Negative Integer Exponents


 Dora Shelton
 5 years ago
 Views:
Transcription
1 7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions that contain negative exponents In Section.4, all the exponents we looked at were positive integers. In this section, we look at the meaning of zero and negative integer exponents. First, let s look at an application of the quotient rule that will yield a zero exponent. Recall that, in the quotient rule, to divide expressions with the same base, keep the base and subtract the exponents. a m a n am n Now, suppose that we allow m to equal n. We then have a m () a m am m a 0 But we know that it is also true that a m (2) a m Comparing equations () and (2), we see that the following definition is reasonable. Rules and Properties: The Zero Exponent NOTE We must have a 0. The form 0 0 is called indeterminate and is considered in later mathematics classes. For any real number a when a 0, a 0 Example The Zero Exponent Use the above definition to simplify each expression. NOTE Notice that in 6x 0 the exponent 0 applies only to x. (a) 7 0 (b) (a 3 b 2 ) 0 (c) 6x (d) 3y McGrawHill Companies CHECK YOURSELF Simplify each expression. (a) 25 0 (b) (m 4 n 2 ) 0 (c) 8s 0 (d) 7t 0 Recall that, in the product rule, to multiply expressions with the same base, keep the base and add the exponents. a m a n a m+n 555
2 556 CHAPTER 7 RATIONAL EXPRESSIONS AND FUNCTIONS Now, what if we allow one of the exponents to be negative and apply the product rule? Suppose, for instance, that m 3 and n 3. Then a m a n a 3 a 3 a 3 ( 3) so a 0 a 3 a 3 Dividing both sides by a 3, we get a 3 a 3 Rules and Properties: Negative Integer Exponents NOTE John Wallis (66 702), an English mathematician, was the first to fully discuss the meaning of 0, negative, and rational exponents. For any nonzero real number a and whole number n, a n a n and a n is the multiplicative inverse of a n. Example 2 illustrates this definition. Example 2 Using Properties of Exponents NOTE From this point on, to simplify will mean to write the expression with positive exponents only. Simplify the following expressions. (a) y 5 y 5 NOTE Also, we will restrict all variables so that they represent nonzero real numbers. (b) (c) ( 3) 3 ( 3) (d) CHECK YOURSELF 2 (a) a 0 (b) 2 4 (c) ( 4) 2 (d) McGrawHill Companies
3 NEGATIVE INTEGER EXPONENTS SECTION Example 3 illustrates the case in which coefficients are involved in an expression with negative exponents. As will be clear, some caution must be used. Example 3 Using Properties of Exponents CAUTION (a) 2x 3 2 x 3 2 x 3 The expressions 4w 2 and (4w) 2 are not the same. Do you see why? The exponent 3 applies only to the variable x, and not to the coefficient 2. (b) 4w 2 4 w 2 4 w 2 (c) (4w) 2 (4w) 2 6w 2 CHECK YOURSELF 3 (a) 3w 4 (b) 0x 5 (c) (2y) 4 (d) 5t 2 Suppose that a variable with a negative exponent appears in the denominator of an expression. Our previous definition can be used to write a complex fraction that can then be simplified. For instance, a 2 a2 a2 a 2 Negative exponent in denominator. Positive exponent in numerator. To divide, we invert and multiply. To avoid the intermediate steps, we can write that, in general, 200 McGrawHill Companies Rules and Properties: For any nonzero real number a and integer n, a n a n Negative Exponents in a Denominator
4 558 CHAPTER 7 RATIONAL EXPRESSIONS AND FUNCTIONS Example 4 Using Properties of Exponents (a) (b) (c) y 3 y x 2 3x2 4 The exponent 2 applies only to x, not to 4. (d) a 3 b 4 b4 a 3 CHECK YOURSELF 4 2 (a) (b) (c) (d) c 5 x a 2 d 7 NOTE To review these properties, return to Section.4. The product and quotient rules for exponents apply to expressions that involve any integer exponent positive, negative, or 0. Example 5 illustrates this concept. Example 5 Using Properties of Exponents Simplify each of the following expressions, and write the result, using positive exponents only. (a) x 3 x 7 x 3 ( 7) (b) x 4 x 4 m 5 m 3 m 5 ( 3) m 5 3 Add the exponents by the product rule. Subtract the exponents by the quotient rule. m 2 m 2 NOTE Notice that m 5 in the numerator becomes m 5 in the denominator, and m 3 in the denominator becomes m 3 in the numerator. We then simplify as before. (c) x 5 x 3 x 7 x5 ( 3) x 7 x2 x 7 x2 ( 7) x 9 In simplifying expressions involving negative exponents, there are often alternate approaches. For instance, in Example 5(b), we could have made use of our earlier work to write m 5 m 3 m3 m 5 m 3 5 m 2 m 2 We apply first the product rule and then the quotient rule. 200 McGrawHill Companies
