The Transport Equation


 Cordelia Roberts
 1 years ago
 Views:
Transcription
1 The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be denoed by u(,). Then a ime, he amoun of conaminan in a secion of he ube beween posiions, 1 and is given by he epression u, Ad amoun of conaminan in, a ime Similarly, we can wrie an epression for he amoun of conaminan ha flows hrough a plane locaed a posiion,, during he ime inerval from 1 o u, AVd amoun of conaminan flowing hrough a plane a posiion,, during he inerval 1, Then an equaion epressing a maerial balance for he conaminan can be wrien as follows, u, Ad u, Ad u, AVd u, AVd i.e., he amoun of conaminan in he secion 1, a ime equals he amoun of conaminan in he secion 1, a ime 1, plus he amoun of conaminan ha flowed hrough he plane a posiion 1 during he ime inerval 1, minus he amoun of conaminan ha flowed hrough he plane a posiion during he ime inerval 1,. Of course his equaion is based on he assumpion ha here are no oher sources of conaminan in he ube and here is no loss of conaminan hrough he walls of he ube. Now he fundamenal heorem of calculus implies ha u, Ad u, Ad u, Add u, AVd u, AVd u, AVdd and, combining hese resuls wih he balance equaion leads o u, A d d u, AV d d 0. If we assume ha his equaliy holds for every segmen 1, in he ube and for each ime inerval 1,, and if he funcion u, and is parial derivaives of order one are coninuous funcions of and, hen i follows from an elemenary propery of coninuous funcions ha u, A u, AV 0 for all,. If he fluid velociy V and he cross secion of he ube, A, are consans, hen his equaion reduces o u, V u, 0 for all,. This is he so called ranspor equaion in one dimension. Since his equaion conains parial derivaives of order a mos equal o one, i is called a firs order parial differenial equaion. Iis,moreover,alinear parial differenial equaion. This erminology relaes o he fac ha if we define an operaor, L, as follows Lu, u, V u, 1
2 hen i is a simple maer o verify ha LC 1 u 1, C u, C 1 Lu 1, C Lu,. Any operaor wih his propery is called a linear operaor (any funcion of one variable f wih he propery ha fc 1 1 c c 1 f 1 c f is a funcion whose graph is a sraigh line), and any parial differenial equaion (PDE) epressing an equaliy for a linear parial differenial operaor is called a linear equaion. Problem 1 Show ha any PDE ha conains erms involving producs of he unknown funcion wih is derivaives is no a linear PDE. Wha is he form of he mos general linear firs order PDE for a funcion of variables, u,? Wha is i for a funcion of 4 variables, u, y,z,? Problem Show ha for any smooh funcion of one variable, F, we have ha u, F V solves u, V u, 0 Devise a similar such soluion for he equaion, u,y,z, V 1 u,y,z, V y u,y,z, V 3 z u,y,z, 0. Consider now he more general siuaion involving he flow of a fluid, flowing wih velociy, v, in a region U in R n. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be denoed by u,. Then a ime, he amoun of conaminan in an arbirary ball B in U is given by he epression B u, d amoun of conaminan in B a ime Similarly, he ouflow hrough he boundary of he ball during he ime inerval 1, is given by u, v n dsd ouflow hrough he boundary of he ball during B heimeinerval 1, where n denoes he ouward uni normal o B, he boundary he surface of he ball. Now he maerial balance equaion becomes B u, d B u, 1 d B u, v n dsd epressing he fac ha he amoun of conaminan in he ball a ime equals he amoun of conaminan in he ball a ime 1, less ha amoun ha has flowed ou of he ball hrough he boundary. As before, we can use he fundamenal heorem o wrie B u, d B u, 1 d B u, dd Recall now ha he divergence heorem assers ha for an arbirary smooh vecor field, G, Then for G u, v we ge B G n ds B div G d. u, dd B B divu, v d d 0.
