CAPACITANCE AND INDUCTANCE

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CAPACITANCE AND INDUCTANCE"

Transcription

1 CHAPTER 6 CAPACITANCE AND INDUCTANCE THE LEARNING GOALS FOR THIS CHAPTER ARE: Know how o use circui models for inducors and capaciors o calculae volage, curren, and power Be able o calculae sored energy for capaciors and inducors Undersand he conceps of coninuiy of curren for an inducor and coninuiy of volage for a capacior Be able o calculae volages and currens for capaciors and inducors in elecric circuis wih dc sources AAirpor Scanners Couresy of UPI/Brian Kersey/NewsCom To be searched or no o be searched is never he quesion. Air ravelers demand securiy in he skies and oday s echnology makes i possible wih jus a 5o3 second body scan insead of an inrusive padown ha can ake wo o four minues. Over 99% of airline passengers in major airpors across he naion choose o use body scanners when faced wih he opion. Scanners can spo plasic and ceramic weapons and explosives ha evade meal deecors and could evenually replace meal deecors a he naion s 2, airpor checkpoins. Mos ravelers say hey welcome any measure ha enhances safey, even if i means giving up some privacy. Today s new body scanners depend on millimeer wave echnology or backscaer xray echnology. The firs produces an image ha resembles a fuzzy phoo negaive; he second a Know how o combine capaciors and inducors in series and parallel chalk eching. Millimeer wave echnology emis, imes less radio frequency han a cell phone. Backscaer echnology uses highenergy xrays as i moves hrough clohing and oher maerials. In boh cases, images used for securiy are no reained bu desroyed immediaely. This chaper inroduces wo new circui elemens: capaciors and inducors ha sore energy in elecric and magneic fields. Volage and curren relaionships for hese componens do no follow Ohm s law bu insead connec volages and currens o heir derivaives and inegrals. Capaciors and inducors are cenral o he sudy of alernaing curren circuis. They are also key componens in making body scanners work. The circui designs behind effecive fullbody scanners help make everyone safer in he skies. Wha a feeling. 245

2 246 CHAPTER 6 CAPACITANCE AND INDUCTANCE 6. Capaciors A capacior is a circui elemen ha consiss of wo conducing surfaces separaed by a nonconducing, or dielecric, maerial. A simplified capacior and is elecrical symbol are shown in Fig. 6.. There are many differen kinds of capaciors, and hey are caegorized by he ype of dielecric maerial used beween he conducing plaes. Alhough any good insulaor can serve as a dielecric, each ype has characerisics ha make i more suiable for paricular applicaions. For general applicaions in elecronic circuis (e.g., coupling beween sages of amplificaion), he dielecric maerial may be paper impregnaed wih oil or wax, mylar, polysyrene, mica, glass, or ceramic. Ceramic dielecric capaciors consruced of barium ianaes have a large capacianceovolume raio because of heir high dielecric consan. Mica, glass, and ceramic dielecric capaciors will operae saisfacorily a high frequencies. Aluminum elecrolyic capaciors, which consis of a pair of aluminum plaes separaed by a moisened borax pase elecrolye, can provide high values of capaciance in small volumes. They are ypically used for filering, bypassing, and coupling, and in power supplies and moorsaring applicaions. Tanalum elecrolyic capaciors have lower losses and more sable characerisics han hose of aluminum elecrolyic capaciors. Fig. 6.2 shows a variey of ypical discree capaciors. In addiion o hese capaciors, which we deliberaely inser in a nework for specific applicaions, sray capaciance is presen any ime here is a difference in poenial beween wo conducing maerials separaed by a dielecric. Because his sray capaciance can cause Figure 6. A capacior and is elecrical symbol. [hin] A (a) Dielecric d v() i= dq (b) q() C Noe he use of he passive sign convenion. Figure 6.2 Some ypical capaciors. (Couresy of Mark Nelms and Jo Ann Loden)

3 SECTION 6. CAPACITORS 247 unwaned coupling beween circuis, exreme care mus be exercised in he layou of elecronic sysems on prined circui boards. Capaciance is measured in coulombs per vol or farads. The uni farad (F) is named afer Michael Faraday, a famous English physicis. Capaciors may be fixed or variable and ypically range from housands of microfarads ( F) o a few picofarads (pf). Capacior echnology, iniially driven by he modern ineres in elecric vehicles, is rapidly changing, however. For example, he capacior on he lef in he phoograph in Fig. 6.3 is a doublelayer capacior, which is raed a 2.5 V and F. An aluminum elecrolyic capacior, raed a 25 V and 68, F, is shown on he righ in his phoograph. The elecrolyic capacior can sore.5 * 6.8 * 2 * 25 2 = 2.25 joules (J). The Figure 6.3 doublelayer capacior can sore.5 * * = 32.5 J. Le s connec en of he F capaciors in series for an equivalen 25V capacior. The energy sored in his equivalen capacior is 325 J. We would need o connec 47 elecrolyic capaciors in parallel o sore ha much energy. I is ineresing o calculae he dimensions of a simple equivalen capacior consising of wo parallel plaes each of area A, separaed by a disance d as shown in Fig. 6.. We learned in basic physics ha he capaciance of wo parallel plaes of area A, separaed by disance d, is C = e o A d where o, he permiiviy of free space, is 8.85 * 2 F/m. If we assume he plaes are separaed by a disance in air of he hickness of one shee of oilimpregnaed paper, which is abou.6 * 4 m, hen F = A8.85 * 2 BA.6 * 4 A =.48 * 9 m 2 and since square mile is equal o 2.59 * 6 square meers, he area is A 443 square miles which is he area of a mediumsized ciy! I would now seem ha he doublelayer capacior in he phoograph is much more impressive han i originally appeared. This capacior is acually consruced using a high surface area maerial such as powdered carbon which is adhered o a meal foil. There are lierally millions of pieces of carbon employed o obain he required surface area. Suppose now ha a source is conneced o he capacior shown in Fig. 6.; hen posiive charges will be ransferred o one plae and negaive charges o he oher. The charge on he capacior is proporional o he volage across i such ha q=cv 6. where C is he proporionaliy facor known as he capaciance of he elemen in farads. The charge differenial beween he plaes creaes an elecric field ha sores energy. Because of he presence of he dielecric, he conducion curren ha flows in he wires ha connec he capacior o he remainder of he circui canno flow inernally beween he plaes. However, via elecromagneic field heory i can be shown ha his conducion curren is equal o he displacemen curren ha flows beween he plaes of he capacior and is presen any ime ha an elecric field or volage varies wih ime. Our primary ineres is in he curren volage erminal characerisics of he capacior. Since he curren is i = dq A F doublelayer capacior and a 68, F elecrolyic capacior. (Couresy of Mark Nelms and Jo Ann Loden)

4 248 CHAPTER 6 CAPACITANCE AND INDUCTANCE hen for a capacior i = d (Cv) which for consan capaciance is i = C dv 6.2 Eq. (6.2) can be rewrien as dv = C i Now inegraing his expression from = q o some ime and assuming v( q)= yields v() = C 3 q i(x) dx 6.3 where v() indicaes he ime dependence of he volage. Eq. (6.3) can be expressed as wo inegrals, so ha v() = dx C 3qi(x) i(x) dx C 3 = v( ) i(x) dx C where va B is he volage due o he charge ha accumulaes on he capacior from ime = q o ime =. The energy sored in he capacior can be derived from he power ha is delivered o he elemen. This power is given by he expression p() = v()i() = Cv() dv() 6.5 and hence he energy sored in he elecric field is w C () = Cv(x) dv(x) dx = C v(x) dv(x) dx 3 dx 3 dx q = C 3 v() v(q) q v(x) dv(x) = v() 2 Cv2 (x)2 v(q) = 2 Cv2 () J 6.6 since v(= q)=. The expression for he energy can also be wrien using Eq. (6.) as w C () = q 2 () 2 C 6.7 Eqs. (6.6) and (6.7) represen he energy sored by he capacior, which, in urn, is equal o he work done by he source o charge he capacior. Now le s consider he case of a dc volage applied across a capacior. From Eq. (6.2), we see ha he curren flowing hrough he capacior is direcly proporional o he ime rae of change of he volage across he capacior. A dc volage does no vary wih ime, so he curren flowing hrough he capacior is zero. We can say ha a capacior is an open circui o

5 SECTION 6. CAPACITORS 249 dc or blocks dc. Capaciors are ofen uilized o remove or filer ou an unwaned dc volage. In analyzing a circui conaining dc volage sources and capaciors, we can replace he capaciors wih an open circui and calculae volages and currens in he circui using our many analysis ools. Noe ha he power absorbed by a capacior, given by Eq. (6.5), is direcly proporional o he ime rae of change of he volage across he capacior. Wha if we had an insananeous change in he capacior volage? This would correspond o dv =qand infinie power. In Chaper, we ruled ou he possibiliy of any sources of infinie power. Since we only have finie power sources, he volage across a capacior canno change insananeously. This will be a paricularly helpful idea in he nex chaper when we encouner circuis conaining swiches. This idea of coninuiy of volage for a capacior ells us ha he volage across he capacior jus afer a swich moves is he same as he volage across he capacior jus before ha swich moves. The polariy of he volage across a capacior being charged is shown in Fig. 6.b. In he ideal case, he capacior will hold he charge for an indefinie period of ime, if he source is removed. If a some laer ime an energyabsorbing device (e.g., a flash bulb) is conneced across he capacior, a discharge curren will flow from he capacior and, herefore, he capacior will supply is sored energy o he device. If he charge accumulaed on wo parallel conducors charged o 2 V is 6 pc, wha is he capaciance of he parallel conducors? Using Eq. (6.), we find ha C = Q V = (6)A2 B 2 = 5 pf SOLUTION EXAMPLE 6. The volage across a 5 F capacior has he waveform shown in Fig. 6.4a. Deermine he curren waveform. Noe ha v() = = * 6 ms ms 3 2 * = 8 ms SOLUTION EXAMPLE 6.2 v() (V) 24 V i() (ma) Figure 6.4 Volage and curren waveforms for a 5 F capacior (a) (b)

