# Grade 7/8 Math Circles October 7/8, Exponents and Roots - SOLUTIONS

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles October 7/8, 2014 Exponents and Roots - SOLUTIONS This file has all the missing parts from the lesson as well as the answers to the problems at the end. Exponents An exponentiation is a repeated multiplication. Similar to how a multiplication is a repeated addition. Remember, 5 3 is simply Similarly an exponentiation, 5 3 is simply As shown in the picture above, we call the lower number the base, the upper number the exponent and when refering to the base and exponent as a whole we will say the power. When we see this notation we say Two to the exponent three. Note: the second and third exponents are often referred to as squared and cubed, respectively. So we might say two cubed instead of Two to the exponent three. Examples: Evaluate the following = =

2 Write the following numbers as exponents with the given bases 1. 32, base 2 = , base , base , base , base 4 Special Cases Base 10: what is 10 7? How about 10 n? Base 10 powers are 1 followed by n zeros, where n is the exponent. The first power: What is 5 1? How about ? Any number raised to the exponent of 1 is equal to the base. The power of zero: What is 8 0? How about ? Any non-zero number raised to the exponent of 0 is equal to 1 Now that we have covered the basics of exponents we can look at operations on exponents. Multiplication Since a power is simply a repeated multiplication it would only be natural to have rules for multiplying and dividing powers. How could we simplify : 2 2 This one is easy it is 2 2 Do you agree that the above could have been written as ? What can we say about the exponents when looking at the following equality? = 2 2 2

3 It looks like we are adding the exponents. Consider the multiplication This can be written as Again as This is 8 2 s multiplied together, it is also 2 8. So we get = 2 8 Rule:The multiplication of 2 powers with the same base is simplified to that same base whose exponent is the sum of the 2 exponents: a m a n = a (m+n) NOTE: THE BASES HAVE TO BE THE SAME Examples: Simplify to a single exponent if possible division: Consider This can be written as Again as Now with a little work on the fraction we get 3

4 Here we cancel out some 2 s and we are left with two 2 s 2 2 = = 22 Rule:The division of two powers with the same base is simplified to that same base whose exponent is the difference of the 2 exponents: a m a n = a(m n) Examples: Simplify the following (if the bases are numbers, give their value) = h 45 h 44 Negative Exponents: Simplify According to our previous rules, this gives 2 2. What does this mean? Looking at this as we did before we see that This can be written as Simplify to get 4

5 = 2 2 So a negative exponent in the numerator becomes a positive if it is sent to the denominator. Similarly a negative exponent in the denominator becomes a positive exponent in the 1 numerator. That is, 2 2 = 22 Examples: Simplify the following. Write the answers with positive exponents Power of a Power What? (3 4 ) 5 is this even legal? Yes, and its not much more than we already covered. Look at (3 4 ) 5 If we consider the inner exponentiation to simply be a number we can write From before we know this to be equal to 3 20 since = 20. We can also see this as 4 5 = 20. A power raised to a power is simplified by multiplying the exponents. (a n ) m = a n m Extended to more than one power, each exponent gets multiplied. (a n b k ) m = a n m b k m Simplify: 1. (5 3 ) 4 5

6 2. ( ) (2 3 4) 3 4. (4 3 ) 2 5. (4 3 ) 2 6. ((6 2 ) 2 ) 2 7. *** ( ) 3 Roots You may have seen the symbol before, this indicates the square root. The square root, in a way, is the opposite of squaring a number. For example, 4 asks what number multiplied by itself is 4. Well it s 2. So 4 = 2. However, not all roots are easily simplified like 5 or 12 as there is not a whole number that when multiplied by itself equals 5 or 12. Sometimes these roots can be simplified further, like 12 = 2 3 but we will get to that later. First lets relate roots to exponents by saying x = x 1/2. If you don t see where this comes from, look at the example from the first paragraph on roots. We stated: 4 = 2 Let 4 = 4 n, so we get 4 n = 2 We know from before that 4 = 2 2. So we can now write (2 2 ) n = 2 Using what we learned from exponents 2 2n = 2 Remember 2 can also be seen as n = 2 1 Now we want to solve 2n = 1. Doing so we find n = 1 and this means 2 4 = 4 1/2 Further we say the nth root, written as n is equal to raising the base to the exponent 1/n. n x = x 1/n Remember to solve a square root we looked for a number times itself that is equal to the number inside the root. An n th root is the same, but now we are looking for a number that is multiplied by itself n times. You may have seen that 3 4 = 81, this also means that 4 81 = 3. 6