3 Problem 3 Show ha for any smooh scalar funcion, u,, and any consan vecor v, divu, v v grad u, I follows from he resul of he problem ha since B is an arbirary ball in U, and 1, is similarly arbirary, hen if u and is derivaives of order one are all coninuous in U, u, v grad u, 0, in U for all. This is he ranspor equaion in ndimensions. Soluions for Firs Order Equaions Consider firs he problem of finding he general soluion for he equaion u, V u, 0 for all,. By a soluion o he equaion, we mean a funcion, u,, ha is coninuous and has coninuous firs derivaives a all poins (,), and in addiion is such ha he coninuous funcion u, V u, is equal o zero a all poins. If u, has all hese properies, we say ha u, is a classical soluion for he PDE. Suppose ha s s s is he parameric descripion of some curve C in he  plane. Then for u u, a smooh funcion of and, i is clear ha du/ds u, s u, s epresses he derivaive of u along he curve C. In paricular, if he curve C is such ha s V and s 1, i.e., s Vs 0, and s s 0 Then du/ds u, V u, 0, assers ha u is consan along C from which i is apparen ha u u, solves he PDE if and only if u is consan along C. I is also clear ha if V is a consan, hen C is a sraigh line. The parameric represenaion for his sraigh line is hen s Vs 0 s s 0 s Eliminaing he parameer, s, leads o he implici equaion V 0 V 0 : C 0, for he sraigh line passing hrough he poin 0, 0 in he  plane. Clearly, for F any smooh funcion of one variable, u, F V is a smooh funcion of and which is consan along C. Then by our previous observaion, u u, solves he PDE if and only if u, F V for F any smooh funcion of one variable. Noe ha he general soluion o a linear firs order parial differenial equaion conains an arbirary funcion, in conras o he general soluion for a linear firs order ordinary differenial equaion which conains an arbirary consan. Now consider he more general problem of finding he mos general soluion for he equaion u, v u, 0 for all,. 3
4 If s 1s,..., Ns s s is he parameric descripion of some curve C in R N1 hen for u u, a smooh funcion of and, i is clear ha du/ds 1 u, 1 s... N u, N s u, s epresses he derivaive of u along he curve C. If he curve C is such ha s v and s 1, i.e., s vs 0, and s s 0 hen du/ds v u u, 0, assers ha u is consan along C, (obviously C is a sraigh line in R N1. By he previous argumen, he following saemens are equivalen: 1 u u, is a soluion of u, v u, 0 u u, is consan along he sraigh line s vs 0, and s s 0 3 u, f v for f any smooh scalar valued funcion of N variables Problem 4 Show ha he hree saemens are, in fac, equivalen and ha C is a sraigh line if v is a consan. Saemen 3 here assers ha he general soluion for he equaion given in saemen 1 is any funcion of he form u, f v where f is any smooh funcion from R N ino R 1. Evidenly he soluion o his equaion is a very long way from being unique. On he oher hand, consider he problem of finding a funcion u, which saisfies he condiions a) u, v u, F, for all, and all 0, b) u,0 g, for all The condiion a) is an inhomogeneous version of he equaion in saemen 1). The erm inhomogeneous is used o epress he fac ha he righ side of he equaion is no zero and, in fac, conains he forcing funcion, F,. The equaion in saemen 1) is said o be a homogeneous equaion, since he righ side of he equaion is zero. The condiion b) is referred o as an iniial condiion since i specifies he sae variable, u,, a he iniial ime 0. The funcions F, and g are called he daa for he problem and are assumed o be given. We will show ha for each pair of daa funcions, F, and g, we canfindafuncion u, which saisfies boh of he condiions a) and b). Then we say, u, isasoluionoheiniial value problem. Noe ha his consrucion does no gauranee ha he soluion is unique (alhough we may be able o show laer ha he soluion is unique). We will describe he consrucion in he simples case ha N 1. Then he iniial value problem (IVP) assumes he form u, V u, F,,, 0, u,0 g, Firs, le u 1, denoe he soluion of his IVP in he case ha F, 0. The general 4
5 soluion of he homogeneous PDE is any funcion of he form, u 1, f V, where f denoes a smooh funcion of one variable. In order o saisfy he iniial condiion we mus have, u 1,0 f g, from which i follows ha u 1, g V. Here we see ha in order for he homogeneous iniial value problem o have a soluion, he given iniial funcion mus be coninuously differeniable. Now le u, denoe he soluion of he IVP in he case ha g 0 bu F, is no zero. Then u, V u, F,,, 0, u,0 0, The inhomogeneous equaion is equivalen o d/dsu s,s Fs,s, where s V and s 1; i.e., s Vs 0, and s s 0 Then for arbirary parameer values s s 1, s u s,s u s 1,s 1 d/dsus,sds s1 s u s 1,s 1 Fs,s ds s1 If we choose s 0 s 1, hen 0 s, 0 s. Tha is, s V0, and s 0 s 1 V, and s 1 and 0 u, u V,0 F Vs, s ds 0 0 F V, d where we made he change of variable, s in he inegral. Now i is easy o show ha u, u 1, u, g V F V, d 0 saisfies boh of he condiions a) and b); i.e., his is a soluion of he iniial value problem. Problem 5 Verify ha he soluion consruced here does, in fac, saisfy boh condiions in he IVP. Wha are he condiions on F(,) in order for his soluion o be valid? Verify ha in he case of general N, he soluion of he IVP is given by u, g V F V 0, d Suppose N 1, F 0 and ha he iniial daa funcion, g, is such ha Then g 1 if 1 if 1 5