6 25 CHAPTER 6 CAPACITANCE AND INDUCTANCE Using Eq. (6.2), we find ha dv () i() = C = 5 * 6 A4 * 3 B 6 ms = 2 ma 6 ms i() = 5 * 6 A2 * 3 B 6 8 ms =6 ma ms and i() = 8 ms Therefore, he curren waveform is as shown in Fig. 6.4b and i()= for >8 ms. EXAMPLE 6.3 SOLUTION Deermine he energy sored in he elecric field of he capacior in Example 6.2 a =6 ms. Using Eq. (6.6), we have w() = 2 Cv2 () A =6 ms, w(6 ms) = 2 A5 * 6 B(24) 2 = 44 J Learning Assessmen E6. A µf capacior has an accumulaed charge of 5 nc. Deermine he volage across he capacior. ANSWER:.5 V. EXAMPLE 6.4 SOLUTION The curren in an iniially uncharged 4 F capacior is shown in Fig. 6.5a. Le us derive he waveforms for he volage, power, and energy and compue he energy sored in he elecric field of he capacior a =2 ms. The equaions for he curren waveform in he specific ime inervals are Since v()=, he equaion for v() in he ime inerval 2 ms is and hence, i() = 6 * 6 2 * 3 2 ms v() = =8 * 6 2 ms 4 ms = 4 ms 6 8A 3 Bx dx = 3 2 (4)A 6 B 3 v(2 ms) = 3 A2 * 3 B 2 = 4 mv

7 SECTION 6. CAPACITORS 25 Volage (mv) Curren (A) Time (ms) Time (ms) (a) (b) Energy (pj) Power (nw) (c) Time (ms) (d) Time (ms) In he ime inerval 2 ms 4 ms, v() = (4)A 6 B 3 =2 8 * 3 2A 3 B A8BA 6 Bdx A4BA 3 B The waveform for he volage is shown in Fig. 6.5b. Since he power is p()=v()i(), he expression for he power in he ime inerval 2 ms is p()=8 3. In he ime inerval 2 ms 4 ms, he equaion for he power is p() =(8)A 6 BA2 8 * 3 B Figure 6.5 Waveforms used in Example 6.4. = 6A 6 B 64A 9 B The power waveform is shown in Fig. 6.5c. Noe ha during he ime inerval 2 ms, he capacior is absorbing energy and during he inerval 2 ms 4 ms, i is delivering energy. The energy is given by he expression w() = 3 p(x) dx wa B

8 252 CHAPTER 6 CAPACITANCE AND INDUCTANCE In he ime inerval 2 ms, Hence, In he ime inerval 2 4 ms, w() = 3 w() = 8x 3 dx = w(2 ms)=32 pj 2 * 3 CA6 * 6 Bx A64 * 9 BD dx 32 * 2 = CA8 * 6 Bx 2 A64 * 9 BxD 3 2 * 32 * 2 = A8 * 6 B 2 A64 * 9 B 28 * 2 From his expression we find ha w(2 ms)=32 pj and w(4 ms)=. The energy waveform is shown in Fig. 6.5d. Learning Assessmens E6.2 The volage across a 2 F capacior is shown in Fig. E6.2. Deermine he waveform for he capacior curren. ANSWER: v() (V) i() (ma) 2 2 Figure E E6.3 Compue he energy sored in he elecric field of he capacior in Learning Assessmen E6.2 a =2 ms. ANSWER: w=44 J. E6.4 The volage across a 5 F capacior is shown in Fig. E6.4. Find he waveform for he curren in he capacior. How much energy is sored in he capacior a =4 ms. v() (V) Figure E6.4

9 SECTION 6. CAPACITORS 253 ANSWER: 25 J. i() (ma) E6.5 The waveform for he curren in a nf capacior is Fig. E6.5. If he capacior has an iniial volage of 5V, deermine he waveform for he capacior volage. How much energy is sored in he capacior a =6 ms? i() ( A) Figure E6.5 ANSWER: 32.5 nj. v() (V)

10 254 CHAPTER 6 CAPACITANCE AND INDUCTANCE 6.2 Inducors An inducor is a circui elemen ha consiss of a conducing wire usually in he form of a coil. Two ypical inducors and heir elecrical symbol are shown in Fig Inducors are ypically caegorized by he ype of core on which hey are wound. For example, he core maerial may be air or any nonmagneic maerial, iron, or ferrie. Inducors made wih air or nonmagneic maerials are widely used in radio, elevision, and filer circuis. Ironcore inducors are used in elecrical power supplies and filers. Ferriecore inducors are widely used in highfrequency applicaions. Noe ha in conras o he magneic core ha confines he flux, as shown in Fig. 6.6b, he flux lines for nonmagneic inducors exend beyond he inducor iself, as illusraed in Fig. 6.6a. Like sray capaciance, sray inducance can resul from any elemen carrying curren surrounded by flux linkages. Fig. 6.7 shows a variey of ypical inducors. From a hisorical sandpoin, developmens ha led o he mahemaical model we employ o represen he inducor are as follows. I was firs shown ha a currencarrying conducor would produce a magneic field. I was laer found ha he magneic field and he curren ha produced i were linearly relaed. Finally, i was shown ha a changing magneic field produced a volage ha was proporional o he ime rae of change of he curren ha produced he magneic field; ha is, v() = L di() 6.8 The consan of proporionaliy L is called he inducance and is measured in he uni henry, named afer he American invenor Joseph Henry, who discovered he relaionship. As seen in Eq. (6.8), henry (H) is dimensionally equal o volsecond per ampere. Following he developmen of he mahemaical equaions for he capacior, we find ha he expression for he curren in an inducor is i() = L 3 q v(x) dx 6.9 Flux lines i() Flux lines i() v() v() L i() (a) Figure 6.6 Two inducors and heir elecrical symbol (b) (c) Figure 6.7 Some ypical inducors. (Couresy of Mark Nelms and Jo Ann Loden)

11 SECTION 6.2 INDUCTORS 255 which can also be wrien as i() = ia B v(x) dx L 3 6. The power delivered o he inducor can be used o derive he energy sored in he elemen. This power is equal o p() = v()i() = c L di() d i() 6. Therefore, he energy sored in he magneic field is w L () = 3 Following he developmen of Eq. (6.6), we obain q c L di(x) d i(x) dx dx w L () = 2 Li2 () J 6.2 Now le s consider he case of a dc curren flowing hrough an inducor. From Eq. (6.8), we see ha he volage across he inducor is direcly proporional o he ime rae of change of he curren flowing hrough he inducor. A dc curren does no vary wih ime, so he volage across he inducor is zero. We can say ha an inducor is a shor circui o dc. In analyzing a circui conaining dc sources and inducors, we can replace any inducors wih shor circuis and calculae volages and currens in he circui using our many analysis ools. Noe from Eq. (6.) ha an insananeous change in inducor curren would require infinie power. Since we don have any infinie power sources, he curren flowing hrough an inducor canno change insananeously. This will be a paricularly helpful idea in he nex chaper when we encouner circuis conaining swiches. This idea of coninuiy of curren for an inducor ells us ha he curren flowing hrough an inducor jus afer a swich moves is he same as he curren flowing hrough an inducor jus before ha swich moves. Find he oal energy sored in he circui of Fig. 6.8a. 6 L =2 mh 3 L 2 =4 mh EXAMPLE 6.5 C 9 V ± =2 F C 2 =5 F 6 3 A (a) 6 I L A 3 I L2 9 V ± V C 3 A V C2 6 Figure 6.8 Circuis used in Example 6.5. (b)

12 256 CHAPTER 6 CAPACITANCE AND INDUCTANCE SOLUTION This circui has only dc sources. Based on our earlier discussions abou capaciors and inducors and consan sources, we can replace he capaciors wih open circuis and he inducors wih shor circuis. The resuling circui is shown in Fig. 6.8b. This resisive circui can now be solved using any of he echniques we have learned in earlier chapers. If we apply KCL a node A, we ge I L2 = I L 3 Applying KVL around he ouside of he circui yields 6I L 3I L2 6I L2 = 9 Solving hese equaions yields I L =.2 A and I L2 =.8 A. The volages V C and V C2 can be calculaed from he currens: V C =6I L 9 = 6.2 V V C2 = 6I L2 = 6(.8) =.8 V The oal energy sored in he circui is he sum of he energy sored in he wo inducors and wo capaciors: The oal sored energy is 3.46 mj. w L = 2 A2 * 3 B(.2) 2 =.44 mj w L2 = 2 A4 * 3 B(.8) 2 = 6.48 mj w C = 2 A2 * 6 B(6.2) 2 = 2.62 mj w C2 = 2 A5 * 6 B(.8) 2 = 2.92 mj The inducor, like he resisor and capacior, is a passive elemen. The polariy of he volage across he inducor is shown in Fig Pracical inducors ypically range from a few microhenrys o ens of henrys. From a circui design sandpoin i is imporan o noe ha inducors canno be easily fabricaed on an inegraed circui chip, and herefore chip designs ypically employ only acive elecronic devices, resisors, and capaciors ha can be easily fabricaed in microcircui form. EXAMPLE 6.6 SOLUTION i() (ma) 2 The curren in a mh inducor has he waveform shown in Fig. 6.9a. Deermine he volage waveform. Using Eq. (6.8) and noing ha and i() = 2 * 3 2 * 3 2 ms i() = 2 * 3 2 * 3 4 * ms v() (mv) i()= 4ms< Figure 6.9 Curren and volage waveforms for a mh inducor. 2 4 (a) 2 4 (b)