5 NEGATIVE INTEGER EXPONENTS SECTION CHECK YOURSELF 5 y 7 (a) (b) (c) a 3 a 2 x 9 x 5 y 3 a 5 The properties of exponents can be extended to include negative exponents. One of these properties, the quotientpower rule, is particularly useful when rational expressions are raised to a negative power. Let s look at the rule and apply it to negative exponents. Rules and Properties: a n a, b 0 b n b n QuotientPower Rule Rules and Properties: a b n a n bn n b a n b a n Raising Quotients to a Negative Power a 0, b 0 Example 6 Extending the Properties of Exponents Simplify each expression. (a) s3 t 2 2 t 2 s 3 2 t4 s 6 (b) m 2 n 2 3 n 2 CHECK YOURSELF 6 Simplify each expression. s3 m 3 2 n 6 m 6 n 6 m 6 x (a) (b) 5 y 3 3t As you might expect, more complicated expressions require the use of more than one of the properties for simplification. Example 7 illustrates such cases. 200 McGrawHill Companies Example 7 Using Properties of Exponents (a) (a 2 ) 3 (a 3 ) 4 (a 3 ) 3 a 6 a 2 a 9 a 6 2 a 9 a6 a 9 a 6 ( 9) a 6 9 a 5 Apply the power rule to each factor. Apply the product rule. Apply the quotient rule.
6 560 CHAPTER 7 RATIONAL EXPRESSIONS AND FUNCTIONS NOTE It may help to separate the problem into three fractions, one for the coefficients and one for each of the variables. CAUTION (b) (c) 8x 2 y 5 2x 4 y x 2 x y 5 4 y x 2 ( 4) y x2 y 8 2x2 3y 8 pr3 s 5 p 3 r 3 s 2 2 p 3 r 3 s 2 pr 3 s 5 2 p6 r 6 s 4 p 2 r 6 s 0 p 4 r 2 s 6 p4 s 6 r 2 Be Careful! Another possible first step (and generally an efficient one) is to rewrite an expression by using our earlier definitions. a n a n and n an a For instance, in Example 8(b), we would correctly write 8x 2 y 5 2x 4 y 3 8x4 2x 2 y 3 y 5 A common error is to write 8x 2 y 5 2x 4 y 3 2x4 8x 2 y 3 y 5 This is not correct. The coefficients should not be moved along with the factors in x. Keep in mind that the negative exponents apply only to the variables. The coefficients remain where they were in the original expression when the expression is rewritten by using this approach. CHECK YOURSELF 7 (x 5 ) 2 (x 2 ) 3 2a 3 b 2 xy (a) (b) (c) 3 z 5 x 4 y 2 z 3 (x 4 ) 3 6a 2 b 3 3 CHECK YOURSELF ANSWERS 4. (a) ; (b) ; (c) 8; (d) 7 2. (a) ; (b) ; (c) ; (d) a a 2 d 7 3. (a) ; (b) ; (c) ; (d) 5 4. (a) x 4 ; (b) 27; (c) ; (d) w 4 x 5 6y 4 t 2 3 c 5 27t (a) x 4 ; (b) ; (c) a 4 6. (a) ; (b) 7. (a) x 8 ; (b) ; (c) y3 z 24 y 4 s 9 x 5 y 6 4ab 5 x McGrawHill Companies
7 Name 7.7 Exercises Section Date In exercises to 22, simplify each expression.. x ANSWERS x 8 5. ( 5) 2 6. ( 3) ( 2) 3 8. ( 2) x x x 4 4. ( 2x) 4 5. ( 3x) x x 3 x x 3 x 5 y 3 4x 4 x 3 y In exercises 23 to 32, use the properties of exponents to simplify the expressions. 23. x 5 x y 4 y a 9 a w 5 w z 2 z b 7 b McGrawHill Companies 29. a 5 a x 4 x x 3 x 6 x 5 x 2 56
8 ANSWERS In exercises 33 to 58, use the properties of exponents to simplify the following. 33. (x 5 ) (w 4 ) (2x 3 )(x 2 ) (p 4 )(3p 3 ) (3a 4 )(a 3 )(a 2 ) 38. (5y 2 )(2y)(y 5 ) (x 4 y)(x 2 ) 3 (y 3 ) (r 4 ) 2 (r 2 s)(s 3 ) 2 4. (ab 2 c)(a 4 ) 4 (b 2 ) 3 (c 3 ) (p 2 qr 2 )(p 2 )(q 3 ) 2 (r 2 ) (x 5 ) (x 2 ) (b 4 ) (a 0 b 4 ) (x 5 y 3 ) (p 3 q 2 ) (x 4 y 2 ) (3x 2 y 2 ) a 6 b 4 5. (2x 3 y 0 ) x 2 y x 3 x y 3 2 y (4x 2 ) 2 (3x 4 ) 58. (5x 4 ) 4 (2x 3 ) 5 (3x 4 ) 2 (2x 2 ) x 6 In exercises 59 to 90, simplify each expression. 59. (2x 5 ) 4 (x 3 ) (3x 2 ) 3 (x 2 ) 4 (x 2 ) 6. (2x 3 ) 3 (3x 3 ) (x 2 y 3 ) 4 (xy 3 ) (xy 5 z) 4 (xyz 2 ) 8 (x 6 yz) (x 2 y 2 z 2 ) 0 (xy 2 z) 2 (x 3 yz 2 ) 65. (3x 2 )(5x 2 ) (2a 3 ) 2 (a 0 ) (2w 3 ) 4 (3w 5 ) McGrawHill Companies 562
