Review of Fourier Series and Its Applications in Mechanical Engineering Analysis


 Rosamond Moore
 2 years ago
 Views:
Transcription
1 ME 3 Applied Egieerig Aalysis Chapter 6 Review of Fourier Series ad Its Applicatios i Mechaical Egieerig Aalysis TaiRa Hsu, Professor Departmet of Mechaical ad Aerospace Egieerig Sa Jose State Uiversity Sa Jose, Califoria, USA
2 Chapter Outlie Itroductio Mathematical Expressios of Fourier Series Applicatio i egieerig aalysis Covergece of Fourier Series
3 Itroductio Jea Baptiste Joseph Fourier A Frech mathematicia Major cotributios to egieerig aalysis: Mathematical theory of heat coductio (Fourier law of heat coductio i Chapter 3) Fourier series represetig periodical fuctios Fourier trasform Similar to aplace trasform, but for trasformig variables i the rage of ( ad + )  a powerful tool i solvig differetial equatios
4 Periodic Physical Pheomea: Motios of poies Forces o the eedle
5 Machies with Periodic Physical Pheomea A stampig machie ivolvig cyclic puchig of sheet metals Sheet metal Elastic foudatio Mass, M x(t) I a 4stroke iteral combustio egie: Cyclic gas pressures o cyliders, ad forces o coectig rod ad crak shaft
6 Mathematical expressios for periodical sigals from a oscilloscope by Fourier series:
7 The periodic variatio of gas pressure i a 4stoke iteral combustio egie: The PV Diagram P = gas pressure i cyliders Pressure, P Volume, V or Stoke, 5 Itake  Compressio 3 Combustio 4  Expasio 5  Exhaust But the stroke l varies with time of the rotatig crak shaft, so the timevaryig gas pressure is illustrated as: Pressure, P(t) Period T Oe revolutio Period T Next revolutio So, P(t) is a periodic fuctio with period T Time, t
8 FOURIER SERIES The mathematical represetatio of periodic physical pheomea Mathematical expressio for periodic fuctios: If f(x) is a periodic fuctio with variable x i ONE period The f(x) = f(x±) = f(x±4) = f(x± 6) = f(x±8)=.=f(x±) where = ay iteger umber Period: ( , ) or (, ) f(x) x (a) Periodic fuctio with period (, ) Period = : f(t) 3 t t t 3 t (b) Periodic fuctio with period (, )
9 Mathematical Expressios of Fourier Series Required coditios for Fourier series: The mathematical expressio of the periodic fuctio f(x) i oe period must be available The fuctio i oe period is defied i a iterval (c < x < c+) i which c = or ay arbitrarily chose value of x, ad = half period The fuctio f(x) ad its first order derivative f (x) are either cotiuous or piecewise cotiuous i c < x < c+ The mathematical expressio of Fourier series for periodic fuctio f(x) is: f ( x) a = + = a Cos x + b Si x = f ( x ± ) = f ( x ± 4) =... (6.) where a o, a ad b are Fourier coefficiets, to be determied by the followig itegrals: a b c = + x Cos dx c =,,,3,... c = + x Si dx c =,,3,... (6.a) (6.b)
10 Example 6. Derive a Fourier series for a periodic fuctio with period (, ): We realize that the period of this fuctio = () = The half period is = If we choose c = , we will have c+ =  + = Thus, by usig Equatios (6.) ad (6.), we will have: ad a b = a = = + = a c+ = + = = x Cos + b = x Si = x Cos dx x x) Si dx c= = c+ = + f c= = Hece, the Fourier series is: a = + ( a Cos ( x) + b Si( x) ) = with a = Cos ( x) dx =,,,3,... b ( = Si( x) dx =,,3,... (6.3) (6.4a) (6.4b) We otice the period (, ) might ot be practical, but it appears to be commo i may applied math textbooks. Here, we treat it as a special case of Fourier series.