13 SECTION 6.2 INDUCTORS 257 we find ha and v() = A * 3 B = mv v() = A * 3 B = mv 2 * 3 2 * 3 2 ms 2 * 3 2 * ms and v()= for >4 ms. Therefore, he volage waveform is shown in Fig. 6.9b. The curren in a 2mH inducor is i()=2 sin 377 A Deermine he volage across he inducor and he energy sored in he inducor. SOLUTION EXAMPLE 6.7 From Eq. (6.8), we have and from Eq. (6.2), v() = L di() = A2 * 3 B d (2 sin 377) =.58 cos 377 V w L () = 2 Li2 () = 2 A2 * 3 B(2 sin 377) 2 =.4 sin J The volage across a 2mH inducor is given by he expression v() = ( 3)e 3 mv = 6 Le us derive he waveforms for he curren, energy, and power. SOLUTION EXAMPLE 6.8 The waveform for he volage is shown in Fig. 6.a. The curren is derived from Eq. (6.) as i() = 3 ( 3x)e 3x dx 2 3 = 5 e e 3x dx 3 xe 3x dx f 3 3 = 5 e e3x 3 2 = 5e 3 ma = 6 3c e3x 9 (3x )d f

14 258 CHAPTER 6 CAPACITANCE AND INDUCTANCE A plo of he curren waveform is shown in Fig. 6.b. The power is given by he expression p() = v()i() The equaion for he power is ploed in Fig. 6.c. The expression for he energy is This equaion is ploed in Fig. 6.d. = 5( 3)e 6 W = 6 w() = 2 Li2 () = e 6 J = 6 Volage (mv) Curren (ma) Time (s) (a) (b) Time (s) Power (W) Energy (nj) Time (s) Time (s) Figure 6. (c) (d) Waveforms used in Example 6.8.

15 Learning Assessmens E6.6 The curren in a 5mH inducor has he waveform shown in Fig. E6.6. Compue he waveform for he inducor volage. 2 i() (ma) SECTION 6.2 INDUCTORS 259 ANSWER: v() (mv) Figure E6.6 E6.7 Compue he energy sored in he magneic field of he inducor in Learning Assesmen E6.6 a =.5 ms. ANSWER: W=562.5 nj. E6.8 The curren in a 2H inducor is shown in Fig. E6.8. Find he waveform for he inducor volage. How much energy is sored in he inducor a =3 ms? i() (ma) Figure E6.8 ANSWER: 25 J. v() (V)

16 26 CHAPTER 6 CAPACITANCE AND INDUCTANCE E6.9 The volage across a.h inducor is shown in Fig. E6.9. Compue he waveform for he curren in he inducor if i()=.a. How much energy is sored in he inducor a =7 ms? v() (V) Figure E6.9 i() (A) ANSWER:.25 mj E6. Find he energy sored in he capacior and inducor in Fig. E6.. ANSWER:.72 J,.5 J. 2 ma nf H 6 k 8 ma 3 k 2 V 2 k Figure E6.

17 SECTION 6.2 INDUCTORS 26 CAPACITOR AND INDUCTOR SPECIFICATIONS There are a couple of imporan parameers ha are used o specify capaciors and inducors. In he case of capaciors, he capaciance value, working volage, and olerance are issues ha mus be considered in heir applicaion. Sandard capacior values range from a few pf o abou 5 mf. Capaciors larger han F are available bu will no be discussed here. Table 6. is a lis of sandard capacior values, which are ypically given in picofarads or microfarads. Alhough boh smaller and larger raings are available, he sandard working volage, or dc volage raing, is ypically beween 6.3 V and 5 V. Manufacurers specify his working volage since i is criical o keep he applied volage below he breakdown poin of he dielecric. Tolerance is an adjunc o he capaciance value and is usually lised as a percenage of he nominal value. Sandard olerance values are ; 5%, ; %, and ; 2%. Occasionally, olerances for singledigi pf capaciors are lised in pf. For example, 5 pf ;.25 pf. TABLE 6. Sandard capacior values pf pf pf pf F F F F F F F..., , , , , , , , , , , , , , The wo principal inducor specificaions are inducance and resisance. Sandard commercial inducances range from abou nh o around mh. Larger inducances can, of course, be cusom buil for a price. Table 6.2 liss he sandard inducor values. The curren raing for inducors ypically exends from a few dozen ma s o abou A. Tolerances are ypically 5% or % of he specified value. TABLE 6.2 Sandard inducor values nh nh nh H H H mh mh mh

18 262 CHAPTER 6 CAPACITANCE AND INDUCTANCE As indicaed in Chaper 2, wirewound resisors are simply coils of wire, and herefore i is only logical ha inducors will have some resisance. The major difference beween wirewound resisors and inducors is he wire maerial. Highresisance maerials such as Nichrome are used in resisors, and lowresisance copper is used in inducors. The resisance of he copper wire is dependen on he lengh and diameer of he wire. Table 6.3 liss he American Wire Gauge (AWG) sandard wire diameers and he resuling resisance per foo for copper wire. TABLE 6.3 Resisance per foo of solid copper wire AWG No. Diameer (in.) m /f EXAMPLE 6.9 SOLUTION We wish o find he possible range of capaciance values for a 5mF capacior ha has a olerance of 2%. The minimum capacior value is.8c=4.8 mf, and he maximum capacior value is.2c=6.2 mf. EXAMPLE 6. SOLUTION The capacior in Fig. 6.a is a nf capacior wih a olerance of 2%. If he volage waveform is as shown in Fig. 6.b, le us graph he curren waveform for he minimum and maximum capacior values. The maximum capacior value is.2c=2 nf, and he minimum capacior value is.8c=8 nf. The maximum and minimum capacior currens, obained from he equaion are shown in Fig. 6.c. i() = C dv()

19 SECTION 6.2 INDUCTORS i() v() (V) 2 v() ± C Time ( s) (a) (b) v() i() a C min i() a C max Volage (V) 2 2 Curren (ma) Time ( s) (c) Figure 6. Circui and graphs used in Example 6.. The inducor in Fig. 6.2a is a H inducor wih a olerance of %. If he curren waveform is as shown in Fig. 6.2b, le us graph he volage waveform for he minimum and maximum inducor values. The maximum inducor value is.l= H, and he minimum inducor value is.9l = 9 H. The maximum and minimum inducor volages, obained from he equaion are shown in Fig. 6.2c. v() = L di() SOLUTION EXAMPLE 6.

20 264 CHAPTER 6 CAPACITANCE AND INDUCTANCE Figure 6.2 Circui and graphs used in Example 6.. i() L v() (a) i() 5 5 v() a L min v() a L max 2 i() (ma) 5 5 i() (ma) v() (V) Time ( s) Time ( s) (b) (c) 6.3 Capacior and Inducor Combinaions SERIES CAPACITORS If a number of capaciors are conneced in series, heir equivalen capaciance can be calculaed using KVL. Consider he circui shown in Fig. 6.3a. For his circui v()=v ()v 2 ()v 3 () p v N () 6.3 bu v i () = i() v C i A B i Figure 6.3 Equivalen circui for N seriesconneced capaciors. v() v () v i() 2 () v 3 () C C 2 C 3 v N () C N (a) i() v() (b) C S

21 SECTION 6.3 CAPACITOR AND INDUCTOR COMBINATIONS 265 Therefore, Eq. (6.3) can be wrien as follows using Eq. (6.4): v() = a a N i = C i b 3 i() a N i = v i A B 6.5 where = i() va B C S va B = a N i = v i A B and C S = a N i = = C i C C p 2 C N 6.7 [hin] Capaciors in series combine like resisors in parallel. Thus, he circui in Fig. 6.3b is equivalen o ha in Fig. 6.3a under he condiions saed previously. I is also imporan o noe ha since he same curren flows in each of he series capaciors, each capacior gains he same charge in he same ime period. The volage across each capacior will depend on his charge and he capaciance of he elemen. Deermine he equivalen capaciance and he iniial volage for he circui shown in Fig Noe ha hese capaciors mus have been charged before hey were conneced in series or else he charge of each would be equal and he volages would be in he same direcion. The equivalen capaciance is C S = where all capaciance values are in microfarads. Therefore, C S = F and, as seen from he figure, va B =3 V. Noe ha he oal energy sored in he circui is SOLUTION EXAMPLE 6.2 w A B = 2 C2 * 6 (2) 2 3 * 6 (4) 2 6 * 6 () 2 D = 3 J However, he energy recoverable a he erminals is w C A B = 2 C S v 2 () = 2 C * 6 (3) 2 D = 4.5 J v() 2 V 2 F 6 F 3 F V 4 V Figure 6.4 Circui conaining muliple capaciors wih iniial volages.

