3 Energy Non-Flow Energy Equation (NFEE) Internal Energy. MECH 225 Engineering Science 2

Save this PDF as:

Size: px
Start display at page:

Download "3 Energy. 3.3. Non-Flow Energy Equation (NFEE) Internal Energy. MECH 225 Engineering Science 2"

Transcription

1 MECH 5 Egieerig Sciece 3 Eergy 3.3. No-Flow Eergy Equatio (NFEE) You may have oticed that the term system kees croig u. It is ecessary, therefore, that before we start ay aalysis we defie the system that we are lookig at. o do this we costruct a imagiary boudary aroud what we are iterested i for examle, the cricket ball (struck by Nasser Hussei) or the water i the kettle). he dealig with a o-flow situatio, the the system will be of fixed mass - o matter crosses the boudary - so it is useful to defie a cotrol mass. If we are cosiderig a flow situatio, the a cotrol volume through which the fluid flows is more useful. I hoe these ideas will become clearer whe we cosider some examles. A tyical closed system is a gas eclosed i a cylider by meas of a isto. he gas iside the cylider is the cotrol mass. Iteral Eergy From the First Law, + E + E k + E + U But for a o-flowig gas, its velocity will be 0 to start with, ad whe it has settled dow after the rocess, its velocity will agai be 0, so the chage i kietic eergy, E k 0. Similarly, there is o sigificat chage i otetial eergy, so E 0. here will, however, be a chage i the iteral eergy, U. So, the o-flow eergy equatio (NFEE) becomes, simly, + U or + U U where U is the iteral eergy i state, after the rocess ad U is the iteral eergy i state, before the rocess. Examle Durig a comlete cycle, a system is subjected to the followig heat trasfers: 800 kj from the surroudigs ad 500 kj to the surroudigs. At two oits i the cycle, work is trasferred to the surroudigs of 96 kj ad 0 kj. At a third oit there is a further work trasfer. Determie its magitude ad sese. Examle I a air comressor, the comressio takes lace at costat iteral eergy ad 00 kj of eergy are rejected to the coolig water er kg of air. Determie the secific work trasfer durig the comressio stroke.

2 Solutio Here, the system is defied for us o details are give as to its ature. For a comlete cycle, we kow that: Σ + Σ 0 Σ kJ Σ where is the value of the ukow work trasfer i kj kj he egative sig tells us that it is a work trasfer to the surroudigs. Solutio he system is the air i the comressor. e do ot kow its mass, so let us suose that it is m kg. he iteral eergy remais costat, so U, the chage i iteral eergy is 0. he o-flow eergy equatio becomes + 0 he eergy trasferred by heatig is from the air i the comressor to the coolig water, ad is therefore egative. It is 00 kj er kg, so for m kg: - 00m kj Alyig the NFEE, -00m m kj You are asked to fid the secific work trasfer. his meas the work trasfer for every kilogram, ad this is give the symbol, w. herefore, w 00 kj m hat does the ositive sig for the work trasfer tell you? Is this what you would exect? Ca you exlai why it is ositive?

4 A rocess ca be show o a - diagram. O the diagrams below, isotherms are marked as dashed lies. Isotherms are lies of costat temerature. For a erfect gas at costat temerature, costat. So these dashed lies rereset costat temerature rocesses. ut i the lies o the - diagrams, to rereset the relevat rocess i each of the followig ad see if you ca write dow, or calculate, ad for each. (a) Costat olume (b) Costat ressure cost force isto moves

5 (c) Isothermal (at costat temerature) (d) Adiabatic (o heat trasfer) erfectly isulated

6 You should have the followig: (a) Costat olume 0 U mc v ( - ) (b) Costat ressure cost force isto moves -( ) (shaded area uder the lie) For a erfect gas, -mr( ) U mc v ( - )+mr( ) m(c v + R) ( ) mc ( )

7 (c) Isothermal (at costat temerature) costat d mr d mr l U 0 - (d) Adiabatic (o heat trasfer) erfectly isulated c where γ. 4 for cool air cv 0 ( ) γ mr( ) γ mc U v ( )