11 Example 6. Derive a Fourier series for a periodic fuctio f(x) with a period (l, l) et us choose c = l, ad the period = l (l) = l, ad the half period = l a x x = + b Si = l = l a b + a Cos = c+ = l+ l = = l = = l x Cos dx l c= l = c+ = l+ l Si c= l = Hece the Fourier series of the periodic fuctio f(x) becomes: x l dx with a b = a + = a Cos x x + b Si (6.5) l l l x = Cos dx =,,,3,... l l l l x = Si dx =,,3,... l l l (6.6a) (6.6b)
12 Example 6.3 Derive a Fourier series for a periodic fuctio f(x) with a period (, ). As i the previous examples, we choose c =, ad half period to be. We will have the Fourier series i the followig form: a x x = + a Cos + b Si = = = a c+ = + = = l b c= c+ = + = = c= x Cos dx = x Si = The correspodig Fourier series thus has the followig form: = a + = a Cos dx x x + b Si (6.7) a = dx (6.8a) x a = Cos dx =,,3,... (6.8b) x b = Si dx =,,3,... (6.8c) Periodic fuctios with periods (, ) are more realistic. Equatios (6.7) ad (6.8) are Thus more practical i egieerig aalysis.
13 The class is ecouraged to study Examples 6.4 ad 6.5 Example (Problem 6.4 ad Problem (3) of Fial exam S9) Derive a fuctio describig the positio of the slidig block M i oe period i a slide mechaism as illustrated below. If the crak rotates at a costat velocity of 5 rpm. (a) Illustrate the periodic fuctio i three periods, ad (b) Derive the appropriate Fourier series describig the positio of the slidig block x(t) i which t is the time i miutes ω Rotatioal velocity ω = 5 RPM Slidig Block, M A B X(t) Crak Radius R Dead Ed Dead Ed A B (X = ) (X = R)
14 Solutio: (a) Illustrate the periodic fuctio i three periods: Determie the agular displacemet of the crak: We realize the relatioship: rpm N = ω/(), ad θ = ωt, where ω = agular velocity ad θ = agular displacemet relatig to the positio of the slidig block For N = 5 rpm, we have: θ t = = 5t Based o oe revolutio (θ=) correspods to /5 mi. We thus have θ = t 5 A ω R θ B Deaded A: x = t = Oe revolutio Deaded B: x = R t = /5 mi Positio of the slidig block alog the xdirectio ca be determied by: x = R RCosθ or x(t) = R RCos(t) = R[ Cos(t)] < t < /5 mi x
15 We have ow derived the periodic fuctio describig the istataeous positio of the slidig block as: x(t) = R[ Cos(t)] < t < /5 mi (a) A ω R θ B x Deaded A: x = t = Oe revolutio Deaded B: x = R t = /5 mi Graphical represetatio of fuctio i Equatio (a) ca be produced as: x(t) R R x(t) = R[ Cos(t)] Θ = / 3/ Time, t (mi) Time t = / /5 mi Oe revolutio d period 3 rd period (oe period)
16 (b) Formulatio of Fourier Series: We have the periodic fuctio: x(t) = R[ Cos(t)] with a period: < t < /5 mi If we choose c = ad period = /5, we will have the Fourier series expressed i the followig form by usig Equatios (6.7) ad (6.8): with ao t t x() t = + acos + bsi = = / = / ao = + [ acost + bsit] = a R Si () ( ) Si( + ) 5 = x t Cos tdt = + + We may obtai coefficiet a o from Equatio (c) to be a o = : (b) (c) The other coefficiet b ca be obtaied by: b 5 ( ) () t Sit dt = R( Cost ) = x R = [ Cos( ) ] + R ( + ) Sit dt [ Cos( + ) ] (d)
17 Covergece of Fourier Series We have leared the mathematical represetatio of periodic fuctios by Fourier series I Equatio (6.): a = + = a x Cos + b Si x = f ( x ± ) = f ( x ± 4) =... (6.) This form requires the summatio of INFINITE umber of terms, which is UNREAISTIC. The questio is HOW MANY terms oe eeds to iclude i the summatio i order to reach a accurate represetatio of the periodic fuctio? The followig example will give some idea o the relatioship of the umber of terms i the Fourier series ad the accurate represetatio of the periodic fuctio : Example 6.6 Derive the Fourier series for the followig periodic fuctio: f t ( t) = S it t
18 This fuctio ca be graphically represeted as: f t () t = S it t f(t) We idetified the period to be: =  () =, ad from Equatio (6.3), we have: a = + ( a Cos ( x) + b Si( x) ) (a) = with = + ( ) ( ) = () + Cos a f t Cos t dt Cos t dt Sit Cos t dt = ( ) for ad ( ) ( ) b = f t Si t dt = () Si t dt + Sit Si t dt =,,3,... or Si( ) t Si( + ) t b = = for + For the case =, the two coefficiets become: Si t a = Sit Cost dt = = ad b = = Sit Sit dt o t
19 f t () t = S it t f(t) The Fourier series for the periodic fuctio with the coefficiets become: f ( t) = + Sit + = ( a Cos t + b Si t ) The Fourier series i Equatio (b) ca be expaded ito the followig ifiite series: Sit Cos t Cos 4t Cos 6t Cos 8t (c) f ( t) = et us ow examie what the fuctio would look like by icludig differet umber of terms i expressio (c): f(t) t (b) Case : Iclude oly oe term: f ( x) = f = Graphically it will look like  Observatio: Not eve closely resemble  The Fourier series with oe term does ot coverge to the fuctio! f = t