22 266 CHAPTER 6 CAPACITANCE AND INDUCTANCE EXAMPLE 6.3 SOLUTION Two previously uncharged capaciors are conneced in series and hen charged wih a 2V source. One capacior is 3 F and he oher is unknown. If he volage across he 3 F capacior is 8 V, find he capaciance of he unknown capacior. The charge on he 3 F capacior is Q=CV=(3 F)(8 V)=24 C Since he same curren flows in each of he series capaciors, each capacior gains he same charge in he same ime period: C = Q V = 24 C 4V = 6 F [hin] Capaciors in parallel combine like resisors in series. PARALLEL CAPACITORS To deermine he equivalen capaciance of N capaciors conneced in parallel, we employ KCL. As can be seen from Fig. 6.5a, where i() = i () i 2 () i 3 () p i N () = C dv() = a a N i = = C p dv() C 2 dv() C i b dv() C 3 dv() p C N dv() C p =C C 2 C 3 p C N Figure 6.5 Equivalen circui for N capaciors conneced in parallel. v() i() i () i 2 () i 3 () i N () C C 2 C 3 C N v() i() C p (a) (b) EXAMPLE 6.4 SOLUTION Deermine he equivalen capaciance a erminals AB of he circui shown in Fig C p = 5 F Figure 6.6 Circui conaining muliple capaciors in parallel. A v() B 4 F 6 F 2 F 3 F

23 SECTION 6.3 CAPACITOR AND INDUCTOR COMBINATIONS 267 Learning Assessmens E6. Two iniially uncharged capaciors are conneced as shown in Fig. E6.. Afer a period of ime, he volage reaches he value shown. Deermine he value of C. ANSWER: C =4 F. C Figure E6. 24 V 6 V 2 F E6.2 Compue he equivalen capaciance of he nework in Fig. E6.2. ANSWER: C eq =.5 F. 3 F 2 F 4 F C eq 2 F 3 F Figure E6.2 2 F E6.3 Deermine C T in Fig. E6.3. ANSWER:.667 F. A 6 F 4 F 6 F 8 F 5 F 2 F C T 6 F Figure E6.3 B 3 F F 6 F SERIES INDUCTORS If N inducors are conneced in series, he equivalen inducance of he combinaion can be deermined as follows. Referring o Fig. 6.7a and using KVL, we see ha v()=v ()v 2 ()v 3 () p v N () 6.2 and herefore, v() = L di() = a a N i = = L S di() L 2 di() L i b di() L 3 di() p L N di()

24 268 CHAPTER 6 CAPACITANCE AND INDUCTANCE [hin] Inducors in series combine like resisors in series. where L S = a N i = L i = L L 2 p L N 6.24 Therefore, under his condiion he nework in Fig. 6.7b is equivalen o ha in Fig. 6.7a. Figure 6.7 Equivalen circui for N seriesconneced inducors. v() i() v () L v 2 () v 3 () L 2 L 3 v() i() L S L N v N () (a) (b) EXAMPLE 6.5 SOLUTION Find he equivalen inducance of he circui shown in Fig The equivalen inducance of he circui shown in Fig. 6.8 is L S =H2H4H =7H Figure 6.8 Circui conaining muliple inducors. v() H 2 H 4 H PARALLEL INDUCTORS Consider he circui shown in Fig. 6.9a, which conains N parallel inducors. Using KCL, we can wrie However, Subsiuing his expression ino Eq. (6.25) yields i()=i ()i 2 ()i 3 () p i N () 6.25 i() = a a N j = L j b 3 v(x) dx a N = v(x) dx ia L B p 3 i j () = v(x) dx i L j A B j 3 j = i j A B

25 SECTION 6.3 CAPACITOR AND INDUCTOR COMBINATIONS 269 where = L p L L 2 L p 3 L N 6.29 [hin] Inducors in parallel combine like resisors in parallel. and ia B is equal o he curren in L p a =. Thus, he circui in Fig. 6.9b is equivalen o ha in Fig. 6.9a under he condiions saed previously. i() i() Figure 6.9 v() i () L i 2 () i 3 () i N () L 2 L 3 L N v() L p Equivalen circuis for N inducors conneced in parallel. (a) (b) Deermine he equivalen inducance and he iniial curren for he circui shown in Fig The equivalen inducance is = L p SOLUTION EXAMPLE 6.6 where all inducance values are in millihenrys: and he iniial curren is ia B = A. L p =2 mh v() i() 3 A 2 mh 6 A 6 mh 2 A 4 mh Figure 6.2 Circui conaining muliple inducors wih iniial currens. The previous maerial indicaes ha capaciors combine like conducances, whereas inducances combine like resisances. Learning Assessmen E6.4 Deermine he equivalen inducance of he nework in Fig. E6.4 if all inducors are 6 mh. ANSWER: mh. L eq Figure E6.4

26 27 CHAPTER 6 CAPACITANCE AND INDUCTANCE E6.5 Find L T in Fig. E6.5. ANSWER: 5 mh. 2 mh 4 mh 5 mh A 2 mh 6 mh L T 2 mh 4 mh B Figure E6.5 2 mh 3 mh 2 mh CHIP CAPACITORS In Chaper 2, we briefly discussed he resisors ha are used in modern elecronic manufacuring. An example of hese surface moun devices was shown in Fig. 2.4, ogeher wih some ypical chip capaciors. As we will indicae in he maerial ha follows, modern elecronics employs primarily resisors and capaciors and avoids he use of inducors when possible. Surfacemouned chip capaciors accoun for he majoriy of capaciors used in elecronics assembly oday. These capaciors have a large range of sizes, from as small as mils on a side up o 25 mils on a side. All ceramic chip capaciors consis of a ceramic dielecric layer beween meal plaes. The properies of he ceramic and meal layers deermine he ype of capacior, is capaciance, and reliabiliy. A cuaway view of a sandard chip capacior is shown in Fig The inner meal elecrodes are alernaely conneced o he opposing sides of he chip where meal erminaors are added. These erminaors no only make connecion o he inner elecrodes, bu also provide a solder base for aaching hese chips o prined Figure 6.2 Cross secion of a mulilayer ceramic chip capacior. Ceramic dielecric Tin Nickel Copper Inner elecrodes (Ni/Cu) circui boards. The number of alernaing layers, he spacing beween hem, along wih he dielecric consan of he ceramic maerial, will deermine he capaciance value. We indicaed earlier ha resisors are normally manufacured in sandard sizes wih specific power raings. Chip capaciors are also manufacured in his manner, and Table 6.4 provides a parial lising of hese devices. The sandard sizes of chip capaciors are shown in Table 6.4.

27 SECTION 6.3 CAPACITOR AND INDUCTOR COMBINATIONS 27 TABLE 6.4 Ceramic chip capacior sandard sizes Size Code Size (Mils) Power Raing (Was) 2 2 / / / / /4 2 2 / CHIP INDUCTORS A chip inducor consiss of a miniaure ceramic subsrae wih eiher a wire wrapped around i or a hin film deposied and paerned o form a coil. They can be encapsulaed or molded wih a maerial o proec he wire from he elemens or lef unproeced. Chip inducors are supplied in a variey of ypes and values, wih hree ypical configuraions ha conform o he sandard chip package widely uilized in he prined circui board (PCB) indusry. The firs ype is he precision chip inducor where copper is deposied ono he ceramic and paerned o form a coil, as shown in Fig Eched Copper Coil Alumina Subsrae Copper (Cu) Terminaion Base 2 µm Nickel (Ni) Barrier 3 µm Tin (Sn) Ouerplaing T Terminal Elecrode L Inernal Medium Ferrie W E Figure 6.22 Precision chip inducor cross secion. Figure 6.23 Ferrie chip inducor cross secion The second ype is a ferrie chip inducor, which uses a series of coil paerns sacked beween ferrie layers o form a muliplayer coil as shown in Fig The hird ype is a wirewound open frame in which a wire is wound around a ceramic subsrae o form he inducor coil. The compleed srucure is shown in Fig Each of hese configuraions displays differen characerisics, wih he wirewound ype providing he highes inducance values ( nh 4.7 uh) and reasonable olerances ( 2%). The ferrie chip inducor gives a wide range of values (47 nh 33 uh) bu has olerances in he 5% range. The precision chip inducor has low inducance values ( nh) bu very good olerances ( /. nh). B C Figure 6.24 F Wirewound chip inducor cross secion A F G E K D

28 272 CHAPTER 6 CAPACITANCE AND INDUCTANCE 6.4 RC Operaional Amplifier Circuis [hin] The properies of he ideal opamp are v v and i i. Two very imporan RC opamp circuis are he differeniaor and he inegraor. These circuis are derived from he circui for an invering opamp by replacing he resisors R and R 2, respecively, by a capacior. Consider, for example, he circui shown in Fig. 6.25a. The circui equaions are However, v = and i =. Therefore, C d Av v B v o v R 2 = i v o () =R 2 C dv () 6.3 R 2 C 2 v () ± C v i v ± i ± v o v () ± R v i v ± i ± v o (a) (b) Figure 6.25 Differeniaor and inegraor operaional amplifier circuis. Thus, he oupu of he opamp circui is proporional o he derivaive of he inpu. The circui equaions for he opamp configuraion in Fig. 6.25b are v v R C 2 d Av o v B = i bu since v = and i =, he equaion reduces o or v R =C 2 dv o v o () = v R C (x) dx 2 3q = v R C (x) dx v o () If he capacior is iniially discharged, hen v o ()=; hence, v o () = v R C (x) dx Thus, he oupu volage of he opamp circui is proporional o he inegral of he inpu volage.

