3 Energy NonFlow Energy Equation (NFEE) Internal Energy. MECH 225 Engineering Science 2


 Claribel Jefferson
 1 years ago
 Views:
Transcription
1 MECH 5 Egieerig Sciece 3 Eergy 3.3. NoFlow Eergy Equatio (NFEE) You may have oticed that the term system kees croig u. It is ecessary, therefore, that before we start ay aalysis we defie the system that we are lookig at. o do this we costruct a imagiary boudary aroud what we are iterested i for examle, the cricket ball (struck by Nasser Hussei) or the water i the kettle). he dealig with a oflow situatio, the the system will be of fixed mass  o matter crosses the boudary  so it is useful to defie a cotrol mass. If we are cosiderig a flow situatio, the a cotrol volume through which the fluid flows is more useful. I hoe these ideas will become clearer whe we cosider some examles. A tyical closed system is a gas eclosed i a cylider by meas of a isto. he gas iside the cylider is the cotrol mass. Iteral Eergy From the First Law, + E + E k + E + U But for a oflowig gas, its velocity will be 0 to start with, ad whe it has settled dow after the rocess, its velocity will agai be 0, so the chage i kietic eergy, E k 0. Similarly, there is o sigificat chage i otetial eergy, so E 0. here will, however, be a chage i the iteral eergy, U. So, the oflow eergy equatio (NFEE) becomes, simly, + U or + U U where U is the iteral eergy i state, after the rocess ad U is the iteral eergy i state, before the rocess. Examle Durig a comlete cycle, a system is subjected to the followig heat trasfers: 800 kj from the surroudigs ad 500 kj to the surroudigs. At two oits i the cycle, work is trasferred to the surroudigs of 96 kj ad 0 kj. At a third oit there is a further work trasfer. Determie its magitude ad sese. Examle I a air comressor, the comressio takes lace at costat iteral eergy ad 00 kj of eergy are rejected to the coolig water er kg of air. Determie the secific work trasfer durig the comressio stroke.
2 Solutio Here, the system is defied for us o details are give as to its ature. For a comlete cycle, we kow that: Σ + Σ 0 Σ kJ Σ where is the value of the ukow work trasfer i kj kj he egative sig tells us that it is a work trasfer to the surroudigs. Solutio he system is the air i the comressor. e do ot kow its mass, so let us suose that it is m kg. he iteral eergy remais costat, so U, the chage i iteral eergy is 0. he oflow eergy equatio becomes + 0 he eergy trasferred by heatig is from the air i the comressor to the coolig water, ad is therefore egative. It is 00 kj er kg, so for m kg:  00m kj Alyig the NFEE, 00m m kj You are asked to fid the secific work trasfer. his meas the work trasfer for every kilogram, ad this is give the symbol, w. herefore, w 00 kj m hat does the ositive sig for the work trasfer tell you? Is this what you would exect? Ca you exlai why it is ositive?
3 3.4 Alicatios of the NFEE he oflow eergy equatio ca be alied to ay oflow thermodyamic rocess. e ca classify rocesses deedig o the coditios uder which they take lace, ad the tye of fluid. yical rocesses that are erformed o gases are at costat volume, costat ressure, costat temerature (isothermal) ad with o eergy trasfer by heatig (adiabatic). Calculatig eergy trasfers (a) Eergy trasfer by heatig, e saw i.6 that we ca calculate the eergy trasferred by heatig usig the equatio: mc(  ) (b) Eergy trasfer by workig, How ca we calculate the eergy trasferred by workig? Force x distace moved ad Force ressure x area herefore, ressure x area x distace moved. Cosider a gas eclosed by a isto: he force o the isto A area, A he distace moved dx herefore the work doe by the gas is d Adx d dx he total work doe, whe the isto moves so that the volume icreases from to is: isto moves d his is the area uder the  diagram betwee states ad. he egative sig is there, because as the gas exads it does work o the surroudigs. e eed to itegrate d because as the gas exads the ressure may ot remai costat, i geeral, so we eed to add u all the small amouts of work doe at each of the iterveig ressures whe the isto moves by a small distace, dx. For a erfect gas, we kow the relatioshis betwee ressure, volume ad temerature. If we kow the coditios of the rocess, the we ca calculate the work doe ad the heat trasferred. But these quatities, ad, deed o the rocess, ot oly o the begiig ad ed states.