20 f t ( t) = S it t f(t) Case : Iclude terms i Expressio (b): Si t f () t = f( t) = + Observatio: A Fourier series with terms has show improvemet i represetig the fuctio Case 3: Iclude 3 terms i Expressio (b): f(t) Si t f ( t) = +  () ( Sit Cos t f t = f3 t) = + 3 Observatio: A Fourier series with 3 terms  represet the fuctio much better tha the two previous cases with ad terms. f 3 ( t) Sit Cos t = + 3 f(t) t t t Coclusio: Fourier series coverges better to the periodic fuctio with more terms icluded i the series. Practical cosideratio: It is ot realistic to iclude ifiite umber of terms i the Fourier series for complete covergece. Normally a approach with terms would be sufficietly accurate i represetig most periodic fuctios
21 Covergece of Fourier Series at Discotiuities of Periodic Fuctios Fourier series i Equatios (6.) to (6.3) coverges to periodic fuctios everywhere except at discotiuities of piecewise cotiuous fuctio such as: f(x) f(x) = < = f (x) < x < x = f (x) x < x <x = f 3 (x) x < x < x 4 The periodic fuctio f(x) has discotiuities at: x o, x, x ad x 4 () f (x) () f (x) x x x x 4 3 (3) Period, The Fourier series for this piecewise cotiuous periodic fuctio will NEVER coverge at these discotiuous poits eve with umber of terms f 3 (x) x The Fourier series i Equatios (6.), (6.) ad (6.3) will coverge every where to the fuctio except these discotiuities, at which the series will coverge HAFWAY of the fuctio values at these discotiuities.
22 Covergece of Fourier Series at Discotiuities of Periodic Fuctios f(x) f (x) () f (x) () x x x x 4 3 (3) x Period, f 3 (x) Covergece of Fourier series at HAFWAY poits: f ) = f ( () f x ) = + f x ) = f ( x ) + f x ) = f 3 ( x4 ) = [ f ( x ) f ( )] ( x [ f ( )] ( 3 x ( 4 f () at Poit () at Poit () at Poit (3) same value as Poit ()
Cantilever Beam Experiment
Mechaical Egieerig Departmet Uiversity of Massachusetts Lowell Catilever Beam Experimet Backgroud A disk drive maufacturer is redesigig several disk drive armature mechaisms. This is the result of evaluatio
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationTAYLOR SERIES, POWER SERIES
TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the
More informationAP Calculus AB 2006 Scoring Guidelines Form B
AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a otforprofit membership associatio whose missio is to coect studets to college success
More informationOur aim is to show that under reasonable assumptions a given 2πperiodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationThe second difference is the sequence of differences of the first difference sequence, 2
Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for
More informationAP Calculus BC 2003 Scoring Guidelines Form B
AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More informationPartial Di erential Equations
Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio
More information8.1 Arithmetic Sequences
MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first
More informationTagore Engineering College Department of Electrical and Electronics Engineering EC 2314 Digital Signal Processing University Question Paper PartA
Tagore Egieerig College Departmet of Electrical ad Electroics Egieerig EC 34 Digital Sigal Processig Uiversity Questio Paper PartA UitI. Defie samplig theorem?. What is kow as Aliasig? 3. What is LTI
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationMathematical goals. Starting points. Materials required. Time needed
Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios
More informationLimits, Continuity and derivatives (Stewart Ch. 2) say: the limit of f(x) equals L
Limits, Cotiuity ad derivatives (Stewart Ch. 2) f(x) = L say: the it of f(x) equals L as x approaches a The values of f(x) ca be as close to L as we like by takig x sufficietly close to a, but x a. If
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationFOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10
FOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationCooleyTukey. Tukey FFT Algorithms. FFT Algorithms. Cooley
Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Cosider a legth sequece x[ with a poit DFT X[ where Represet the idices ad as +, +, Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Usig these
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More information{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers
. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,
More informationEkkehart Schlicht: Economic Surplus and Derived Demand
Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 200617 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät LudwigMaximiliasUiversität Müche Olie at http://epub.ub.uimueche.de/940/