29 SECTION 6.4 RC OPERATIONAL AMPLIFIER CIRCUITS 273 The waveform in Fig. 6.26a is applied a he inpu of he differeniaor circui shown in Fig. 6.25a. If R 2 =k and C =2 F, deermine he waveform a he oupu of he opamp. Using Eq. (6.3), we find ha he opamp oupu is v o () =R 2 C dv () dv ()/=(2) 3 for <5 ms, and herefore, v o ()= 4 V <5 ms dv ()/= (2) 3 for 5 < ms, and herefore, v o ()=4 V =(2) 3 dv () 5 < ms Hence, he oupu waveform of he differeniaor is shown in Fig. 6.26b. SOLUTION EXAMPLE 6.7 v () (V) v o () (V) 4 Figure 6.26 Inpu and oupu waveforms for a differeniaor circui (a) (b) If he inegraor shown in Fig. 6.25b has he parameers R =5k and C 2 =.2 F, deermine he waveform a he opamp oupu if he inpu waveform is given as in Fig. 6.27a and he capacior is iniially discharged. The inegraor oupu is given by he expression SOLUTION EXAMPLE 6.8 which wih he given circui parameers is v o () = v R C (x) dx 2 3 v o () = 3 v (x) dx 3 In he inerval <. s, v ()=2 mv. Hence, v o () = 3 (2) 3 6. s =2 A =. s, v o ()= 2 V. In he inerval from. o.2 s, he inegraor produces a posiive slope oupu of 2 from v o (.)= 2 V o v o (.2)= V. This waveform from = o =.2 s is repeaed in he inerval =.2 o =.4 s, and herefore, he oupu waveform is shown in Fig. 6.27b.

30 274 CHAPTER 6 CAPACITANCE AND INDUCTANCE v () (mv) 2 v o () (V) (s) (s) 2 2 (a) (b) Figure 6.27 Inpu and oupu waveforms for an inegraor circui. Learning Assessmen E6.6 The waveform in Fig. E6.6 is applied o he inpu erminals of he opamp differeniaor circui. Deermine he differeniaor oupu waveform if he opamp circui parameers are C =2 F and R 2 =2. ANSWER: v () (V) v o () (V) (s) (s) Figure E Applicaion Examples APPLICATION EXAMPLE 6.9 In inegraed circuis, wires carrying highspeed signals are closely spaced as shown by he micrograph in Fig As a resul, a signal on one conducor can myseriously appear on a differen conducor. This phenomenon is called crossalk. Le us examine his condiion and propose some mehods for reducing i.

31 SECTION 6.5 APPLICATION EXAMPLES 275 Figure 6.28 SEM Image (Tom Way/ Ginger Conly. Couresy of Inernaional Business Machines Corporaion. Unauhorized use no permied.) The origin of crossalk is capaciance. In paricular, i is undesired capaciance, ofen called parasiic capaciance, ha exiss beween wires ha are closely spaced. The simple model in Fig can be used o invesigae crossalk beween wo long parallel wires. A signal is applied o wire. Capaciances C and C 2 are he parasiic capaciances of he conducors wih respec o ground, while C 2 is he capaciance beween he conducors. Recall ha we inroduced he capacior as wo closely spaced conducing plaes. If we srech hose plaes ino hin wires, cerainly he geomery of he conducors would change and hus he amoun of capaciance. However, we should sill expec some capaciance beween he wires. SOLUTION v () ± Wire i 2 () C C 2 Wire Figure A simple model for v 2 () invesigaing crossalk. C 2 i 2 () In order o quanify he level of crossalk, we wan o know how much of he volage on wire appears on wire 2. A nodal analysis a wire 2 yields i 2 () = C 2 c dv () Solving for dv 2 (), we find ha dv 2 () Inegraing boh sides of his equaion yields dv 2() C 2 = c d dv () C 2 C 2 C 2 v 2 () = c d v C 2 C () 2 d = i 2 () = C 2 c dv 2() d

32 276 CHAPTER 6 CAPACITANCE AND INDUCTANCE Figure 6.3 Use of a ground wire in he crossalk model. Noe ha i is a simple capaciance raio ha deermines how effecively v () is coupled ino wire 2. Clearly, ensuring ha C 2 is much less han C 2 is he key o conrolling crossalk. How is his done? Firs, we can make C 2 as small as possible by increasing he spacing beween wires. Second, we can increase C 2 by puing i closer o he ground wiring. Unforunaely, he firs opion akes up more real esae, and he second one slows down he volage signals in wire. A his poin, we seem o have a ypical engineering radeoff: o improve one crierion, ha is, decreased crossalk, we mus sacrifice anoher, space or speed. One way o address he space issue would be o inser a ground connecion beween he signalcarrying wires as shown in Fig However, any advanage achieved wih grounded wires mus be raded off agains he increase in space, since insering grounded wires beween adjacen conducors would nearly double he wih consumed wihou hem. Wire Ground wire Wire 2 v () ± C G C 2G C C 2 v 2 () Redrawing he circui in Fig. 6.3 immediaely indicaes ha wires and 2 are now elecrically isolaed and here should be no crossalk whasoever a siuaion ha is highly unlikely. Thus, we are promped o ask he quesion, Is our model accurae enough o model crossalk? A more accurae model for he crossalk reducion scheme is shown in Fig where he capaciance beween signal wires and 2 is no longer ignored. Once again, we will deermine he amoun of crossalk by examining he raio v 2 () v (). Employing nodal analysis a wire 2 in he circui in Fig yields i 2 () = C 2 c dv () dv 2() d = i 2 () = AC 2 C 2G B c dv 2() d Figure 6.3 Elecrical isolaion using a ground wire in crossalk model. v () ± Solving for dv 2 (), we obain Wire C C C C G 2G 2 Ground wire Wire 2 v 2 () dv 2 () C 2 = c d dv () C 2 C 2 C 2G Inegraing boh sides of his equaion yields C 2 v 2 () = c d v C 2 C 2 C () 2G Noe ha his resul is very similar o our earlier resul wih he addiion of he C 2G erm. Two benefis in his siuaion reduce crossalk. Firs, C 2 is smaller because adding he ground wire moves wires and 2 farher apar. Second, C 2G makes he denominaor of he crossalk equaion bigger. If we assume ha C 2G = C 2 and ha C 2 has been halved by he exra spacing, we can expec he crossalk o be reduced by a facor of roughly 4.

33 SECTION 6.5 APPLICATION EXAMPLES 277 C 2 Figure 6.32 Wire Ground wire Wire 2 A more accurae crossalk model. v () ± C C G C 2G C 2 v 2 () C 2 Figure 6.33 Wire i 2 () Wire 2 A redrawn version of he more accurae crossalk model. v () ± C C G C 2G i 2 () C 2 v 2 () An excellen example of capacior operaion is he memory inside a personal compuer. This memory, called dynamic random access memory (DRAM), conains as many as 4 billion daa sorage sies called cells (circa 27). Expec his number o roughly double every 2 years for he nex decade or wo. Le us examine in some deail he operaion of a single DRAM cell. Fig. 6.34a shows a simple model for a DRAM cell. Daa are sored on he cell capacior in rue/false (or /) forma, where a largecapacior volage represens a rue condiion and a APPLICATION EXAMPLE 6.2 SOLUTION V I/O V I/O To sense amps C ou 45 ff I leak 5 pa C cell 5 ff v cell () I leak 5 pa C cell 5 ff v cell ().5 V C ou 45 ff C cell 5 ff 3 V (a) (b) (c) low volage represens a false condiion. The swich closes o allow access from he processor o he DRAM cell. Curren source I leak is an uninenional, or parasiic, curren ha models charge leakage from he capacior. Anoher parasiic model elemen is he capaciance, C ou, he capaciance of he wiring conneced o he oupu side of he cell. Boh I leak and C ou have enormous impacs on DRAM performance and design. Consider soring a rue condiion in he cell. A high volage of 3. V is applied a node I/O and he swich is closed, causing he volage on C cell o quickly rise o 3. V. We open Figure 6.34 A simple circui model showing (a) he DRAM memory cell, (b) he effec of charge leakage from he cell capacior, and (c) cell condiions a he beginning of a read operaion.