8 Some questios for you to cosider: () hy is the work doe i a costat volume rocess equal to 0? () hy is the chage i iteral eergy i a isothermal rocess equal to 0? (3) Derive the exressio for the work doe i a olytroic rocess, that is a rocess which ca be modelled by the equatio costat, where ca take ay value, ad is ormally foud by exerimet. Examle (olytroic rocess) Air at.4 bar with a secific volume of. m 3 kg - is comressed to 0 bar accordig to v.3 costat. Fid: the ew secific volume the secific work doe the iitial ad fial temeratures the secific heat trasfer Reeat for a isothermal rocess. For air, take R 87 Jkg - K - ad c 005 Jkg - K -. Solutio:.4 bar v. m 3 kg - 0 bar v? v.3 costat v.3.3 v v.4 *..4 *.67 v v m 3 kg - w v v (see summary below) NOE: lower case letters are used to deote secific quatities, i.e. values for kg mass * 0 * * 0 * w * * w kj kg - he iitial ad fial temeratures we ca fid usig the equatio of state for a erfect gas (see.5 gas laws) 5 J

9 5 v.4 * 0 * K 3 C R 87 5 v 0 * 0 * 0.55 ad 080 K 807 C R 87 o fid the secific heat trasfer, aly the NFEE: q u w u c v ( ) (c R)( ) (005-87)*( ) 78*495 J u kj kg - q kj kg - For a isothermal rocess, we have K v.4 *. ad v costat, v v v m 3 kg - 0 v w R l 87 * l 87 * * (.659) v. w 447 kj kg - For a isothermal rocess u 0, so the NFEE gives q -w q -447 kj kg - he thermodyamic relatioshis for erfect gases are summarised below:

10 Summary of thermodyamic relatioshis for ideal gases For ay ideal gas: ressure (Nm - or a) mr volume (m 3 ) (Equatio of State) temerature (K) m mass (kg) R gas costat (Jkg - K - ) 87 Jkg - K - for air c γ cv γ the adiabatic idex.4 for air R c v γ c v secific heat at costat volume (Jkg - K - ) c c v R c secific heat at costat ressure (Jkg - K - ) For ay rocess: U mc v + U (First Law of hermodyamics) U is the chage i iteral eergy (J) is the chage i temerature is the work doe (J) is the eergy trasfer by heatig (J) For a adiabatic rocess: γ γ also mcv ( γ ) 0 γ ( γ ) / γ For a costat ressure rocess: ( - ) mr( ) mc ( )

11 For a costat temerature (isothermal) rocess: l l mr - For a costat volume rocess: 0 mc v ( ) For a olytroic rocess: is the olytroic idex / ) ( mc v ( ) Further readig: Baco ad Stehes, Mechaical echology Rogers, G ad Mayhew, Y, Egieerig hermodyamics ork ad Heat rasfer Ch 3 he Oe Uiversity, 36 Itroductio to thermofluid mechaics Block 4

Chapter 7 Methods of Finding Estimators

Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

I. Chi-squared Distributions

1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

5: Introduction to Estimation

5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

Thermodynamics worked examples

An Introduction to Mechanical Engineering Part hermodynamics worked examles. What is the absolute ressure, in SI units, of a fluid at a gauge ressure of. bar if atmosheric ressure is.0 bar? Absolute ressure

Soving Recurrence Relations

Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

Estimating Probability Distributions by Observing Betting Practices

5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,

Section 11.3: The Integral Test

Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

Building Blocks Problem Related to Harmonic Series

TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond

What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixed-icome security that typically pays periodic coupo paymets, ad a pricipal

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

Question 2: How is a loan amortized?