9 ANSWERS 3x 6 x (3x 3 ) 2 (2x 4 ) y 6 2y9 2y 9 y5 x 3 x 3 7. ( 7x 2 y)( 3x 5 y 6 ) w5 z (2x 2 y 3 )(3x 4 y 2 ) 3x 3 y x5 y 4 9 w 4 z (x 3 )(y 2 ) 74. ( 5a 2 b 4 )(2a 5 b 0 ) y 3 6x 3 y 4 24x 2 y x 3 y 2 z 4 24x 5 y 3 z x 4 y 3 z 2 36x 2 y 3 z x 2 y 2 8. x 3 y 2 x 4 y xy3 z 4 2 x 3 y 2 z 2 2 x 2 y x 5 y 7 x 0 y 4 x 3 y 3 x 4 y 3 x 2 2 y 2 xy x 2n x 3n 84. x n x 3n 85. x n 4 x n x n 3 x n (y n ) 3n 88. (x n ) n x 2n x n x 3n x n x 3n 5 x 4n Can (a b) be written as by using the properties of exponents? If not, why a b not? Explain Write a short description of the difference between ( 4) 3, 4 3, ( 4) 3, and 4 3. Are any of these equal? McGrawHill Companies 93. If n 0, which of the following expressions are negative? ( n) 3, n 3, n 3, ( n) 3, ( n) 3, n 3 If n 0, which of these expressions are negative? Explain what effect a negative in the exponent has on the sign of the result when an exponential expression is simplified
10 Answers x x 2 x x 3 2x 3 y x x 2 5 x 3 a 3 z x x x a 39. x 0 y 4. a 7 b 8 c b 8 x x 2 y 6 x 5 5. x 5 y 6 32 y 4 y x x 42 y 33 z 25 x x w 2 3x x 22 y y 4 x 2 y 5 y 5 3xy 5 y 8 5n x 85. x 2 x 3 4z 6 x 5 y 3 x x y 3n2 x 4 x 8 x McGrawHill Companies 564
Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have
8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents
More informationZero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m
0. E a m p l e 666SECTION 0. OBJECTIVES. Define the zero eponent. Simplif epressions with negative eponents. Write a number in scientific notation. Solve an application of scientific notation We must have
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationSimplifying Algebraic Fractions
5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions
More informationRadicals  Rational Exponents
8. Radicals  Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify
More informationRadicals  Multiply and Divide Radicals
8. Radicals  Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
More informationChapter 7  Roots, Radicals, and Complex Numbers
Math 233  Spring 2009 Chapter 7  Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
More informationSimplification of Radical Expressions
8. Simplification of Radical Expressions 8. OBJECTIVES 1. Simplify a radical expression by using the product property. Simplify a radical expression by using the quotient property NOTE A precise set of
More information0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions  that is, algebraic fractions  and equations which contain them. The reader is encouraged to
More informationNegative Exponents and Scientific Notation
3.2 Negative Exponents and Scientific Notation 3.2 OBJECTIVES. Evaluate expressions involving zero or a negative exponent 2. Simplify expressions involving zero or a negative exponent 3. Write a decimal
More informationSIMPLIFYING SQUARE ROOTS
40 (88) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify
More informationChapter 5. Rational Expressions
5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where
More informationSection 4.1 Rules of Exponents
Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells
More informationFINDING THE LEAST COMMON DENOMINATOR
0 (7 18) Chapter 7 Rational Expressions GETTING MORE INVOLVED 7. Discussion. Evaluate each expression. a) Onehalf of 1 b) Onethird of c) Onehalf of x d) Onehalf of x 7. Exploration. Let R 6 x x 0 x
More informationAlgebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
More information2.3 Solving Equations Containing Fractions and Decimals
2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions
More informationMultiplying and Dividing Algebraic Fractions
. Multiplying and Dividing Algebraic Fractions. OBJECTIVES. Write the product of two algebraic fractions in simplest form. Write the quotient of two algebraic fractions in simplest form. Simplify a comple
More informationClick on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
More informationRadicals  Multiply and Divide Radicals
8. Radicals  Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
More informationExponents, Radicals, and Scientific Notation
General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =
More information2.6 Exponents and Order of Operations
2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated
More information2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
More informationExponents. Learning Objectives 41
Eponents 1 to  Learning Objectives 1 The product rule for eponents The quotient rule for eponents The power rule for eponents Power rules for products and quotient We can simplify by combining the like
More information1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes
Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.
