 21722P HN/ Mechanical Principles OUTOME 3. On compleion of his shor uorial you should be able o do he following.
More informationBrown University PHYS 0060 INDUCTANCE
Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide INTODUCTION INDUCTANCE Anyone who has ever grabbed an auomobile sparkplug wire a he wrong place, wih he engine running, has an appreciaion
More informationEntropy: From the Boltzmann equation to the Maxwell Boltzmann distribution
Enropy: From he Bolzmann equaion o he Maxwell Bolzmann disribuion A formula o relae enropy o probabiliy Ofen i is a lo more useful o hink abou enropy in erms of he probabiliy wih which differen saes are
More information1 HALFLIFE EQUATIONS
R.L. Hanna Page HALFLIFE EQUATIONS The basic equaion ; he saring poin ; : wrien for ime: x / where fracion of original maerial and / number of halflives, and / log / o calculae he age (# ears): age (halflife)
More informationMathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
More informationINVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS
INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS Ilona Tregub, Olga Filina, Irina Kondakova Financial Universiy under he Governmen of he Russian Federaion 1. Phillips curve In economics,
More informationAP1 Kinematics (A) (C) (B) (D) Answer: C
1. A ball is hrown verically upward from he ground. Which pair of graphs bes describes he moion of he ball as a funcion of ime while i is in he air? Neglec air resisance. y a v a (A) (C) y a v a (B) (D)
More informationLectures # 5 and 6: The Prime Number Theorem.
Lecures # 5 and 6: The Prime Number Theorem Noah Snyder July 8, 22 Riemann s Argumen Riemann used his analyically coninued ζfuncion o skech an argumen which would give an acual formula for π( and sugges
More informationChapter 2: Principles of steadystate converter analysis
Chaper 2 Principles of SeadySae Converer Analysis 2.1. Inroducion 2.2. Inducor volsecond balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer
More informationRC (ResistorCapacitor) Circuits. AP Physics C
(ResisorCapacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
More information2.5 Life tables, force of mortality and standard life insurance products
Soluions 5 BS4a Acuarial Science Oford MT 212 33 2.5 Life ables, force of moraliy and sandard life insurance producs 1. (i) n m q represens he probabiliy of deah of a life currenly aged beween ages + n
More informationChapter 4. Properties of the Least Squares Estimators. Assumptions of the Simple Linear Regression Model. SR3. var(e t ) = σ 2 = var(y t )
Chaper 4 Properies of he Leas Squares Esimaors Assumpions of he Simple Linear Regression Model SR1. SR. y = β 1 + β x + e E(e ) = 0 E[y ] = β 1 + β x SR3. var(e ) = σ = var(y ) SR4. cov(e i, e j ) = cov(y
More informationChapter 3. Motion in Two or Three Dimensions
Chaper 3 Moion in Two or Three Dimensions 1 Ouline 1. Posiion, eloci, acceleraion. Moion in a plane (Se of equaions) 3. Projecile Moion (Range, Heigh, Veloci, Trajecor) 4. Circular Moion (Polar coordinaes,
More informationNewton s Laws of Motion
Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The
More information4. International Parity Conditions
4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency
More informationPROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
More informationsdomain Circuit Analysis
Domain ircui Analyi Operae direcly in he domain wih capacior, inducor and reior Key feaure lineariy i preered c decribed by ODE and heir Order equal number of plu number of Elemenbyelemen and ource ranformaion
More informationChapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
More informationGraduate Macro Theory II: Notes on Neoclassical Growth Model
Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.