Questio 2: How is a loa amortized? Decreasig auities may be used i auto or home loas. I these types of loas, some amout of moey is borrowed. Fixed paymets are made to pay off the loa as well as ay accrued

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets

BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts

Incremental calculation of weighted mean and variance

Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

Baan Service Master Data Management

Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :

Measuring Magneto Energy Output and Inductance Revision 1

Measurig Mageto Eergy Output ad Iductace evisio Itroductio A mageto is fudametally a iductor that is mechaically charged with a iitial curret value. That iitial curret is produced by movemet of the rotor

Guidelines for a Good Presentation. Luis M. Correia

Guidelies for a Good Presetatio Luis M. Correia Outlie Basic riciles. Structure. Sizes ad cotrast. Style. Examles. Coclusios. Basic Priciles The resetatio of a work is iteded to show oly its major asects,

P 1 2 V V V T V V. AP Chemistry A. Allan Chapter 5 - Gases

A Chemistry A. Alla Chapter 5 - Gases 5. ressure A. roperties of gases. Gases uiformly fill ay cotaier. Gases are easily compressed 3. Gases mix completely with ay other gas 4. Gases exert pressure o their

Queuing Systems: Lecture 1. Amedeo R. Odoni October 10, 2001

Queuig Systems: Lecture Amedeo R. Odoi October, 2 Topics i Queuig Theory 9. Itroductio to Queues; Little s Law; M/M/. Markovia Birth-ad-Death Queues. The M/G/ Queue ad Extesios 2. riority Queues; State

Simple Annuities Present Value.

Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX-9850GB PLUS to efficietly compute values associated with preset value auities.

Systems Design Project: Indoor Location of Wireless Devices

Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: bcm1@cec.wustl.edu Supervised

ECE606: Solid State Devices Lecture 16 p-n diode AC Response

ECE66: Solid State Devices Lecture 16 - diode C esose Gerhard Klimeck gekco@urdue.edu Klimeck ECE66 Fall 1 otes adoted from lam Toic Ma Equilibrium DC Small sigal Large Sigal Circuits Diode Schottky Diode

A probabilistic proof of a binomial identity

A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

CHAPTER 3 The Simple Surface Area Measurement Module

CHAPTER 3 The Simple Surface Area Measuremet Module I chapter 2, the quality of charcoal i each batch might chage due to traditioal operatio. The quality test shall be performed before usig it as a adsorbet.

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

Supply Chain Network Design with Preferential Tariff under Economic Partnership Agreement

roceedigs of the 2014 Iteratioal oferece o Idustrial Egieerig ad Oeratios Maageet Bali, Idoesia, Jauary 7 9, 2014 Suly hai Network Desig with referetial ariff uder Ecooic artershi greeet eichi Fuaki Yokohaa

CHAPTER 11 Financial mathematics

CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

PSYCHOLOGICAL STATISTICS

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

Problem Solving with Mathematical Software Packages 1

C H A P T E R 1 Problem Solvig with Mathematical Software Packages 1 1.1 EFFICIENT PROBLEM SOLVING THE OBJECTIVE OF THIS BOOK As a egieerig studet or professioal, you are almost always ivolved i umerical

On the L p -conjecture for locally compact groups

Arch. Math. 89 (2007), 237 242 c 2007 Birkhäuser Verlag Basel/Switzerlad 0003/889X/030237-6, ublished olie 2007-08-0 DOI 0.007/s0003-007-993-x Archiv der Mathematik O the L -cojecture for locally comact

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.

Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.

Department of Computer Science, University of Otago

Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

Nr. 2. Interpolation of Discount Factors. Heinz Cremers Willi Schwarz. Mai 1996

Nr 2 Iterpolatio of Discout Factors Heiz Cremers Willi Schwarz Mai 1996 Autore: Herausgeber: Prof Dr Heiz Cremers Quatitative Methode ud Spezielle Bakbetriebslehre Hochschule für Bakwirtschaft Dr Willi

A Mixed-Integer Optimization Model for Compressor Selection in Natural Gas Pipeline Network System Operations

Joural of virometal Iformatics 3 () 33-4 (2004) 04JI00025 726-235/684-8799 2004 ISIS www.iseis.org/jei A Mixed-Iteger Otimizatio Model for Comressor Selectio i Natural as Pielie Network System Oeratios