6 u, 1 if V 1 if V 1 formally saisfies he IVP bu since he firs derivaives of u, fail o eis a poins on he line V 1, i canno be said o be a soluion in he classical sense. In he coming weeks we will ry o deermine wheher here is some weaker sense in which his can be said o be a soluion of he IVP. Mehod of Characerisics The mehod of finding a soluion for he ranspor equaion in he previous eamples is a special case of he so called mehod of characerisics. If we consider a more general firs order equaion in variables, A, u, B, u, C, u, F,, hen a curve C in he  plane is said o be a characerisic curve for his PDE if C is a soluion curve for he following sysem of ordinary differenial equaions, s As,s, s Bs,s. Noe ha along any characerisic curve C, he PDE reduces o an ordinary differenial equaion d/dsus,s Cs,sus,s Fs,s. Noe ha alhough he linear PDE reduces o a linear ODE along characerisic curves, he ordinary differenial equaions which produce he characerisics may be nonlinear. In he eamples we have considered, he coefficiens A, B and C were consans and correspondingly, he characerisics urned ou o be sraigh lines. In general, when he coefficiens in he PDE are no consan, hen he characerisics urn ou o be a family of curves. We will reurn o he mehod of characerisics laer when considering conservaion laws. 6
Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
More information1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,
Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..
More informationInductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College  Physics 2426  Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
More informationRandom Walk in 1D. 3 possible paths x vs n. 5 For our random walk, we assume the probabilities p,q do not depend on time (n)  stationary
Random Walk in D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes
More informationAP Calculus AB 2013 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a missiondriven noforprofi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was
More information17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
More informationAP Calculus AB 2010 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College
More informationSignal Processing and Linear Systems I
Sanford Universiy Summer 214215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 1415, Gibbons
More information4 Convolution. Recommended Problems. x2[n] 1 2[n]
4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discreeime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.11.
More informationDifferential Equations and Linear Superposition
Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y
More informationChapter 7. Response of FirstOrder RL and RC Circuits
Chaper 7. esponse of FirsOrder L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
More informationAP Calculus BC 2010 Scoring Guidelines
AP Calculus BC Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board
More informationAppendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area workedou s o OddNumbered Eercises Do no read hese workedou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
More information3 RungeKutta Methods
3 RungeKua Mehods In conras o he mulisep mehods of he previous secion, RungeKua mehods are singlesep mehods however, muliple sages per sep. They are moivaed by he dependence of he Taylor mehods on he
More informationTwo Compartment Body Model and V d Terms by Jeff Stark
Two Comparmen Body Model and V d Terms by Jeff Sark In a onecomparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics  By his, we mean ha eliminaion is firs order and ha pharmacokineic
More informationcooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
More informationA Mathematical Description of MOSFET Behavior
10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical
More informationAnswer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prinou should hae 1 quesions. Muliplechoice quesions may coninue on he ne column or page find all choices before making your selecion. The
More informationGraduate Macro Theory II: Notes on Neoclassical Growth Model
Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.
More informationDYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS
DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper
More informationDifferential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.
Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given
More informationCircuit Types. () i( t) ( )
Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All
More informationThe Torsion of Thin, Open Sections
EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such
More informationStochastic Optimal Control Problem for Life Insurance
Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian
More informationLectures # 5 and 6: The Prime Number Theorem.
Lecures # 5 and 6: The Prime Number Theorem Noah Snyder July 8, 22 Riemann s Argumen Riemann used his analyically coninued ζfuncion o skech an argumen which would give an acual formula for π( and sugges
More information5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance.
5.8 Resonance 231 5.8 Resonance The sudy of vibraing mechanical sysems ends here wih he heory of pure and pracical resonance. Pure Resonance The noion of pure resonance in he differenial equaion (1) ()
More informationChapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m
Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m
More informationANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS
ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,
More informationMotion Along a Straight Line
Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his
More informationChapter 2 Kinematics in One Dimension
Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how
More information2.5 Life tables, force of mortality and standard life insurance products
Soluions 5 BS4a Acuarial Science Oford MT 212 33 2.5 Life ables, force of moraliy and sandard life insurance producs 1. (i) n m q represens he probabiliy of deah of a life currenly aged beween ages + n
More informationChabot College Physics Lab RC Circuits Scott Hildreth
Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard
More informationPROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
More informationA Curriculum Module for AP Calculus BC Curriculum Module
Vecors: A Curriculum Module for AP Calculus BC 00 Curriculum Module The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy.
More informationMorningstar Investor Return
Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion
More informationA Generalized Bivariate OrnsteinUhlenbeck Model for Financial Assets
A Generalized Bivariae OrnseinUhlenbeck Model for Financial Asses Romy Krämer, Mahias Richer Technische Universiä Chemniz, Fakulä für Mahemaik, 917 Chemniz, Germany Absrac In his paper, we sudy mahemaical
More informationChapter 4: Exponential and Logarithmic Functions
Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion
More informationRC (ResistorCapacitor) Circuits. AP Physics C
(ResisorCapacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
More informationChapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr
Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i
More informationTechnical Appendix to Risk, Return, and Dividends
Technical Appendix o Risk, Reurn, and Dividends Andrew Ang Columbia Universiy and NBER Jun Liu UC San Diego This Version: 28 Augus, 2006 Columbia Business School, 3022 Broadway 805 Uris, New York NY 10027,
More informationTHE PRESSURE DERIVATIVE
Tom Aage Jelmer NTNU Dearmen of Peroleum Engineering and Alied Geohysics THE PRESSURE DERIVATIVE The ressure derivaive has imoran diagnosic roeries. I is also imoran for making ye curve analysis more reliable.
More informationDuration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVAF38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
More informationCapacitors and inductors
Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear
More informationOn the degrees of irreducible factors of higher order Bernoulli polynomials
ACTA ARITHMETICA LXII.4 (1992 On he degrees of irreducible facors of higher order Bernoulli polynomials by Arnold Adelberg (Grinnell, Ia. 1. Inroducion. In his paper, we generalize he curren resuls on
More information11/6/2013. Chapter 14: Dynamic ADAS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic DS dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuingedge
More informationA UNIFIED APPROACH TO MATHEMATICAL OPTIMIZATION AND LAGRANGE MULTIPLIER THEORY FOR SCIENTISTS AND ENGINEERS
A UNIFIED APPROACH TO MATHEMATICAL OPTIMIZATION AND LAGRANGE MULTIPLIER THEORY FOR SCIENTISTS AND ENGINEERS RICHARD A. TAPIA Appendix E: Differeniaion in Absrac Spaces I should be no surprise ha he differeniaion
More informationnonlocal conditions.