More informationLecture III: Finish Discounted Value Formulation
Lecure III: Finish Discouned Value Formulaion I. Inernal Rae of Reurn A. Formally defined: Inernal Rae of Reurn is ha ineres rae which reduces he ne presen value of an invesmen o zero.. Finding he inernal
More informationINTRODUCTION TO EMAIL MARKETING PERSONALIZATION. How to increase your sales with personalized triggered emails
INTRODUCTION TO EMAIL MARKETING PERSONALIZATION How o increase your sales wih personalized riggered emails ECOMMERCE TRIGGERED EMAILS BEST PRACTICES Triggered emails are generaed in real ime based on each
More informationChabot College Physics Lab RC Circuits Scott Hildreth
Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard
More information17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
More informationCapacitors and inductors
Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear
More informationA Mathematical Description of MOSFET Behavior
10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical
More informationThe Torsion of Thin, Open Sections
EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such
More information23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes
Even and Odd Funcions 23.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl
More informationInterference, Diffraction and Polarization
L.1  Simple nerference Chaper L nerference, Diffracion and Polarizaion A sinusoidal wave raveling in one dimension has he form: Blinn College  Physics 2426  Terry Honan A coshk x w L where in he case
More informationSection 5.1 The Unit Circle
Secion 5.1 The Uni Circle The Uni Circle EXAMPLE: Show ha he poin, ) is on he uni circle. Soluion: We need o show ha his poin saisfies he equaion of he uni circle, ha is, x +y 1. Since ) ) + 9 + 9 1 P
More informationPeriod 4 Activity Solutions: Transfer of Thermal Energy
Period 4 Aciviy Soluions: Transfer of Thermal nergy 4.1 How Does Temperaure Differ from Thermal nergy? a) Temperaure Your insrucor will demonsrae molecular moion a differen emperaures. 1) Wha happens o
More informationSpecial Relativity Being from Misunderstanding of Principle of Constant Speed of Light
Speial Relaii Being from Misundersanding of riniple of Consan Speed of Ligh Li ifeng Yanshan Uniersi Qinhuangdao Hebei 066004 China Absra Inrodues basi hpoheses and basi iewpoin of spaeime in speial relaii.
More informationInductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College  Physics 2426  Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
More informationDerivation of longitudinal Doppler shift equation between two moving bodies in a reference frame at rest using the particle property of photons
Deriaion o longiudinal Doppler shi equaion beween wo moing bodies in a reerene rame a res using he parile propery o phoons Masanori Sao Honda Eleronis Co., d., Oyamazuka, Oiwaho, Toyohashi, ihi 44393,
More informationModule 3 Design for Strength. Version 2 ME, IIT Kharagpur
Module 3 Design for Srengh Lesson 2 Sress Concenraion Insrucional Objecives A he end of his lesson, he sudens should be able o undersand Sress concenraion and he facors responsible. Deerminaion of sress
More informationRepresenting Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1
Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals
More informationUnderstanding Sequential Circuit Timing
ENGIN112: Inroducion o Elecrical and Compuer Engineering Fall 2003 Prof. Russell Tessier Undersanding Sequenial Circui Timing Perhaps he wo mos disinguishing characerisics of a compuer are is processor
More informationSums of generalized harmonic series and volumes
Sums o generalized harmonic series and umes by Fris eukers, Eugenio Calabi and Johan A.C. Kolk Mahemaisch Insiuu, Rijksuniversiei Urech PO ox 8, 358 TA Urech, The Neherlands Deparmen o Mahemaics, Universiy
More information1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,
Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..
More informationWhen one talks about a 'projectile', the implicabion is itrai we give an object
LAB, PROJECTLE MOruO.^\ 45 Lab Projecile Moion 1 nroducion n his lab we will look a he moion of a projecile in wo dimensions. When one alks abou a 'projecile', he implicabion is irai we give an objec an
More informationChapter 4: Exponential and Logarithmic Functions
Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion
More informationDifferential Equations and Linear Superposition
Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67  FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1  TRANSIENTS
EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67  FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1  RANIEN Uni conen 2 Undersand he ransien behaviour of resisorcapacior (R) and resisorinducor (RL) D circuis
More informationMarkov Chain Modeling of Policy Holder Behavior in Life Insurance and Pension
Markov Chain Modeling of Policy Holder Behavior in Life Insurance and Pension Lars Frederik Brand Henriksen 1, Jeppe Woemann Nielsen 2, Mogens Seffensen 1, and Chrisian Svensson 2 1 Deparmen of Mahemaical
More informationELECTRICAL CIRCUITS 7. NONLINEAR COMPARATOR OSCILLATORS
87 ELETIAL IUITS 7. NONLEA OMPAATO OSILLATOS Inroducion A linear oscillaor is a basic feedback conrol sysem ha has been made deliberaely unsable a he frequency of oscillaion. The linear oscillaor sysem
More informationSound Waves, Beats, and Doppler Effect (Ch 178, 179)
Sound Waes, Beats, and Doppler Eect (Ch 78, 79) A ibrating object, such as a tuning ork, produces a sound wae in air. We usually think o sound waes traelling in air, or normally it is the ibration o
More information