7 Example: Evaluate = Some of these may seem easy, because you might remember what number raised to a power gave that number from the previous section. But how would you know whether the statement = 12 is true or not? Simplifying Roots We will now look at how to simplify roots, but first me must quickly review prime factorization. What is a prime number? a number that is greater then 1 and only divisible by 1 and itself (2,3,5,7,11,... ) Any number can be written as a product of prime numbers. 36 = is the prime factorization of = is the prime factorization of 252 Simplifying Roots We will look at two methods of simplifying roots. The first being the perfect square method and the second the prime factorization method. Perfect Square Method This method involves looking for a perfect square as a factor of your root. For example : 81 = 9 we know this because 81 is a perfect square. But what did we really do there? 81 = 9 = 9 9 = 9 9 = 3 3 = 9 7

8 Here we used the property: if a 0 and b 0 then ab = a b To perform the perfect square method these steps: 1. Try to find a factor that is a perfect square 2. Factor your root using that number 3. Use the property from above ( ab = a b) 4. Simplify the perfect square Using this technique, lets simplify 28 = 4 7 = 4 7 Here we know 4 is a perfect square, so we get = 2 7 How about 75? = 25 3 = 25 3 = 5 3 Prime Factorization Method Even though the perfect square method will always work and is fast, sometimes it might not be obvious to tell if a perfect square is a factor. If this is the case we can use the prime factorization method. The steps of this new method are: 1. Find its prime factorization 2. Find all the prime that show up n times (n is from your n th root) 3. Remove the primes that are a multiple of n For example find the cube root and square root of 216: 216 can be divided by 36, however this might not be obvious to everyone. 216 does however has a prime factorization of

9 That is three 3 s and three 2 s. If we want the cubed root (n = 3) then we can remove one prime to the outside for every three on the inside. For a cube root we can remove one 2 and one 3 leaving us with = 2 3 = 6 For a square root, we can also remove a 2 and a 3, but doing so leaves us with a 2 and a 3 still in the root leaving us with 216 = = 6 6 Earlier, I stated that 12 = has prime factorization of Since we are looking for a square root, we need two of the same prime in order to take one out. Here we have two 2 s and only one 3. Therefore, 12 = 2 3. We also could have noticed that 12 is 4 3 and 4 is a perfect square. Examples: Simplify the following roots if possible using either method =

10 PROBLEMS 1. Write the following as exponents (a) (b) 7 to the (c) (d) (e) (f) (g) Evaluate the following: (a) (b) (c) (d) (e) (f) (g) Simplify if possible: (a) (b) (c) (d) (e) (f) (g) Simplify if possible: 10

11 (a) (b) (c) (d) (e) (f) Simplify if possible: (a) (4 2 ) (b) (3 12 ) = 1 (c) ((4 2 ) 4 ) (d) ( ) (e) ( ) (f) 6 3 (6 1 ) Simplify the following roots: (a) 5 5 (b) 81 9 (c) (d) (e) (f) If the population of rabbits doubles every year, how many rabbits will there be in 3 years if there are currently 7? 7 after one year 7 2, after 2 years 7 2 2, after 3 years =

12 8. You go back in time and tell you parents to buy into Apple. Your parents wisely listen you and invest \$1000. Since then, The value of apple has tripled 4 times. how much would your parents \$1000 investment be worth now? 1000 tripled 4 times means = 3 4 so your parents 1000 dollar investment would be worth = ** /3 3 3 = ** 253/4 25 1/2 = ** = ** = ** x2/3 y 3/4 z 4/5 z 2/3 y 4/3 x 4/5 = z 2/15 x 2/15 y 5/ ** Express as a power of base ** If you have 0 < 10 n < , What is the max value of 3 n? The max value is when n = 0, and therefore 3 n = 1 12

### Grade 6 Math Circles. Exponents

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles November 4/5, 2014 Exponents Quick Warm-up Evaluate the following: 1. 4 + 4 + 4 +