ISSN 17493889 prin, 17493897 online Inernaional Journal of Nonlinear Science Vol.11211 No.1,pp.39 Boundary Value Problem for Some Fracional Inegrodifferenial Equaions wih Nonlocal Condiions Mohammed
More informationStochastic Calculus and Option Pricing
Sochasic Calculus and Opion Pricing Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Sochasic Calculus 15.450, Fall 2010 1 / 74 Ouline 1 Sochasic Inegral 2 Iô s Lemma 3 BlackScholes
More informationMaking Use of Gate Charge Information in MOSFET and IGBT Data Sheets
Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have
More informationSection 5.1 The Unit Circle
Secion 5.1 The Uni Circle The Uni Circle EXAMPLE: Show ha he poin, ) is on he uni circle. Soluion: We need o show ha his poin saisfies he equaion of he uni circle, ha is, x +y 1. Since ) ) + 9 + 9 1 P
More informationAP Calculus AB 2007 Scoring Guidelines
AP Calculus AB 7 Scoring Guidelines The College Board: Connecing Sudens o College Success The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and
More informationModule 3. RL & RC Transients. Version 2 EE IIT, Kharagpur
Module 3  & C Transiens esson 0 Sudy of DC ransiens in  and C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series
More informationName: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling
Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: Solving Exponenial Equaions (The Mehod of Common Bases) Solving Exponenial Equaions (Using Logarihms)
More informationEconomics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
More informationMTH6121 Introduction to Mathematical Finance Lesson 5
26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random
More informationWorking Paper On the timing option in a futures contract. SSE/EFI Working Paper Series in Economics and Finance, No. 619
econsor www.econsor.eu Der OpenAccessPublikaionsserver der ZBW LeibnizInformaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Biagini, Francesca;
More informationSecond Order Linear Differential Equations
Second Order Linear Differenial Equaions Second order linear equaions wih consan coefficiens; Fundamenal soluions; Wronskian; Exisence and Uniqueness of soluions; he characerisic equaion; soluions of homogeneous
More information1.2 Goals for Animation Control
A Direc Manipulaion Inerface for 3D Compuer Animaion Sco Sona Snibbe y Brown Universiy Deparmen of Compuer Science Providence, RI 02912, USA Absrac We presen a new se of inerface echniques for visualizing
More informationChapter 2: Principles of steadystate converter analysis
Chaper 2 Principles of SeadySae Converer Analysis 2.1. Inroducion 2.2. Inducor volsecond balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer
More informationCHAPTER FIVE. Solutions for Section 5.1
CHAPTER FIVE 5. SOLUTIONS 87 Soluions for Secion 5.. (a) The velociy is 3 miles/hour for he firs hours, 4 miles/hour for he ne / hour, and miles/hour for he las 4 hours. The enire rip lass + / + 4 = 6.5
More informationOption Pricing Under Stochastic Interest Rates
I.J. Engineering and Manufacuring, 0,3, 889 ublished Online June 0 in MECS (hp://www.mecspress.ne) DOI: 0.585/ijem.0.03. Available online a hp://www.mecspress.ne/ijem Opion ricing Under Sochasic Ineres
More informationSection 7.1 Angles and Their Measure
Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed
More informationABSTRACT KEYWORDS. Markov chain, Regulation of payments, Linear regulator, Bellman equations, Constraints. 1. INTRODUCTION
QUADRATIC OPTIMIZATION OF LIFE AND PENSION INSURANCE PAYMENTS BY MOGENS STEFFENSEN ABSTRACT Quadraic opimizaion is he classical approach o opimal conrol of pension funds. Usually he paymen sream is approximaed
More informationTerm Structure of Prices of Asian Options
Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 111 Nojihigashi, Kusasu, Shiga 5258577, Japan Email:
More informationEquation for a line. Synthetic Impulse Response 0.5 0.5. 0 5 10 15 20 25 Time (sec) x(t) m
Fundamenals of Signals Overview Definiion Examples Energy and power Signal ransformaions Periodic signals Symmery Exponenial & sinusoidal signals Basis funcions Equaion for a line x() m x() =m( ) You will
More informationLecture 2: Telegrapher Equations For Transmission Lines. Power Flow.