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

Using Four Types Of Notches For Comparison Between Chezy s Constant(C) And Manning s Constant (N)

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH OLUME, ISSUE, OCTOBER ISSN - Usig Four Types Of Notches For Compariso Betwee Chezy s Costat(C) Ad Maig s Costat (N) Joyce Edwi Bategeleza, Deepak

RF Engineering Continuing Education Introduction to Traffic Planning

RF Egieerig otiuig Educatio Itroductio to Traffic Plaig Queuig Systems Figure. shows a schematic reresetatio of a queuig system. This reresetatio is a mathematical abstractio suitable for may differet

Time Value of Money, NPV and IRR equation solving with the TI-86

Time Value of Moey NPV ad IRR Equatio Solvig with the TI-86 (may work with TI-85) (similar process works with TI-83, TI-83 Plus ad may work with TI-82) Time Value of Moey, NPV ad IRR equatio solvig with

Automatic Tuning for FOREX Trading System Using Fuzzy Time Series

utomatic Tuig for FOREX Tradig System Usig Fuzzy Time Series Kraimo Maeesilp ad Pitihate Soorasa bstract Efficiecy of the automatic currecy tradig system is time depedet due to usig fixed parameters which

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011

15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes high-defiitio

NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,

NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

2-3 The Remainder and Factor Theorems

- The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

Modified Line Search Method for Global Optimization

Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

LECTURE 13: Cross-validation

LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

Practice Problems for Test 3

Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all

4.1.4 Electrical Characterisation of MOVPE Grown n- and pn-gaas Nanowires

3 Bi-Aual Reort 28/29 - Solid-State Electroics Deartmet 4.1.4 Electrical Characterisatio of MOVPE Grow - ad -GaAs Naowires Scietist: C. Gutsche, I. Regoli, A. Lysov Itroductio Recetly, we reseted a cotrolled

Agenda. Outsourcing and Globalization in Software Development. Outsourcing. Outsourcing here to stay. Outsourcing Alternatives

Outsourcig ad Globalizatio i Software Developmet Jacques Crocker UW CSE Alumi 2003 jc@cs.washigto.edu Ageda Itroductio The Outsourcig Pheomeo Leadig Offshore Projects Maagig Customers Offshore Developmet

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC

TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies

Iformatio about Bakruptcy Isolvecy Service of Irelad Seirbhís Dócmhaieachta a héirea Isolvecy Service of Irelad Seirbhís Dócmhaieachta a héirea What is the? The Isolvecy Service of Irelad () is a idepedet

Asymptotic Growth of Functions

CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

.04. This means \$1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

HCL Dynamic Spiking Protocol

ELI LILLY AND COMPANY TIPPECANOE LABORATORIES LAFAYETTE, IN Revisio 2.0 TABLE OF CONTENTS REVISION HISTORY... 2. REVISION.0... 2.2 REVISION 2.0... 2 2 OVERVIEW... 3 3 DEFINITIONS... 5 4 EQUIPMENT... 7

I. Why is there a time value to money (TVM)?

Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios

A markovian study of no claim discount system of Insurance Regulatory and Development Authority and its application

Thailad Statisticia July 214; 12(2): 223-236 htt://statassoc.or.th Cotributed aer A markovia study of o claim discout system of Isurace Regulatory ad Develomet Authority ad its alicatio Dili C. Nath* [a]

1 Correlation and Regression Analysis

1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

SPC for Software Reliability: Imperfect Software Debugging Model

IJCSI Iteratioal Joural of Computer Sciece Issues, Vol. 8, Issue 3, o., May 0 ISS (Olie: 694-084 www.ijcsi.org 9 SPC for Software Reliability: Imperfect Software Debuggig Model Dr. Satya Prasad Ravi,.Supriya

Engineering Data Management

BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package

Semiconductor Devices

emicoductor evices Prof. Zbigiew Lisik epartmet of emicoductor ad Optoelectroics evices room: 116 e-mail: zbigiew.lisik@p.lodz.pl Uipolar devices IFE T&C JFET Trasistor Uipolar evices - Trasistors asic