### Determining When an Expression Is Undefined

Determining When an Expression Is Undefined Connections Have you ever... Tried to use a calculator to divide by zero and gotten an error Tried to figure out the square root of a negative number Expressions

### Sometimes it is easier to leave a number written as an exponent. For example, it is much easier to write

4.0 Exponent Property Review First let s start with a review of what exponents are. Recall that 3 means taking four 3 s and multiplying them together. So we know that 3 3 3 3 381. You might also recall

### Chapter 15 Radical Expressions and Equations Notes

Chapter 15 Radical Expressions and Equations Notes 15.1 Introduction to Radical Expressions The symbol is called the square root and is defined as follows: a = c only if c = a Sample Problem: Simplify

### 27 = 3 Example: 1 = 1

Radicals: Definition: A number r is a square root of another number a if r = a. is a square root of 9 since = 9 is also a square root of 9, since ) = 9 Notice that each positive number a has two square

### 5.1 Radical Notation and Rational Exponents

Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

### 2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form.

Grade 9 Mathematics Unit : Powers and Exponent Rules Sec.1 What is a Power 5 is the BASE 5 is the EXPONENT The entire 5 is called a POWER. 5 = written as repeated multiplication. 5 = 3 written in standard

### Exponents, Radicals, and Scientific Notation

General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

### Rules for Exponents and the Reasons for Them

Print this page Chapter 6 Rules for Exponents and the Reasons for Them 6.1 INTEGER POWERS AND THE EXPONENT RULES Repeated addition can be expressed as a product. For example, Similarly, repeated multiplication

### Property: Rule: Example:

Math 1 Unit 2, Lesson 4: Properties of Exponents Property: Rule: Example: Zero as an Exponent: a 0 = 1, this says that anything raised to the zero power is 1. Negative Exponent: Multiplying Powers with

### y x x 2 Squares, square roots, cubes and cube roots TOPIC 2 4 x 2 2ndF 2ndF Oral activity Discuss squares, square roots, cubes and cube roots

TOPIC Squares, square roots, cubes and cube roots By the end of this topic, you should be able to: ü Find squares, square roots, cubes and cube roots of positive whole numbers, decimals and common fractions

### STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

### Practice Math Placement Exam

Practice Math Placement Exam The following are problems like those on the Mansfield University Math Placement Exam. You must pass this test or take MA 0090 before taking any mathematics courses. 1. What

### (- 7) + 4 = (-9) = - 3 (- 3) + 7 = ( -3) = 2

WORKING WITH INTEGERS: 1. Adding Rules: Positive + Positive = Positive: 5 + 4 = 9 Negative + Negative = Negative: (- 7) + (- 2) = - 9 The sum of a negative and a positive number: First subtract: The answer

### This is Radical Expressions and Equations, chapter 8 from the book Beginning Algebra (index.html) (v. 1.0).

Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Exponent Properties Involving Products

Exponent Properties Involving Products Learning Objectives Use the product of a power property. Use the power of a product property. Simplify expressions involving product properties of exponents. Introduction

### Solution: There are TWO square roots of 196, a positive number and a negative number. So, since and 14 2

5.7 Introduction to Square Roots The Square of a Number The number x is called the square of the number x. EX) 9 9 9 81, the number 81 is the square of the number 9. 4 4 4 16, the number 16 is the square

### Math 1111 Journal Entries Unit I (Sections , )

Math 1111 Journal Entries Unit I (Sections 1.1-1.2, 1.4-1.6) Name Respond to each item, giving sufficient detail. You may handwrite your responses with neat penmanship. Your portfolio should be a collection

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

### Grade 6 Math Circles. Algebra

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Grade 6 Math Circles October 8/9, 2013 Algebra Note: Some material and examples from the Tuesday lesson were changed for the Wednesday lesson. These notes

9.2 Simplifying Radical Expressions 9.2 OBJECTIVES. Simplify expressions involving numeric radicals 2. Simplify expressions involving algebraic radicals In Section 9., we introduced the radical notation.