Whies, EE 481 Lecure 2 Page 1 of 13 Lecure 2: Telegraher Equaions For Transmission Lines. Power Flow. Microsri is one mehod for making elecrical connecions in a microwae circui. I is consruced wih a ground
More informationCointegration: The Engle and Granger approach
Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be nonsaionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require
More informationCHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
More informationTHE EQUATIONS OF THE IDEAL LATCHES
THE EUATIONS OF THE IDEAL LATHES SERBAN E. VLAD Oradea iy Hall, iaa Unirii Nr., 4000, Oradea, Romania www.geociies.com/serban_e_lad, serban_e_lad@yahoo.com ABSTRAT We presen he eqaions ha model seeral
More informationA Probability Density Function for Google s stocks
A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural
More informationINTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES
INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES OPENGAMMA QUANTITATIVE RESEARCH Absrac. Exchangeraded ineres rae fuures and heir opions are described. The fuure opions include hose paying
More informationA Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation
A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion
More informationBSplines and NURBS Week 5, Lecture 9
CS 430/536 Compuer Graphics I BSplines an NURBS Wee 5, Lecure 9 Davi Breen, William Regli an Maxim Peysahov Geomeric an Inelligen Compuing Laboraory Deparmen of Compuer Science Drexel Universiy hp://gicl.cs.rexel.eu
More informationRC, RL and RLC circuits
Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.
More informationChapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
More informationPart II Converter Dynamics and Control
Par II onverer Dynamics and onrol 7. A equivalen circui modeling 8. onverer ransfer funcions 9. onroller design 1. Inpu filer design 11. A and D equivalen circui modeling of he disconinuous conducion mode
More informationForecasting and Information Sharing in Supply Chains Under QuasiARMA Demand
Forecasing and Informaion Sharing in Supply Chains Under QuasiARMA Demand Avi Giloni, Clifford Hurvich, Sridhar Seshadri July 9, 2009 Absrac In his paper, we revisi he problem of demand propagaion in
More informationT ϕ t ds t + ψ t db t,
16 PRICING II: MARTINGALE PRICING 2. Lecure II: Pricing European Derivaives 2.1. The fundamenal pricing formula for European derivaives. We coninue working wihin he Black and Scholes model inroduced in
More information4.2 Trigonometric Functions; The Unit Circle
4. Trigonomeric Funcions; The Uni Circle Secion 4. Noes Page A uni circle is a circle cenered a he origin wih a radius of. Is equaion is as shown in he drawing below. Here he leer represens an angle measure.
More informationAcceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
More informationKeldysh Formalism: Nonequilibrium Green s Function
Keldysh Formalism: Nonequilibrium Green s Funcion Jinshan Wu Deparmen of Physics & Asronomy, Universiy of Briish Columbia, Vancouver, B.C. Canada, V6T 1Z1 (Daed: November 28, 2005) A review of Nonequilibrium
More informationJournal Of Business & Economics Research September 2005 Volume 3, Number 9
Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy YiKang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo
More informationRotational Inertia of a Point Mass
Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha
More informationANALYTIC PROOF OF THE PRIME NUMBER THEOREM
ANALYTIC PROOF OF THE PRIME NUMBER THEOREM RYAN SMITH, YUAN TIAN Conens Arihmeical Funcions Equivalen Forms of he Prime Number Theorem 3 3 The Relaionshi Beween Two Asymoic Relaions 6 4 Dirichle Series
More informationSEMIMARTINGALE STOCHASTIC APPROXIMATION PROCEDURE AND RECURSIVE ESTIMATION. Chavchavadze Ave. 17 a, Tbilisi, Georgia, Email: toronj333@yahoo.