4 A rocess ca be show o a  diagram. O the diagrams below, isotherms are marked as dashed lies. Isotherms are lies of costat temerature. For a erfect gas at costat temerature, costat. So these dashed lies rereset costat temerature rocesses. ut i the lies o the  diagrams, to rereset the relevat rocess i each of the followig ad see if you ca write dow, or calculate, ad for each. (a) Costat olume (b) Costat ressure cost force isto moves
5 (c) Isothermal (at costat temerature) (d) Adiabatic (o heat trasfer) erfectly isulated
6 You should have the followig: (a) Costat olume 0 U mc v (  ) (b) Costat ressure cost force isto moves ( ) (shaded area uder the lie) For a erfect gas, mr( ) U mc v (  )+mr( ) m(c v + R) ( ) mc ( )
7 (c) Isothermal (at costat temerature) costat d mr d mr l U 0  (d) Adiabatic (o heat trasfer) erfectly isulated c where γ. 4 for cool air cv 0 ( ) γ mr( ) γ mc U v ( )
8 Some questios for you to cosider: () hy is the work doe i a costat volume rocess equal to 0? () hy is the chage i iteral eergy i a isothermal rocess equal to 0? (3) Derive the exressio for the work doe i a olytroic rocess, that is a rocess which ca be modelled by the equatio costat, where ca take ay value, ad is ormally foud by exerimet. Examle (olytroic rocess) Air at.4 bar with a secific volume of. m 3 kg  is comressed to 0 bar accordig to v.3 costat. Fid: the ew secific volume the secific work doe the iitial ad fial temeratures the secific heat trasfer Reeat for a isothermal rocess. For air, take R 87 Jkg  K  ad c 005 Jkg  K . Solutio:.4 bar v. m 3 kg  0 bar v? v.3 costat v.3.3 v v.4 *..4 *.67 v v m 3 kg  w v v (see summary below) NOE: lower case letters are used to deote secific quatities, i.e. values for kg mass * 0 * * 0 * w * * w kj kg  he iitial ad fial temeratures we ca fid usig the equatio of state for a erfect gas (see.5 gas laws) 5 J
9 5 v.4 * 0 * K 3 C R 87 5 v 0 * 0 * 0.55 ad 080 K 807 C R 87 o fid the secific heat trasfer, aly the NFEE: q u w u c v ( ) (c R)( ) (00587)*( ) 78*495 J u kj kg  q kj kg  For a isothermal rocess, we have K v.4 *. ad v costat, v v v m 3 kg  0 v w R l 87 * l 87 * * (.659) v. w 447 kj kg  For a isothermal rocess u 0, so the NFEE gives q w q 447 kj kg  he thermodyamic relatioshis for erfect gases are summarised below:
10 Summary of thermodyamic relatioshis for ideal gases For ay ideal gas: ressure (Nm  or a) mr volume (m 3 ) (Equatio of State) temerature (K) m mass (kg) R gas costat (Jkg  K  ) 87 Jkg  K  for air c γ cv γ the adiabatic idex.4 for air R c v γ c v secific heat at costat volume (Jkg  K  ) c c v R c secific heat at costat ressure (Jkg  K  ) For ay rocess: U mc v + U (First Law of hermodyamics) U is the chage i iteral eergy (J) is the chage i temerature is the work doe (J) is the eergy trasfer by heatig (J) For a adiabatic rocess: γ γ also mcv ( γ ) 0 γ ( γ ) / γ For a costat ressure rocess: (  ) mr( ) mc ( )
11 For a costat temerature (isothermal) rocess: l l mr  For a costat volume rocess: 0 mc v ( ) For a olytroic rocess: is the olytroic idex / ) ( mc v ( ) Further readig: Baco ad Stehes, Mechaical echology Rogers, G ad Mayhew, Y, Egieerig hermodyamics ork ad Heat rasfer Ch 3 he Oe Uiversity, 36 Itroductio to thermofluid mechaics Block 4
Chapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationChapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationThe analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationThermodynamics worked examples
An Introduction to Mechanical Engineering Part hermodynamics worked examles. What is the absolute ressure, in SI units, of a fluid at a gauge ressure of. bar if atmosheric ressure is.0 bar? Absolute ressure
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationEstimating Probability Distributions by Observing Betting Practices
5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationBond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond
What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixedicome security that typically pays periodic coupo paymets, ad a pricipal
More informationPresent Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value
Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig
More informationQuestion 2: How is a loan amortized?