### Rational Exponents Section 10.2

Section 0.2 Rational Exponents 703 Rational Exponents Section 0.2. Definition of a /n and a m/n In Sections 5. 5.3, the properties for simplifying expressions with integer exponents were presented. In

### Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)

NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain

### Algebra 1: Topic 1 Notes

Algebra 1: Topic 1 Notes Review: Order of Operations Please Parentheses Excuse Exponents My Multiplication Dear Division Aunt Addition Sally Subtraction Table of Contents 1. Order of Operations & Evaluating

### Algebra 1A and 1B Summer Packet

Algebra 1A and 1B Summer Packet Name: Calculators are not allowed on the summer math packet. This packet is due the first week of school and will be counted as a grade. You will also be tested over the

### 1.1. Basic Concepts. Write sets using set notation. Write sets using set notation. Write sets using set notation. Write sets using set notation.

1.1 Basic Concepts Write sets using set notation. Objectives A set is a collection of objects called the elements or members of the set. 1 2 3 4 5 6 7 Write sets using set notation. Use number lines. Know

### The notation above read as the nth root of the mth power of a, is a

Let s Reduce Radicals to Bare Bones! (Simplifying Radical Expressions) By Ana Marie R. Nobleza The notation above read as the nth root of the mth power of a, is a radical expression or simply radical.

### Grade 7/8 Math Circles. Sequences

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles October 18 th /19 th Sequences A Sequence of Mathematical Terms What is a sequence?

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### MAT Mathematical Concepts and Applications

MAT.1180 - Mathematical Concepts and Applications Chapter (Aug, 7) Number Theory: Prime and Composite Numbers. The set of Natural numbers, aka, Counting numbers, denoted by N, is N = {1,,, 4,, 6,...} If

### MBA Jump Start Program

MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right

### SIMPLIFYING ALGEBRAIC FRACTIONS

Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is

### Chapter 7 - Roots, Radicals, and Complex Numbers

Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

In order to simplifying radical expression, it s important to understand a few essential properties. Product Property of Like Bases a a = a Multiplication of like bases is equal to the base raised to the

### 1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N.

CHAPTER 3: EXPONENTS AND POWER FUNCTIONS 1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N. For example: In general, if

### Summer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2

Summer Math Packet Student Name: Say Hello to Algebra 2 For Students Entering Algebra 2 This summer math booklet was developed to provide students in middle school an opportunity to review grade level

### Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

### a b Grade 6 Math Circles Fall 2010 Exponents and Binary Numbers Powers What is the product of three 2s? =

1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Powers What is the product of three 2s? 2 2 2 = What is the product of five 2s? 2 2 2 2 2 = Grade 6 Math

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

### Roots and Powers. Written by: Bette Kreuz Edited by: Science Learning Center Staff

Roots and Powers Written by: Bette Kreuz Edited by: Science Learning Center Staff The objectives for this module are to: 1. Raise exponential numbers to a power. 2. Extract the root of an exponential number.

### Chapter 7: Radicals and Complex Numbers Lecture notes Math 1010

Section 7.1: Radicals and Rational Exponents Definition of nth root of a number Let a and b be real numbers and let n be an integer n 2. If a = b n, then b is an nth root of a. If n = 2, the root is called

### Date: Section P.2: Exponents and Radicals. Properties of Exponents: Example #1: Simplify. a.) 3 4. b.) 2. c.) 3 4. d.) Example #2: Simplify. b.) a.

Properties of Exponents: Section P.2: Exponents and Radicals Date: Example #1: Simplify. a.) 3 4 b.) 2 c.) 34 d.) Example #2: Simplify. a.) b.) c.) d.) 1 Square Root: Principal n th Root: Example #3: Simplify.

### Teaching Guide Simplifying and Combining Radical Expressions

Teaching Guide Simplifying and Combining Radical Epressions Preparing for Your Class Common Vocabulary Simplified form (of a square root, cube root, and fourth root) Natural-number perfect squares, cubes,

### Mth 95 Module 2 Spring 2014

Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

### eday Lessons Mathematics Grade 8 Student Name:

eday Lessons Mathematics Grade 8 Student Name: Common Core State Standards- Expressions and Equations Work with radicals and integer exponents. 3. Use numbers expressed in the form of a single digit times

### Name: Date: Algebra 2/ Trig Apps: Simplifying Square Root Radicals. Arithmetic perfect squares: 1, 4, 9,,,,,,...

RADICALS PACKET Algebra 2/ Trig Apps: Simplifying Square Root Radicals Perfect Squares Perfect squares are the result of any integer times itself. Arithmetic perfect squares: 1, 4, 9,,,,,,... Algebraic