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

CHAPTER 4: NET PRESENT VALUE

EMBA 807 Corporate Fiace Dr. Rodey Boehe CHAPTER 4: NET PRESENT VALUE (Assiged probles are, 2, 7, 8,, 6, 23, 25, 28, 29, 3, 33, 36, 4, 42, 46, 50, ad 52) The title of this chapter ay be Net Preset Value,

WindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12

WidWise Educatio T rasformig the Eergy of Wid ito Powerful Mids A Curriculum for Grades 6 12 Notice Except for educatioal use by a idividual teacher i a classroom settig this work may ot be reproduced

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy

Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

Regression with a Binary Dependent Variable (SW Ch. 11)

Regressio with a Biary Deedet Variable (SW Ch. 11) So far the deedet variable (Y) has bee cotiuous: district-wide average test score traffic fatality rate But we might wat to uderstad the effect of X o

INVESTMENT PERFORMANCE COUNCIL (IPC)

INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE. TWEEKERKENSTRAAT 2 B-9000 GENT Tel. : 32 - (0)9 264.34.61 Fax. : 32 - (0)9 264.35.

FACULTEIT ECOOMIE E BEDRIJFSKUDE TWEEKERKESTRAAT 2 B-9000 GET Tel. : 32-09 264.34.6 Fax. : 32-09 264.35.92 WORKIG PAPER Pricig Decisios ad Isider Tradig i Horse Bettig Markets Adi Schytzer a, Vasiliki

A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

Predictive Modeling Data. in the ACT Electronic Student Record

Predictive Modelig Data i the ACT Electroic Studet Record overview Predictive Modelig Data Added to the ACT Electroic Studet Record With the release of studet records i September 2012, predictive modelig

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

Universal coding for classes of sources

Coexios module: m46228 Uiversal codig for classes of sources Dever Greee This work is produced by The Coexios Project ad licesed uder the Creative Commos Attributio Licese We have discussed several parametric

Simulation-based Analysis of Service Levels in Stable Production- Inventory Systems

Simulatio-based Aalysis of Service Levels i Stable Productio- Ivetory Systems Jayedra Vekateswara, Kaushik Margabadu#, D. Bijulal*, N. Hemachadra, Idustrial Egieerig ad Operatios Research, Idia Istitute

The Stable Marriage Problem

The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam FM/CAS Exam 2

TO: Users of the ACTEX Review Semiar o DVD for SOA Exam FM/CAS Exam FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Exam FM (CAS

3. If x and y are real numbers, what is the simplified radical form

lgebra II Practice Test Objective:.a. Which is equivalet to 98 94 4 49?. Which epressio is aother way to write 5 4? 5 5 4 4 4 5 4 5. If ad y are real umbers, what is the simplified radical form of 5 y

Amendments to employer debt Regulations

March 2008 Pesios Legal Alert Amedmets to employer debt Regulatios The Govermet has at last issued Regulatios which will amed the law as to employer debts uder s75 Pesios Act 1995. The amedig Regulatios

Investing in Stocks WHAT ARE THE DIFFERENT CLASSIFICATIONS OF STOCKS? WHY INVEST IN STOCKS? CAN YOU LOSE MONEY?

Ivestig i Stocks Ivestig i Stocks Busiesses sell shares of stock to ivestors as a way to raise moey to fiace expasio, pay off debt ad provide operatig capital. Ecoomic coditios: Employmet, iflatio, ivetory

Descriptive Statistics

Descriptive Statistics We leared to describe data sets graphically. We ca also describe a data set umerically. Measures of Locatio Defiitio The sample mea is the arithmetic average of values. We deote

THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

Subject CT5 Contingencies Core Technical Syllabus

Subject CT5 Cotigecies Core Techical Syllabus for the 2015 exams 1 Jue 2014 Aim The aim of the Cotigecies subject is to provide a groudig i the mathematical techiques which ca be used to model ad value