SEMIMARTINGALE STOCHASTIC APPROXIMATION PROCEDURE AND RECURSIVE ESTIMATION N. LAZRIEVA, 2, T. SHARIA 3, 2 AND T. TORONJADZE Georgian American Universiy, Business School, 3, Alleyway II, Chavchavadze Ave.
More informationEfficient Risk Sharing with Limited Commitment and Hidden Storage
Efficien Risk Sharing wih Limied Commimen and Hidden Sorage Árpád Ábrahám and Sarola Laczó March 30, 2012 Absrac We exend he model of risk sharing wih limied commimen e.g. Kocherlakoa, 1996) by inroducing
More informationCommunication Networks II Contents
3 / 1  Communicaion Neworks II (Görg)  www.comnes.unibremen.de Communicaion Neworks II Conens 1 Fundamenals of probabiliy heory 2 Traffic in communicaion neworks 3 Sochasic & Markovian Processes (SP
More informationI. Basic Concepts (Ch. 14)
(Ch. 14) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing
More informationNewton s Laws of Motion
Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The
More information2 Electric Circuits Concepts Durham
Chaper 3  Mehods Chaper 3  Mehods... 3. nroducion... 2 3.2 Elecrical laws... 2 3.2. Definiions... 2 3.2.2 Kirchhoff... 2 3.2.3 Faraday... 3 3.2.4 Conservaion... 3 3.2.5 Power... 3 3.2.6 Complee... 4
More informationHedging with Forwards and Futures
Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buyside of a forward/fuures
More informationON THE PRICING OF EQUITYLINKED LIFE INSURANCE CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT
Teor Imov r.amaem.sais. Theor. Probabiliy and Mah. Sais. Vip. 7, 24 No. 7, 25, Pages 15 111 S 949(5)6344 Aricle elecronically published on Augus 12, 25 ON THE PRICING OF EQUITYLINKED LIFE INSURANCE
More informationA Simple Introduction to Dynamic Programming in Macroeconomic Models
Economics Deparmen Economics orking Papers The Universiy of Auckland Year A Simple Inroducion o Dynamic Programming in Macroeconomic Models Ian King Universiy of Auckland, ip.king@auckland.ac.nz This paper
More informationRC Circuit and Time Constant
ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisorcapacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he
More informationWHAT ARE OPTION CONTRACTS?
WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be
More informationOptimal Stock Selling/Buying Strategy with reference to the Ultimate Average
Opimal Sock Selling/Buying Sraegy wih reference o he Ulimae Average Min Dai Dep of Mah, Naional Universiy of Singapore, Singapore Yifei Zhong Dep of Mah, Naional Universiy of Singapore, Singapore July
More informationTHE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS
VII. THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS The mos imporan decisions for a firm's managemen are is invesmen decisions. While i is surely
More informationA Reexamination of the Joint Mortality Functions
Norh merican cuarial Journal Volume 6, Number 1, p.166170 (2002) Reeaminaion of he Join Morali Funcions bsrac. Heekung Youn, rkad Shemakin, Edwin Herman Universi of S. Thomas, Sain Paul, MN, US Morali
More informationEntropy: From the Boltzmann equation to the Maxwell Boltzmann distribution
Enropy: From he Bolzmann equaion o he Maxwell Bolzmann disribuion A formula o relae enropy o probabiliy Ofen i is a lo more useful o hink abou enropy in erms of he probabiliy wih which differen saes are
More informationPATHWISE PROPERTIES AND PERFORMANCE BOUNDS FOR A PERISHABLE INVENTORY SYSTEM
PATHWISE PROPERTIES AND PERFORMANCE BOUNDS FOR A PERISHABLE INVENTORY SYSTEM WILLIAM L. COOPER Deparmen of Mechanical Engineering, Universiy of Minnesoa, 111 Church Sree S.E., Minneapolis, MN 55455 billcoop@me.umn.edu
More information