34 278 CHAPTER 6 CAPACITANCE AND INDUCTANCE he swich and he daa are sored. During he sore operaion he charge, energy, and number of elecrons, n, used are Q=CV=A5* 5 B(3)=5 fc W = 2 CV2 = (.5)A5 * 5 BA3 2 B = 225 fj n=q/q=5* 5 /A.6* 9 B=937,5 elecrons Once daa are wrien, he swich opens and he capacior begins o discharge hrough I leak. A measure of DRAM qualiy is he ime required for he daa volage o drop by half, from 3. V o.5 V. Le us call his ime H. For he capacior, we know v cell () = C cell 3 i cell V where, from Fig. 6.34b, i cell ()= I leak. Performing he inegral yields v cell () = C cell 3 AI leakb = I leak C cell K We know ha a =, v cell =3 V. Thus, K=3 and he cell volage is v cell () = 3 I leak C cell V 6.33 Subsiuing = H and v cell A H B=.5 V ino Eq. (6.33) and solving for H yields H =5 ms. Thus, he cell daa are gone in only a few milliseconds! The soluion is rewriing he daa before i can disappear. This echnique, called refresh, is a mus for all DRAM using his oneransisor cell. To see he effec of C ou, consider reading a fully charged Av cell =3. VB rue condiion. The I/O line is usually precharged o half he daa volage. In his example, ha would be.5 V as seen in Fig. 6.34c. ATo isolae he effec of C ou, we have removed I leak.b Nex, he swich is closed. Wha happens nex is bes viewed as a conservaion of charge. Jus before he swich closes, he oal sored charge in he circui is Q T = Q ou Q cell = V I O C ou V cell C cell Q T = (.5)(45 * 5 ) (3)(5 * 5 ) = 825 fc When he swich closes, he capacior volages are he same (le us call i V o ) and he oal charge is unchanged: Q T =825 fc= V C ou C cell = A45* 5 5* 5 o V o V o B and V o =.65 V Thus, he change in volage a V I O during he read operaion is only.5 V. A very sensiive amplifier is required o quickly deec such a small change. In DRAMs, hese amplifiers are called sense amps. How can v cell change insananeously when he swich closes? I canno. In an acual DRAM cell, a ransisor, which has a small equivalen resisance, acs as he swich. The resuling RC ime consan is very small, indicaing a very fas circui. Recall ha we are no analyzing he cell s speed only he final volage value, V o. As long as he power los in he swich is small compared o he capacior energy, we can be comforable in neglecing he swich resisance. By he way, if a false condiion (zero vols) were read from he cell, hen V o would drop from is precharged value of.5 V o.35 V a negaive change of.5 V. This symmeric volage change is he reason for precharging he I/O node o half he daa volage. Review he effecs of I leak and C ou. You will find ha eliminaing hem would grealy simplify he refresh requiremen and improve he volage swing a node I/O when reading daa. DRAM designers earn a very good living rying o do jus ha.

35 SECTION 6.6 DESIGN EXAMPLES Design Examples We have all undoubedly experienced a loss of elecrical power in our office or our home. When his happens, even for a second, we ypically find ha we have o rese all of our digial alarm clocks. Le s assume ha such a clock s inernal digial hardware requires a curren of ma a a ypical volage level of 3. V, bu he hardware will funcion properly down o 2.4 V. Under hese assumpions, we wish o design a circui ha will hold he volage level for a shor duraion, for example, second. We know ha he volage across a capacior canno change insananeously, and hence is use appears o be viable in his siuaion. Thus, we model his problem using he circui in Fig where he capacior is employed o hold he volage and he ma source represens he ma load. As he circui indicaes, when he power fails, he capacior mus provide all he power for he digial hardware. The load, represened by he curren source, will discharge he capacior linearly in accordance wih he expression DESIGN EXAMPLE 6.2 SOLUTION 3 V ± C Opens on power ouages ma load Figure 6.35 A simple model for a power ouage ridehrough circui. v() = 3. i() C 3 Afer second, v() should be a leas 2.4 V, ha is, he minimum funcioning volage, and hence Solving his equaion for C yields 2.4 = 3. (.) C 3o C = 67 F Thus, from he sandard capacior values in Table 6., connecing hree 56 F capaciors in parallel produces 68 F. Alhough hree 56 F capaciors in parallel will saisfy he design requiremens, his soluion may require more space han is available. An alernae soluion involves he use of doublelayer capaciors or wha are known as Supercaps. A Web search of his opic will indicae ha a company by he name of Elna America, Inc. is a major supplier of doublelayer capaciors. An invesigaion of heir produc lising indicaes ha heir DCK series of small coinshaped supercaps is a possible alernaive in his siuaion. In paricular, he DCK3R3224 supercap is a 22mF capacior raed a 3.3 V wih a diameer of 7 mm, or abou /4 inch, and a hickness of 2. mm. Since only one of hese iems is required, his is a very compac soluion from a space sandpoin. However, here is ye anoher facor of imporance and ha is cos. To minimize cos, we may need o look for ye anoher alernae soluion.

36 28 CHAPTER 6 CAPACITANCE AND INDUCTANCE DESIGN EXAMPLE 6.22 Le us design an opamp circui in which he relaionship beween he oupu volage and wo inpus is v o () = 5 3 v () 2v 2 () SOLUTION In order o saisfy he oupu volage equaion, we mus add wo inpus, one of which mus be inegraed. Thus, he design equaion calls for an inegraor and a summer as shown in Fig Using he known equaions for boh he inegraor and summer, we can express he oupu volage as v o () =v 2 ()c R 4 R 3 d c R 4 R 2 d e R C 3 v () f = R 4 R R 2 C 3 v () c R 4 R 3 d v 2 () Figure 6.36 Opamp circui wih inegraor and summer. v () C R R 2 v 2 () R 3 R 4 v o () If we now compare his equaion o our design requiremen, we find ha he following equaliies mus hold: R 4 R R 2 C = 5 R 4 = 2 R 3 Noe ha we have five variables and wo consrain equaions. Thus, we have some flexibiliy in our choice of componens. Firs, we selec C = 2 F, a value ha is neiher large nor small. If we arbirarily selec R 4 = 2 k, hen mus be k and furhermore R R 2 = 2 * 9 If our hird choice is R = k, hen R 2 = 2 k. If we employ sandard opamps wih supply volages of approximaely ; V, hen all currens will be less han ma, which are reasonable values. R 3 SUMMARY The imporan (dual) relaionships for capaciors and inducors are as follows: q = Cv i() = C dv() v() = C 3 q i(x) dx v() = L di() i() = L 3 q v(x) dx p() = Cv() dv() w C () = 2 Cv2 () p() = Li() di() w L () = 2 Li2 () The passive sign convenion is used wih capaciors and inducors. In dc seady sae, a capacior looks like an open circui and an inducor looks like a shor circui.

37 PROBLEMS 28 The volage across a capacior and he curren flowing hrough an inducor canno change insananeously. Leakage resisance is presen in pracical capaciors. When capaciors are inerconneced, heir equivalen capaciance is deermined as follows: capaciors in series combine like resisors in parallel, and capaciors in parallel combine like resisors in series. When inducors are inerconneced, heir equivalen inducance is deermined as follows: inducors in series combine like resisors in series, and inducors in parallel combine like resisors in parallel. RC operaional amplifier circuis can be used o differeniae or inegrae an elecrical signal. PROBLEMS 6. An uncharged F capacior is charged by a consan curren of ma. Find he volage across he capacior afer 4 s. 6.2 A 2 F capacior has an accumulaed charge of 48 C. Deermine he volage across he capacior. 6.3 A capacior has an accumulaed charge of 6 C wih 5 V across i. Wha is he value of capaciance? 6.4 A 25 F capacior iniially charged o V is charged by a consan curren of 2.5 A. Find he volage across he capacior afer min The energy ha is sored in a 25 F capacior is w() 2 sin Find he curren in he capacior. 6.6 A capacior is charged by a consan curren of 2 ma and resuls in a volage increase of 2 V in a s inerval. Wha is he value of he capaciance? 6.7 The curren in a F capacior is shown in Fig. P6.7. Deermine he waveform for he volage across he capacior if i is iniially uncharged. i() (ma) 6.9 The volage across a 2 F capacior is shown in Fig. P6.9. Deermine he waveform for he curren in he capacior. v() V Figure P Derive he waveform for he curren in a 5 F capacior in he volage across he capacior as shown in Fig. P6.. v() (V) 8 4 Figure P The volage across a F capacior is shown in Fig. P6.8. Deermine he waveform for he curren in he capacior. Figure P6. 6. If he volage waveform across a F capacior is shown in Fig. P6., deermine he waveform for he curren. v() (V) v() V Figure P Figure P

Capacitors and inductors

Capacitors and inductors Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

More information

Chapter 7. Response of First-Order RL and RC Circuits

Chapter 7. Response of First-Order RL and RC Circuits Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

More information

Inductance and Transient Circuits

Inductance and Transient Circuits Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

µ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ

µ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ Page 9 Design of Inducors and High Frequency Transformers Inducors sore energy, ransformers ransfer energy. This is he prime difference. The magneic cores are significanly differen for inducors and high

More information

Circuit Types. () i( t) ( )

Circuit Types. () i( t) ( ) Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All

More information

Chabot College Physics Lab RC Circuits Scott Hildreth

Chabot College Physics Lab RC Circuits Scott Hildreth Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard

More information

9. Capacitor and Resistor Circuits

9. Capacitor and Resistor Circuits ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren

More information

CHARGE AND DISCHARGE OF A CAPACITOR

CHARGE AND DISCHARGE OF A CAPACITOR REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

More information

RC (Resistor-Capacitor) Circuits. AP Physics C

RC (Resistor-Capacitor) Circuits. AP Physics C (Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

Using RCtime to Measure Resistance

Using RCtime to Measure Resistance Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a buil-in ADC (Analog o Digial Converer)

More information

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches. Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

More information

Signal Processing and Linear Systems I

Signal Processing and Linear Systems I Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons

More information

2 Electric Circuits Concepts Durham

2 Electric Circuits Concepts Durham Chaper 3 - Mehods Chaper 3 - Mehods... 3. nroducion... 2 3.2 Elecrical laws... 2 3.2. Definiions... 2 3.2.2 Kirchhoff... 2 3.2.3 Faraday... 3 3.2.4 Conservaion... 3 3.2.5 Power... 3 3.2.6 Complee... 4