### Rational Exponents. Given that extension, suppose that. Squaring both sides of the equation yields. a 2 (4 1/2 ) 2 a 2 4 (1/2)(2) a a 2 4 (2)

SECTION 0. Rational Exponents 0. OBJECTIVES. Define rational exponents. Simplify expressions with rational exponents. Estimate the value of an expression using a scientific calculator. Write expressions

### A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents

Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify

### Cubes and Cube Roots

CUBES AND CUBE ROOTS 109 Cubes and Cube Roots CHAPTER 7 7.1 Introduction This is a story about one of India s great mathematical geniuses, S. Ramanujan. Once another famous mathematician Prof. G.H. Hardy

### Simplifying Square-Root Radicals Containing Perfect Square Factors

DETAILED SOLUTIONS AND CONCEPTS - OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

### Square Roots. Learning Objectives. Pre-Activity

Section 1. Pre-Activity Preparation Square Roots Our number system has two important sets of numbers: rational and irrational. The most common irrational numbers result from taking the square root of non-perfect

### Solving Logarithmic Equations

Solving Logarithmic Equations Deciding How to Solve Logarithmic Equation When asked to solve a logarithmic equation such as log (x + 7) = or log (7x + ) = log (x + 9), the first thing we need to decide

### 1.5. section. Arithmetic Expressions

1-5 Exponential Expression and the Order of Operations (1-9) 9 83. 1 5 1 6 1 84. 3 30 5 1 4 1 7 0 85. 3 4 1 15 1 0 86. 1 1 4 4 Use a calculator to perform the indicated operation. Round answers to three

### CONNECT: Powers and logs POWERS, INDICES, EXPONENTS, LOGARITHMS THEY ARE ALL THE SAME!

CONNECT: Powers and logs POWERS, INDICES, EXPONENTS, LOGARITHMS THEY ARE ALL THE SAME! You may have come across the terms powers, indices, exponents and logarithms. But what do they mean? The terms power(s),

### Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:

### Project 4: Simplifying Expressions with Radicals

Project 4: Simplifying Expressions with Radicals Defintion A radical, which we symbolize with the sign, is just the opposite of an exponent. In this class, the only radical we will focus on is square roots,

### Section 1.5 Exponents, Square Roots, and the Order of Operations

Section 1.5 Exponents, Square Roots, and the Order of Operations Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Identify perfect squares.

### DECIMALS are special fractions whose denominators are powers of 10.

DECIMALS DECIMALS are special fractions whose denominators are powers of 10. Since decimals are special fractions, then all the rules we have already learned for fractions should work for decimals. The

### Fun Number Theory Meeting (Computation, Factors, Exponent Patterns, Factorials, Perfect Squares and Cubes)

Fun Number Theory Meeting (Computation, Factors, Exponent Patterns, Factorials, Perfect Squares and Cubes) Topic This meeting s topics fall in the category of number theory. Students will apply their knowledge

### Grade 6 Math Circles. Multiplication

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Introduction Grade 6 Math Circles November 5/6, 2013 Multiplication At this point in your schooling you should all be very comfortable with multiplication.

### PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### Grade 5, Ch. 1 Math Vocabulary

Grade 5, Ch. 1 Math Vocabulary rectangular array number model fact family factors product factor pair divisible by divisibility rules prime number composite number square array square number exponent exponential

71_0P0.qxp 1/7/06 9:0 AM Page 1 1 Chapter P Prerequisites P. Exponents and Radicals Integer Exponents Repeated multiplication can be written in exponential form. Repeated Multiplication Exponential Form

### MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

8. Simplification of Radical Expressions 8. OBJECTIVES 1. Simplify a radical expression by using the product property. Simplify a radical expression by using the quotient property NOTE A precise set of

### Chapter 1.1 Rational and Irrational Numbers

Chapter 1.1 Rational and Irrational Numbers A rational number is a number that can be written as a ratio or the quotient of two integers a and b written a/b where b 0. Integers, fractions and mixed numbers,

### A rational number is a number that can be written as where a and b are integers and b 0.

S E L S O N Rational Numbers Goal: Perform operations on rational numbers. Vocabulary Rational number: Additive inverse: A rational number is a number that can be a written as where a and b are integers