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationClass Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES  CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More information3. Greatest Common Divisor  Least Common Multiple
3 Greatest Commo Divisor  Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
More informationArithmetic of Triangular Fuzzy Variable from Credibility Theory
Vol., Issue 3, August 0 Arithmetic of Triagular Fuzzy Variable from Credibility Theory Ritupara Chutia (Correspodig Author) Departmet of Mathematics Gauhati Uiversity, Guwahati, Assam, Idia. Rituparachutia7@rediffmail.com
More informationMultiple Representations for Pattern Exploration with the Graphing Calculator and Manipulatives
Douglas A. Lapp Multiple Represetatios for Patter Exploratio with the Graphig Calculator ad Maipulatives To teach mathematics as a coected system of cocepts, we must have a shift i emphasis from a curriculum
More informationNUMBERS COMMON TO TWO POLYGONAL SEQUENCES
NUMBERS COMMON TO TWO POLYGONAL SEQUENCES DIANNE SMITH LUCAS Chia Lake, Califoria a iteger, The polygoal sequece (or sequeces of polygoal umbers) of order r (where r is r > 3) may be defied recursively
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More information4.3. The Integral and Comparison Tests
4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece
More informationRecursion and Recurrences
Chapter 5 Recursio ad Recurreces 5.1 Growth Rates of Solutios to Recurreces Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer. Cosider, for example,
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationINDR 262 Optimization Models and Mathematical Programming LINEAR PROGRAMMING MODELS
LINEAR PROGRAMMING MODELS Commo termiology for liear programmig:  liear programmig models ivolve. resources deoted by i, there are m resources. activities deoted by, there are acitivities. performace
More informationSection 7: Free electron model
Physics 97 Sectio 7: ree electro model A free electro model is the simplest way to represet the electroic structure of metals. Although the free electro model is a great oversimplificatio of the reality,
More informationThermodynamic Laws/Definition of Entropy
This is a review of Thermodyamics ad Statistical Mechaics. Thermodyamic Laws/Defiitio of Etropy st law of thermodyamics, the coservatio of eergy: du = dq dw = Q W, ( where dq is heat eterig the system
More informationAPPLICATION NOTE 30 DFT or FFT? A Comparison of Fourier Transform Techniques
APPLICATION NOTE 30 DFT or FFT? A Compariso of Fourier Trasform Techiques This applicatio ote ivestigates differeces i performace betwee the DFT (Discrete Fourier Trasform) ad the FFT(Fast Fourier Trasform)
More informationS. Tanny MAT 344 Spring 1999. be the minimum number of moves required.
S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,
More informationAn Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function
A Efficiet Polyomial Approximatio of the Normal Distributio Fuctio & Its Iverse Fuctio Wisto A. Richards, 1 Robi Atoie, * 1 Asho Sahai, ad 3 M. Raghuadh Acharya 1 Departmet of Mathematics & Computer Sciece;
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More informationINFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
More information4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then
SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or pseries (the Compariso Test), but of
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationSolving DivideandConquer Recurrences
Solvig DivideadCoquer Recurreces Victor Adamchik A divideadcoquer algorithm cosists of three steps: dividig a problem ito smaller subproblems solvig (recursively) each subproblem the combiig solutios
More informationResearch Article Sign Data Derivative Recovery
Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov
More informationDivide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015
CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a
More informationTHE UNLIKELY UNION OF PARTITIONS AND DIVISORS
THE UNLIKELY UNION OF PARTITIONS AND DIVISORS Abdulkadir Hasse, Thomas J. Osler, Mathematics Departmet ad Tirupathi R. Chadrupatla, Mechaical Egieerig Rowa Uiversity Glassboro, NJ 828 I the multiplicative
More informationwhere w^o and q (0<q<l) are real constants. I prove that, for large z,
JACOBIAN FUNCTIONS IN POWERS OF THE MODULI. 115 of fidig a place i the stadard treatises have had to be rediscovered is perhaps due partly to the fact that the joural to which they were commuicated was
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationI. Why is there a time value to money (TVM)?
Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More informationModule 4: Mathematical Induction
Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate
More informationSequences II. Chapter 3. 3.1 Convergent Sequences
Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,
More informationGregory Carey, 1998 Linear Transformations & Composites  1. Linear Transformations and Linear Composites
Gregory Carey, 1998 Liear Trasformatios & Composites  1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More information3 Energy. 3.3. NonFlow Energy Equation (NFEE) Internal Energy. MECH 225 Engineering Science 2
MECH 5 Egieerig Sciece 3 Eergy 3.3. NoFlow Eergy Equatio (NFEE) You may have oticed that the term system kees croig u. It is ecessary, therefore, that before we start ay aalysis we defie the system that
More informationAQA STATISTICS 1 REVISION NOTES
AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More informationDescriptive statistics deals with the description or simple analysis of population or sample data.
Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationA Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
More informationGCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4
GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook Alevel Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5
More informationThe Euler Totient, the Möbius and the Divisor Functions
The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship
More informationx(x 1)(x 2)... (x k + 1) = [x] k n+m 1
1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,
More informationWHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
More information3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average
5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
More informationRECIPROCATING COMPRESSORS
RECIPROCATING COMPRESSORS There are various compressor desigs: Rotary vae; Cetrifugal & Axial flow (typically used o gas turbies); Lobe (Roots blowers), ad Reciprocatig. The mai advatages of the reciprocatig
More informationLearning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr.
Algorithms ad Data Structures Algorithm efficiecy Learig outcomes Able to carry out simple asymptotic aalysisof algorithms Prof. Dr. Qi Xi 2 Time Complexity Aalysis How fast is the algorithm? Code the
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationNEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,
NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical
More informationAlgebra Vocabulary List (Definitions for Middle School Teachers)
Algebra Vocabulary List (Defiitios for Middle School Teachers) A Absolute Value Fuctio The absolute value of a real umber x, x is xifx 0 x = xifx < 0 http://www.math.tamu.edu/~stecher/171/f02/absolutevaluefuctio.pdf
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationSEQUENCES AND SERIES
Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationRunning Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis
Ruig Time ( 3.) Aalysis of Algorithms Iput Algorithm Output A algorithm is a stepbystep procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.
More informationMultiplexers and Demultiplexers
I this lesso, you will lear about: Multiplexers ad Demultiplexers 1. Multiplexers 2. Combiatioal circuit implemetatio with multiplexers 3. Demultiplexers 4. Some examples Multiplexer A Multiplexer (see
More informationKinematic Synthesis of Multifingered Robotic Hands for Finite and Infinitesimal Tasks
Kiematic Sythesis of Multifigered Robotic Hads for Fiite ad Ifiitesimal Tasks E. SimoSerra, A. PerezGracia, H. Moo ad N. Robso Abstract I this paper we preset a ovel method of desigig multifigered
More informationPart  I. Mathematics
Part  I Mathematics CHAPTER Set Theory. Objectives. Itroductio. Set Cocept.. Sets ad Elemets. Subset.. Proper ad Improper Subsets.. Equality of Sets.. Trasitivity of Set Iclusio.4 Uiversal Set.5 Complemet
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationUNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS.
Name: Group Members: UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. EACH ACTIVITY HAS A COLOR THAT CORRESPONDS
More informationFactors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More information7.1 Finding Rational Solutions of Polynomial Equations
4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?
More informationSequences, Series and Convergence with the TI 92. Roger G. Brown Monash University
Sequeces, Series ad Covergece with the TI 92. Roger G. Brow Moash Uiversity email: rgbrow@deaki.edu.au Itroductio. Studets erollig i calculus at Moash Uiversity, like may other calculus courses, are itroduced
More informationChapter 5 Discrete Probability Distributions
Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide Chapter 5 Discrete Probability Distributios Radom Variables Discrete Probability Distributios Epected Value ad Variace Poisso Distributio
More informationProject Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments
Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 612 pages of text (ca be loger with appedix) 612 figures (please
More informationInstitute of Actuaries of India Subject CT1 Financial Mathematics
Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i
More informationREVISION SHEET FP2 (AQA) CALCULUS. x x π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + arcsin x = + ar sinh x
the Further Mathematics etwork www.fmetwork.org.uk V 07 REVISION SHEET FP (AQA) CALCULUS The mai ideas are: Calculus usig iverse trig fuctios & hperbolic trig fuctios ad their iverses. Calculatig arc legths.
More information