More information

Switching Regulator IC series Capacitor Calculation for Buck converter IC

Switching Regulator IC series Capacitor Calculation for Buck converter IC Swiching Regulaor IC series Capacior Calculaion for Buck converer IC No.14027ECY02 This applicaion noe explains he calculaion of exernal capacior value for buck converer IC circui. Buck converer IIN IDD

More information

Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m

Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m

More information

Differential Equations and Linear Superposition

Differential Equations and Linear Superposition Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

More information

RC Circuit and Time Constant

RC Circuit and Time Constant ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisor-capacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he

More information

Making Use of Gate Charge Information in MOSFET and IGBT Data Sheets

Making Use of Gate Charge Information in MOSFET and IGBT Data Sheets Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have

More information

Full-wave rectification, bulk capacitor calculations Chris Basso January 2009

Full-wave rectification, bulk capacitor calculations Chris Basso January 2009 ull-wave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal

More information

A Mathematical Description of MOSFET Behavior

A Mathematical Description of MOSFET Behavior 10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical

More information

Physics 111 Fall 2007 Electric Currents and DC Circuits

Physics 111 Fall 2007 Electric Currents and DC Circuits Physics 111 Fall 007 Elecric Currens and DC Circuis 1 Wha is he average curren when all he sodium channels on a 100 µm pach of muscle membrane open ogeher for 1 ms? Assume a densiy of 0 sodium channels

More information

Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur

Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur Module 3 - & -C Transiens esson 0 Sudy of DC ransiens in - and -C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series

More information

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613. Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

More information

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

More information

Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar

Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 0-7-380-7 Ifeachor

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1 - TRANSIENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1 - TRANSIENTS EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67 - FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1 - RANIEN Uni conen 2 Undersand he ransien behaviour of resisor-capacior (R) and resisor-inducor (RL) D circuis

More information

DC-DC Boost Converter with Constant Output Voltage for Grid Connected Photovoltaic Application System

DC-DC Boost Converter with Constant Output Voltage for Grid Connected Photovoltaic Application System DC-DC Boos Converer wih Consan Oupu Volage for Grid Conneced Phoovolaic Applicaion Sysem Pui-Weng Chan, Syafrudin Masri Universii Sains Malaysia E-mail: edmond_chan85@homail.com, syaf@eng.usm.my Absrac

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion

More information

Pulse-Width Modulation Inverters

Pulse-Width Modulation Inverters SECTION 3.6 INVERTERS 189 Pulse-Widh Modulaion Inverers Pulse-widh modulaion is he process of modifying he widh of he pulses in a pulse rain in direc proporion o a small conrol signal; he greaer he conrol

More information

Chapter 1.6 Financial Management

Chapter 1.6 Financial Management Chaper 1.6 Financial Managemen Par I: Objecive ype quesions and answers 1. Simple pay back period is equal o: a) Raio of Firs cos/ne yearly savings b) Raio of Annual gross cash flow/capial cos n c) = (1

More information

Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities

Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17

More information

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The

More information

Chapter 2 Kinematics in One Dimension

Chapter 2 Kinematics in One Dimension Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how

More information

AP Calculus AB 2013 Scoring Guidelines

AP Calculus AB 2013 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was

More information

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer) Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

More information

Chapter 8: Regression with Lagged Explanatory Variables

Chapter 8: Regression with Lagged Explanatory Variables Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One

More information

LLC Resonant Converter Reference Design using the dspic DSC

LLC Resonant Converter Reference Design using the dspic DSC LLC Resonan Converer Reference Design using he dspic DSC 2010 Microchip Technology Incorporaed. All Righs Reserved. LLC Resonan Converer Webinar Slide 1 Hello, and welcome o his web seminar on Microchip

More information

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins) Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

More information

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides 7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion

More information

CLOCK SKEW CAUSES CLOCK SKEW DUE TO THE DRIVER EROSION OF THE CLOCK PERIOD

CLOCK SKEW CAUSES CLOCK SKEW DUE TO THE DRIVER EROSION OF THE CLOCK PERIOD DESIGNING WITH HIGH SPEED CLOCK DRIERS CONFERENCE PAPER CP-19 Inegraed Device Technology, Inc. By Sanley Hronik ABSTRACT Today s high speed sysems are encounering problems wih clocking ha were no consideraions

More information

Newton s Laws of Motion

Newton s Laws of Motion Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The

More information

Lecture 2: Telegrapher Equations For Transmission Lines. Power Flow.

Lecture 2: Telegrapher Equations For Transmission Lines. Power Flow. Whies, EE 481 Lecure 2 Page 1 of 13 Lecure 2: Telegraher Equaions For Transmission Lines. Power Flow. Microsri is one mehod for making elecrical connecions in a microwae circui. I is consruced wih a ground

More information

Multiprocessor Systems-on-Chips

Multiprocessor Systems-on-Chips Par of: Muliprocessor Sysems-on-Chips Edied by: Ahmed Amine Jerraya and Wayne Wolf Morgan Kaufmann Publishers, 2005 2 Modeling Shared Resources Conex swiching implies overhead. On a processing elemen,

More information

IR Receiver Module for Light Barrier Systems

IR Receiver Module for Light Barrier Systems IR Receiver Module for Ligh Barrier Sysems MECHANICAL DATA Pinning: 1 = OUT, 2 = GND, 3 = V S 19026 APPLICATIONS Reflecive sensors for hand dryers, owel or soap dispensers, waer fauces, oile flush Vending

More information

Motion Along a Straight Line

Motion Along a Straight Line Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his

More information

Making a Faster Cryptanalytic Time-Memory Trade-Off

Making a Faster Cryptanalytic Time-Memory Trade-Off Making a Faser Crypanalyic Time-Memory Trade-Off Philippe Oechslin Laboraoire de Securié e de Crypographie (LASEC) Ecole Polyechnique Fédérale de Lausanne Faculé I&C, 1015 Lausanne, Swizerland philippe.oechslin@epfl.ch

More information

Product Operation and Setup Instructions

Product Operation and Setup Instructions A9 Please read and save hese insrucions. Read carefully before aemping o assemble, insall, operae, or mainain he produc described. Proec yourself and ohers by observing all safey informaion. Failure o

More information

PHYS245 Lab: RC circuits

PHYS245 Lab: RC circuits PHYS245 Lab: C circuis Purpose: Undersand he charging and discharging ransien processes of a capacior Display he charging and discharging process using an oscilloscope Undersand he physical meaning of

More information

AP Calculus AB 2010 Scoring Guidelines

AP Calculus AB 2010 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College

More information

Chapter 6: Business Valuation (Income Approach)

Chapter 6: Business Valuation (Income Approach) Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he

More information

4 Convolution. Recommended Problems. x2[n] 1 2[n]

4 Convolution. Recommended Problems. x2[n] 1 2[n] 4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.

More information

1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,

1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t, Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..

More information

Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Solutions Question 5 Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

More information

Hedging with Forwards and Futures

Hedging with Forwards and Futures Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buy-side of a forward/fuures

More information

SEMICONDUCTOR APPLICATION NOTE

SEMICONDUCTOR APPLICATION NOTE SEMICONDUCTOR APPLICATION NOTE Order his documen by AN1542/D Prepared by: C. S. Mier Moorola Inc. Inpu filer design has been an inegral par of power supply designs. Wih he adven of inpu filers, he designer

More information

5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance.

5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance. 5.8 Resonance 231 5.8 Resonance The sudy of vibraing mechanical sysems ends here wih he heory of pure and pracical resonance. Pure Resonance The noion of pure resonance in he differenial equaion (1) ()

More information

Part II Converter Dynamics and Control

Part II Converter Dynamics and Control Par II onverer Dynamics and onrol 7. A equivalen circui modeling 8. onverer ransfer funcions 9. onroller design 1. Inpu filer design 11. A and D equivalen circui modeling of he disconinuous conducion mode

More information

USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES

USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES Mehme Nuri GÖMLEKSİZ Absrac Using educaion echnology in classes helps eachers realize a beer and more effecive learning. In his sudy 150 English eachers were

More information

Caring for trees and your service

Caring for trees and your service Caring for rees and your service Line clearing helps preven ouages FPL is commied o delivering safe, reliable elecric service o our cusomers. Trees, especially palm rees, can inerfere wih power lines and

More information

Individual Health Insurance April 30, 2008 Pages 167-170

Individual Health Insurance April 30, 2008 Pages 167-170 Individual Healh Insurance April 30, 2008 Pages 167-170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve

More information

ECEN4618: Experiment #1 Timing circuits with the 555 timer

ECEN4618: Experiment #1 Timing circuits with the 555 timer ECEN4618: Experimen #1 Timing circuis wih he 555 imer cæ 1998 Dragan Maksimović Deparmen of Elecrical and Compuer Engineering Universiy of Colorado, Boulder The purpose of his lab assignmen is o examine

More information

Photo Modules for PCM Remote Control Systems

Photo Modules for PCM Remote Control Systems Phoo Modules for PCM Remoe Conrol Sysems Available ypes for differen carrier frequencies Type fo Type fo TSOP173 3 khz TSOP1733 33 khz TSOP1736 36 khz TSOP1737 36.7 khz TSOP1738 38 khz TSOP174 4 khz TSOP1756

More information

Application of Fast Response Dual-Colour Pyroelectric Detectors with Integrated Op Amp in a Low Power NDIR Gas Monitor

Application of Fast Response Dual-Colour Pyroelectric Detectors with Integrated Op Amp in a Low Power NDIR Gas Monitor Applicaion of Fas Response DualColour Pyroelecric Deecors wih Inegraed Op Amp in a Low Power NDIR Gas Monior Infraec GmbH, Gosrizer Sr. 663, 027 Dresden. Inroducion Monioring he concenraion of carbon dioxide

More information

Acceleration Lab Teacher s Guide

Acceleration Lab Teacher s Guide Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion

More information

TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS

TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS RICHARD J. POVINELLI AND XIN FENG Deparmen of Elecrical and Compuer Engineering Marquee Universiy, P.O.