Questio 2: How is a loa amortized? Decreasig auities may be used i auto or home loas. I these types of loas, some amout of moey is borrowed. Fixed paymets are made to pay off the loa as well as ay accrued
More informationBENEFITCOST ANALYSIS Financial and Economic Appraisal using Spreadsheets
BENEITCST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal  Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationBaan Service Master Data Management
Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :
More informationMeasuring Magneto Energy Output and Inductance Revision 1
Measurig Mageto Eergy Output ad Iductace evisio Itroductio A mageto is fudametally a iductor that is mechaically charged with a iitial curret value. That iitial curret is produced by movemet of the rotor
More informationGuidelines for a Good Presentation. Luis M. Correia
Guidelies for a Good Presetatio Luis M. Correia Outlie Basic riciles. Structure. Sizes ad cotrast. Style. Examles. Coclusios. Basic Priciles The resetatio of a work is iteded to show oly its major asects,
More informationP 1 2 V V V T V V. AP Chemistry A. Allan Chapter 5  Gases
A Chemistry A. Alla Chapter 5  Gases 5. ressure A. roperties of gases. Gases uiformly fill ay cotaier. Gases are easily compressed 3. Gases mix completely with ay other gas 4. Gases exert pressure o their
More informationQueuing Systems: Lecture 1. Amedeo R. Odoni October 10, 2001
Queuig Systems: Lecture Amedeo R. Odoi October, 2 Topics i Queuig Theory 9. Itroductio to Queues; Little s Law; M/M/. Markovia BirthadDeath Queues. The M/G/ Queue ad Extesios 2. riority Queues; State
More informationSimple Annuities Present Value.
Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX9850GB PLUS to efficietly compute values associated with preset value auities.
More informationSystems Design Project: Indoor Location of Wireless Devices
Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 6985295 Email: bcm1@cec.wustl.edu Supervised
More informationECE606: Solid State Devices Lecture 16 pn diode AC Response
ECE66: Solid State Devices Lecture 16  diode C esose Gerhard Klimeck gekco@urdue.edu Klimeck ECE66 Fall 1 otes adoted from lam Toic Ma Equilibrium DC Small sigal Large Sigal Circuits Diode Schottky Diode
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationCHAPTER 3 The Simple Surface Area Measurement Module
CHAPTER 3 The Simple Surface Area Measuremet Module I chapter 2, the quality of charcoal i each batch might chage due to traditioal operatio. The quality test shall be performed before usig it as a adsorbet.
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More informationVladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationINFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
More informationSupply Chain Network Design with Preferential Tariff under Economic Partnership Agreement
roceedigs of the 2014 Iteratioal oferece o Idustrial Egieerig ad Oeratios Maageet Bali, Idoesia, Jauary 7 9, 2014 Suly hai Network Desig with referetial ariff uder Ecooic artershi greeet eichi Fuaki Yokohaa
More informationCHAPTER 11 Financial mathematics
CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationProblem Solving with Mathematical Software Packages 1
C H A P T E R 1 Problem Solvig with Mathematical Software Packages 1 1.1 EFFICIENT PROBLEM SOLVING THE OBJECTIVE OF THIS BOOK As a egieerig studet or professioal, you are almost always ivolved i umerical
More informationOn the L p conjecture for locally compact groups
Arch. Math. 89 (2007), 237 242 c 2007 Birkhäuser Verlag Basel/Switzerlad 0003/889X/0302376, ublished olie 2007080 DOI 0.007/s0003007993x Archiv der Mathematik O the L cojecture for locally comact
More information*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.
Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More informationNr. 2. Interpolation of Discount Factors. Heinz Cremers Willi Schwarz. Mai 1996
Nr 2 Iterpolatio of Discout Factors Heiz Cremers Willi Schwarz Mai 1996 Autore: Herausgeber: Prof Dr Heiz Cremers Quatitative Methode ud Spezielle Bakbetriebslehre Hochschule für Bakwirtschaft Dr Willi
More informationA MixedInteger Optimization Model for Compressor Selection in Natural Gas Pipeline Network System Operations
Joural of virometal Iformatics 3 () 334 (2004) 04JI00025 726235/6848799 2004 ISIS www.iseis.org/jei A MixedIteger Otimizatio Model for Comressor Selectio i Natural as Pielie Network System Oeratios
More informationFM4 CREDIT AND BORROWING
FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer
More informationUsing Four Types Of Notches For Comparison Between Chezy s Constant(C) And Manning s Constant (N)
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH OLUME, ISSUE, OCTOBER ISSN  Usig Four Types Of Notches For Compariso Betwee Chezy s Costat(C) Ad Maig s Costat (N) Joyce Edwi Bategeleza, Deepak
More informationRF Engineering Continuing Education Introduction to Traffic Planning
RF Egieerig otiuig Educatio Itroductio to Traffic Plaig Queuig Systems Figure. shows a schematic reresetatio of a queuig system. This reresetatio is a mathematical abstractio suitable for may differet
More informationTime Value of Money, NPV and IRR equation solving with the TI86
Time Value of Moey NPV ad IRR Equatio Solvig with the TI86 (may work with TI85) (similar process works with TI83, TI83 Plus ad may work with TI82) Time Value of Moey, NPV ad IRR equatio solvig with
More informationAutomatic Tuning for FOREX Trading System Using Fuzzy Time Series
utomatic Tuig for FOREX Tradig System Usig Fuzzy Time Series Kraimo Maeesilp ad Pitihate Soorasa bstract Efficiecy of the automatic currecy tradig system is time depedet due to usig fixed parameters which
More information15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011
15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes highdefiitio
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
More informationNEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,
NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More information23 The Remainder and Factor Theorems
 The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationLECTURE 13: Crossvalidation
LECTURE 3: Crossvalidatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Threeway data partitioi Itroductio to Patter Aalysis Ricardo GutierrezOsua Texas A&M
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More informationPractice Problems for Test 3
Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all
More information4.1.4 Electrical Characterisation of MOVPE Grown n and pngaas Nanowires
3 BiAual Reort 28/29  SolidState Electroics Deartmet 4.1.4 Electrical Characterisatio of MOVPE Grow  ad GaAs Naowires Scietist: C. Gutsche, I. Regoli, A. Lysov Itroductio Recetly, we reseted a cotrolled
More informationAgenda. Outsourcing and Globalization in Software Development. Outsourcing. Outsourcing here to stay. Outsourcing Alternatives
Outsourcig ad Globalizatio i Software Developmet Jacques Crocker UW CSE Alumi 2003 jc@cs.washigto.edu Ageda Itroductio The Outsourcig Pheomeo Leadig Offshore Projects Maagig Customers Offshore Developmet
More informationTO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC
TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies
More informationInformation about Bankruptcy
Iformatio about Bakruptcy Isolvecy Service of Irelad Seirbhís Dócmhaieachta a héirea Isolvecy Service of Irelad Seirbhís Dócmhaieachta a héirea What is the? The Isolvecy Service of Irelad () is a idepedet
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationHCL Dynamic Spiking Protocol
ELI LILLY AND COMPANY TIPPECANOE LABORATORIES LAFAYETTE, IN Revisio 2.0 TABLE OF CONTENTS REVISION HISTORY... 2. REVISION.0... 2.2 REVISION 2.0... 2 2 OVERVIEW... 3 3 DEFINITIONS... 5 4 EQUIPMENT... 7
More informationI. Why is there a time value to money (TVM)?
Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios
More informationA markovian study of no claim discount system of Insurance Regulatory and Development Authority and its application
Thailad Statisticia July 214; 12(2): 223236 htt://statassoc.or.th Cotributed aer A markovia study of o claim discout system of Isurace Regulatory ad Develomet Authority ad its alicatio Dili C. Nath* [a]
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationSPC for Software Reliability: Imperfect Software Debugging Model
IJCSI Iteratioal Joural of Computer Sciece Issues, Vol. 8, Issue 3, o., May 0 ISS (Olie: 694084 www.ijcsi.org 9 SPC for Software Reliability: Imperfect Software Debuggig Model Dr. Satya Prasad Ravi,.Supriya
More informationEngineering Data Management
BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package
More informationSemiconductor Devices
emicoductor evices Prof. Zbigiew Lisik epartmet of emicoductor ad Optoelectroics evices room: 116 email: zbigiew.lisik@p.lodz.pl Uipolar devices IFE T&C JFET Trasistor Uipolar evices  Trasistors asic
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationCHAPTER 4: NET PRESENT VALUE
EMBA 807 Corporate Fiace Dr. Rodey Boehe CHAPTER 4: NET PRESENT VALUE (Assiged probles are, 2, 7, 8,, 6, 23, 25, 28, 29, 3, 33, 36, 4, 42, 46, 50, ad 52) The title of this chapter ay be Net Preset Value,
More informationWindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12
WidWise Educatio T rasformig the Eergy of Wid ito Powerful Mids A Curriculum for Grades 6 12 Notice Except for educatioal use by a idividual teacher i a classroom settig this work may ot be reproduced
More informationNonlife insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
Nolife isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationRegression with a Binary Dependent Variable (SW Ch. 11)
Regressio with a Biary Deedet Variable (SW Ch. 11) So far the deedet variable (Y) has bee cotiuous: districtwide average test score traffic fatality rate But we might wat to uderstad the effect of X o
More informationINVESTMENT PERFORMANCE COUNCIL (IPC)
INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks
More informationFACULTEIT ECONOMIE EN BEDRIJFSKUNDE. TWEEKERKENSTRAAT 2 B9000 GENT Tel. : 32  (0)9 264.34.61 Fax. : 32  (0)9 264.35.
FACULTEIT ECOOMIE E BEDRIJFSKUDE TWEEKERKESTRAAT 2 B9000 GET Tel. : 3209 264.34.6 Fax. : 3209 264.35.92 WORKIG PAPER Pricig Decisios ad Isider Tradig i Horse Bettig Markets Adi Schytzer a, Vasiliki
More informationA Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
More informationPredictive Modeling Data. in the ACT Electronic Student Record
Predictive Modelig Data i the ACT Electroic Studet Record overview Predictive Modelig Data Added to the ACT Electroic Studet Record With the release of studet records i September 2012, predictive modelig
More informationPROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
More informationProject Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments
Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 612 pages of text (ca be loger with appedix) 612 figures (please
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationUniversal coding for classes of sources
Coexios module: m46228 Uiversal codig for classes of sources Dever Greee This work is produced by The Coexios Project ad licesed uder the Creative Commos Attributio Licese We have discussed several parametric
More informationSimulationbased Analysis of Service Levels in Stable Production Inventory Systems
Simulatiobased Aalysis of Service Levels i Stable Productio Ivetory Systems Jayedra Vekateswara, Kaushik Margabadu#, D. Bijulal*, N. Hemachadra, Idustrial Egieerig ad Operatios Research, Idia Istitute
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More informationTO: Users of the ACTEX Review Seminar on DVD for SOA Exam FM/CAS Exam 2
TO: Users of the ACTEX Review Semiar o DVD for SOA Exam FM/CAS Exam FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Exam FM (CAS
More information3. If x and y are real numbers, what is the simplified radical form
lgebra II Practice Test Objective:.a. Which is equivalet to 98 94 4 49?. Which epressio is aother way to write 5 4? 5 5 4 4 4 5 4 5. If ad y are real umbers, what is the simplified radical form of 5 y
More informationAmendments to employer debt Regulations
March 2008 Pesios Legal Alert Amedmets to employer debt Regulatios The Govermet has at last issued Regulatios which will amed the law as to employer debts uder s75 Pesios Act 1995. The amedig Regulatios
More informationInvesting in Stocks WHAT ARE THE DIFFERENT CLASSIFICATIONS OF STOCKS? WHY INVEST IN STOCKS? CAN YOU LOSE MONEY?
Ivestig i Stocks Ivestig i Stocks Busiesses sell shares of stock to ivestors as a way to raise moey to fiace expasio, pay off debt ad provide operatig capital. Ecoomic coditios: Employmet, iflatio, ivetory
More informationDescriptive Statistics
Descriptive Statistics We leared to describe data sets graphically. We ca also describe a data set umerically. Measures of Locatio Defiitio The sample mea is the arithmetic average of values. We deote
More informationTHE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
More informationSubject CT5 Contingencies Core Technical Syllabus
Subject CT5 Cotigecies Core Techical Syllabus for the 2015 exams 1 Jue 2014 Aim The aim of the Cotigecies subject is to provide a groudig i the mathematical techiques which ca be used to model ad value
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationMATH 083 Final Exam Review
MATH 08 Fial Eam Review Completig the problems i this review will greatly prepare you for the fial eam Calculator use is ot required, but you are permitted to use a calculator durig the fial eam period
More information