### Operations on Decimals

Operations on Decimals Addition and subtraction of decimals To add decimals, write the numbers so that the decimal points are on a vertical line. Add as you would with whole numbers. Then write the decimal

8. Radicals - Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens

### Roots of Real Numbers

Roots of Real Numbers Math 97 Supplement LEARNING OBJECTIVES. Calculate the exact and approximate value of the square root of a real number.. Calculate the exact and approximate value of the cube root

### LESSON 1 PRIME NUMBERS AND FACTORISATION

LESSON 1 PRIME NUMBERS AND FACTORISATION 1.1 FACTORS: The natural numbers are the numbers 1,, 3, 4,. The integers are the naturals numbers together with 0 and the negative integers. That is the integers

### TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers

TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime

### 2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

### Repton Manor Primary School. Maths Targets

Repton Manor Primary School Maths Targets Which target is for my child? Every child at Repton Manor Primary School will have a Maths Target, which they will keep in their Maths Book. The teachers work

### CHAPTER 1 NUMBER SYSTEMS POINTS TO REMEMBER

CHAPTER NUMBER SYSTEMS POINTS TO REMEMBER. Definition of a rational number. A number r is called a rational number, if it can be written in the form p, where p and q are integers and q 0. q Note. We visit

### Variable. 1.1 Order of Operations. August 17, evaluating expressions ink.notebook. Standards. letter or symbol used to represent a number

1.1 evaluating expressions ink.notebook page 8 Unit 1 Basic Equations and Inequalities 1.1 Order of Operations page 9 Square Cube Variable Variable Expression Exponent page 10 page 11 1 Lesson Objectives

### Grade 9 Mathematics Unit #1 Number Sense Sub-Unit #1 Rational Numbers. with Integers Divide Integers

Page1 Grade 9 Mathematics Unit #1 Number Sense Sub-Unit #1 Rational Numbers Lesson Topic I Can 1 Ordering & Adding Create a number line to order integers Integers Identify integers Add integers 2 Subtracting

### Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková

Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead

### Order of Operations More Essential Practice

Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure

### Multiplying and Dividing Listen & Learn PRESENTED BY MATHMANIAC Mathematics, Grade 8

Number Sense and Numeration Integers Multiplying and Dividing PRESENTED BY MATHMANIAC Mathematics, Grade 8 Integers Multiplying and Dividing Introduction Welcome to today s topic Parts of Presentation,

8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify

### Negative Integral Exponents. If x is nonzero, the reciprocal of x is written as 1 x. For example, the reciprocal of 23 is written as 2

4 (4-) Chapter 4 Polynomials and Eponents P( r) 0 ( r) dollars. Which law of eponents can be used to simplify the last epression? Simplify it. P( r) 7. CD rollover. Ronnie invested P dollars in a -year

### Accuplacer Elementary Algebra Study Guide for Screen Readers

Accuplacer Elementary Algebra Study Guide for Screen Readers The following sample questions are similar to the format and content of questions on the Accuplacer Elementary Algebra test. Reviewing these

### Chapter 5 - Polynomials and Polynomial Functions

Math 233 - Spring 2009 Chapter 5 - Polynomials and Polynomial Functions 5.1 Addition and Subtraction of Polynomials Definition 1. A polynomial is a finite sum of terms in which all variables have whole

### A.1 Radicals and Rational Exponents

APPENDIX A. Radicals and Rational Eponents 779 Appendies Overview This section contains a review of some basic algebraic skills. (You should read Section P. before reading this appendi.) Radical and rational

### Ch 7 Alg 2 Note Sheet Key

Ch Alg Note Sheet Key Chapter : Radical Functions and Rational Eponents The Why of Eponents Multiplication gave us a short way to write repeated addition: + + +. The counts the number of terms. Eponents

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Placement Test Review Materials for

Placement Test Review Materials for 1 To The Student This workbook will provide a review of some of the skills tested on the COMPASS placement test. Skills covered in this workbook will be used on the

### Elementary Algebra. Section 0.4 Factors

Section 0.4 Contents: Definitions: Multiplication Primes and Composites Rules of Composite Prime Factorization Answers Focus Exercises THE MULTIPLICATION TABLE x 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,