More information

WATER MIST FIRE PROTECTION RELIABILITY ANALYSIS

WATER MIST FIRE PROTECTION RELIABILITY ANALYSIS WATER MIST FIRE PROTECTION RELIABILITY ANALYSIS Shuzhen Xu Research Risk and Reliabiliy Area FM Global Norwood, Massachuses 262, USA David Fuller Engineering Sandards FM Global Norwood, Massachuses 262,

More information

I. Basic Concepts (Ch. 1-4)

I. Basic Concepts (Ch. 1-4) (Ch. 1-4) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing

More information

Monotonic, Inrush Current Limited Start-Up for Linear Regulators

Monotonic, Inrush Current Limited Start-Up for Linear Regulators Applicaion epor SLA156 March 2004 Monoonic, Inrush urren Limied Sar-Up for Linear egulaors Jeff Falin PMP Porable Producs ABSA he oupu volage of a linear regulaor ends o rise quickly afer i is enabled.

More information

LECTURE 9. C. Appendix

LECTURE 9. C. Appendix LECTURE 9 A. Buck-Boos Converer Design 1. Vol-Sec Balance: f(d), seadysae ransfer funcion 2. DC Operaing Poin via Charge Balance: I(D) in seady-sae 3. Ripple Volage / C Spec 4. Ripple Curren / L Spec 5.

More information

Entropy: From the Boltzmann equation to the Maxwell Boltzmann distribution

Entropy: From the Boltzmann equation to the Maxwell Boltzmann distribution Enropy: From he Bolzmann equaion o he Maxwell Bolzmann disribuion A formula o relae enropy o probabiliy Ofen i is a lo more useful o hink abou enropy in erms of he probabiliy wih which differen saes are

More information

Module 3 Design for Strength. Version 2 ME, IIT Kharagpur

Module 3 Design for Strength. Version 2 ME, IIT Kharagpur Module 3 Design for Srengh Lesson 2 Sress Concenraion Insrucional Objecives A he end of his lesson, he sudens should be able o undersand Sress concenraion and he facors responsible. Deerminaion of sress

More information

Journal Of Business & Economics Research September 2005 Volume 3, Number 9

Journal Of Business & Economics Research September 2005 Volume 3, Number 9 Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy Yi-Kang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo

More information

Signal Rectification

Signal Rectification 9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, half-wae and fullwae. Le s firs consider he ideal

More information

Chapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr

Chapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i

More information

Switched Mode Converters (1 Quadrant)

Switched Mode Converters (1 Quadrant) (1 Quadran) Philippe Barrade Laboraoire d Elecronique Indusrielle, LEI STI ISE Ecole Polyechnique Fédérale de Lausanne, EPFL Ch-1015 Lausanne Tél: +41 21 693 2651 Fax: +41 21 693 2600 Philippe.barrade@epfl.ch

More information

Term Structure of Prices of Asian Options

Term Structure of Prices of Asian Options Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:

More information

C Fast-Dealing Property Trading Game C

C Fast-Dealing Property Trading Game C AGES 8+ C Fas-Dealing Propery Trading Game C Y Collecor s Ediion Original MONOPOLY Game Rules plus Special Rules for his Ediion. CONTENTS Game board, 6 Collecible okens, 28 Tile Deed cards, 16 Wha he Deuce?

More information

Option Put-Call Parity Relations When the Underlying Security Pays Dividends

Option Put-Call Parity Relations When the Underlying Security Pays Dividends Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 225-23 Opion Pu-all Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,

More information

Astable multivibrator using the 555 IC.(10)

Astable multivibrator using the 555 IC.(10) Visi hp://elecronicsclub.cjb.ne for more resources THE 555 IC TIMER The 555 IC TIMER.(2) Monosable mulivibraor using he 555 IC imer...() Design Example 1 wih Mulisim 2001 ools and graphs..(8) Lile descripion

More information

Gate protection. Current limit. Overvoltage protection. Limit for unclamped ind. loads. Charge pump Level shifter. Rectifier. Open load detection

Gate protection. Current limit. Overvoltage protection. Limit for unclamped ind. loads. Charge pump Level shifter. Rectifier. Open load detection Smar ighside Power Swich for ndusrial Applicaions Feaures Overload proecion Curren limiaion Shor circui proecion Thermal shudown Overvolage proecion (including load dump) Fas demagneizaion of inducive

More information

AP Calculus BC 2010 Scoring Guidelines

AP Calculus BC 2010 Scoring Guidelines AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board

More information

PI4ULS5V202 2-Bit Bi-directional Level Shifter with Automatic Sensing & Ultra Tiny Package

PI4ULS5V202 2-Bit Bi-directional Level Shifter with Automatic Sensing & Ultra Tiny Package Feaures can be Less han, Greaer han or Equal o V CCB 1.2V o 5.5V on A Por and 1.2V o 5.5V on B Por High Speed wih 20 Mb/s Daa Rae for push-pull applicaion High Speed wih 2 Mb/s Daa Rae for open-drain applicaion

More information

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

More information

Transient Analysis of First Order RC and RL circuits

Transient Analysis of First Order RC and RL circuits Transien Analysis of Firs Order and iruis The irui shown on Figure 1 wih he swih open is haraerized by a pariular operaing ondiion. Sine he swih is open, no urren flows in he irui (i=0) and v=0. The volage

More information

2.5 Life tables, force of mortality and standard life insurance products

2.5 Life tables, force of mortality and standard life insurance products Soluions 5 BS4a Acuarial Science Oford MT 212 33 2.5 Life ables, force of moraliy and sandard life insurance producs 1. (i) n m q represens he probabiliy of deah of a life currenly aged beween ages + n

More information

The Grantor Retained Annuity Trust (GRAT)

The Grantor Retained Annuity Trust (GRAT) WEALTH ADVISORY Esae Planning Sraegies for closely-held, family businesses The Granor Reained Annuiy Trus (GRAT) An efficien wealh ransfer sraegy, paricularly in a low ineres rae environmen Family business

More information

4. International Parity Conditions

4. International Parity Conditions 4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency

More information

< IGBT MODULES > CM400DY-34A HIGH POWER SWITCHING USE INSULATED TYPE APPLICATION

< IGBT MODULES > CM400DY-34A HIGH POWER SWITCHING USE INSULATED TYPE APPLICATION Dual (Half-Bridge) Collecor curren I C...... 4A Collecor-emier volage CES... 7 Maximum juncion emperaure T jmax... 5 C Fla base Type Copper base plae (non-plaing) RoHS Direcive complian UL Recognized under

More information

Distributing Human Resources among Software Development Projects 1

Distributing Human Resources among Software Development Projects 1 Disribuing Human Resources among Sofware Developmen Proecs Macario Polo, María Dolores Maeos, Mario Piaini and rancisco Ruiz Summary This paper presens a mehod for esimaing he disribuion of human resources

More information

Voltage level shifting

Voltage level shifting rek Applicaion Noe Number 1 r. Maciej A. Noras Absrac A brief descripion of volage shifing circuis. 1 Inroducion In applicaions requiring a unipolar A volage signal, he signal may be delivered from a bi-polar

More information

NOTES ON OSCILLOSCOPES

NOTES ON OSCILLOSCOPES NOTES ON OSCILLOSCOPES NOTES ON... OSCILLOSCOPES... Oscilloscope... Analog and Digial... Analog Oscilloscopes... Cahode Ray Oscilloscope Principles... 5 Elecron Gun... 5 The Deflecion Sysem... 6 Displaying

More information

TSG-RAN Working Group 1 (Radio Layer 1) meeting #3 Nynashamn, Sweden 22 nd 26 th March 1999

TSG-RAN Working Group 1 (Radio Layer 1) meeting #3 Nynashamn, Sweden 22 nd 26 th March 1999 TSG-RAN Working Group 1 (Radio Layer 1) meeing #3 Nynashamn, Sweden 22 nd 26 h March 1999 RAN TSGW1#3(99)196 Agenda Iem: 9.1 Source: Tile: Documen for: Moorola Macro-diversiy for he PRACH Discussion/Decision

More information

Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.

Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya. Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, bouzaev@ya.ru Why principal componens are needed Objecives undersand he evidence of more han one

More information

BALANCE OF PAYMENTS. First quarter 2008. Balance of payments

BALANCE OF PAYMENTS. First quarter 2008. Balance of payments BALANCE OF PAYMENTS DATE: 2008-05-30 PUBLISHER: Balance of Paymens and Financial Markes (BFM) Lena Finn + 46 8 506 944 09, lena.finn@scb.se Camilla Bergeling +46 8 506 942 06, camilla.bergeling@scb.se

More information

The Torsion of Thin, Open Sections

The Torsion of Thin, Open Sections EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such

More information