More informationRules of Exponents. Math at Work: Motorcycle Customization OUTLINE CHAPTER
Rules of Exponents CHAPTER 5 Math at Work: Motorcycle Customization OUTLINE Study Strategies: Taking Math Tests 5. Basic Rules of Exponents Part A: The Product Rule and Power Rules Part B: Combining the
More informationSession 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
More informationSimplifying Exponential Expressions
Simplifying Eponential Epressions Eponential Notation Base Eponent Base raised to an eponent Eample: What is the base and eponent of the following epression? 7 is the base 7 is the eponent Goal To write
More informationThis is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
More informationLogarithmic and Exponential Equations
11.5 Logarithmic and Exponential Equations 11.5 OBJECTIVES 1. Solve a logarithmic equation 2. Solve an exponential equation 3. Solve an application involving an exponential equation Much of the importance
More information5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
More informationSection A3 Polynomials: Factoring APPLICATIONS. A22 Appendix A A BASIC ALGEBRA REVIEW
A Appendi A A BASIC ALGEBRA REVIEW C In Problems 53 56, perform the indicated operations and simplify. 53. ( ) 3 ( ) 3( ) 4 54. ( ) 3 ( ) 3( ) 7 55. 3{[ ( )] ( )( 3)} 56. {( 3)( ) [3 ( )]} 57. Show by
More informationMULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.
1.4 Multiplication and (125) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with
More informationTo Evaluate an Algebraic Expression
1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum
More informationMultiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20
SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed
More informationFactoring Trinomials of the Form x 2 bx c
4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently
More informationMultiplying and Dividing Radicals
9.4 Multiplying and Dividing Radicals 9.4 OBJECTIVES 1. Multiply and divide expressions involving numeric radicals 2. Multiply and divide expressions involving algebraic radicals In Section 9.2 we stated
More informationMultiplication and Division Properties of Radicals. b 1. 2. a Division property of radicals. 1 n ab 1ab2 1 n a 1 n b 1 n 1 n a 1 n b
488 Chapter 7 Radicals and Complex Numbers Objectives 1. Multiplication and Division Properties of Radicals 2. Simplifying Radicals by Using the Multiplication Property of Radicals 3. Simplifying Radicals
More informationCOLLEGE ALGEBRA. Paul Dawkins
COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5
More information1.3 Polynomials and Factoring
1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.
More informationActivity 1: Using base ten blocks to model operations on decimals
Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division
More informationInteger Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
More informationUsing the ac Method to Factor
4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trialanderror
More informationStudent Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain
More informationALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals
ALGEBRA REVIEW LEARNING SKILLS CENTER The "Review Series in Algebra" is taught at the beginning of each quarter by the staff of the Learning Skills Center at UC Davis. This workshop is intended to be an
More informationMATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
More informationProperties of Real Numbers
16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should
More informationDefinition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
More informationBEGINNING ALGEBRA ACKNOWLEDMENTS
BEGINNING ALGEBRA The Nursing Department of Labouré College requested the Department of Academic Planning and Support Services to help with mathematics preparatory materials for its Bachelor of Science
More informationSolving Exponential Equations
Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is
More information23. RATIONAL EXPONENTS
23. RATIONAL EXPONENTS renaming radicals rational numbers writing radicals with rational exponents When serious work needs to be done with radicals, they are usually changed to a name that uses exponents,
More informationOperations with Algebraic Expressions: Multiplication of Polynomials
Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the
More information26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
More informationUnit 7: Radical Functions & Rational Exponents
Date Period Unit 7: Radical Functions & Rational Exponents DAY 0 TOPIC Roots and Radical Expressions Multiplying and Dividing Radical Expressions Binomial Radical Expressions Rational Exponents 4 Solving
More informationFree PreAlgebra Lesson 55! page 1
Free PreAlgebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can
More informationSECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
More informationZero and Negative Exponents. Section 71
Zero and Negative Exponents Section 71 Goals Goal To simplify expressions involving zero and negative exponents. Rubric Level 1 Know the goals. Level 2 Fully understand the goals. Level 3 Use the goals
More informationWelcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013
Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move
More informationMultiplying Fractions
. Multiplying Fractions. OBJECTIVES 1. Multiply two fractions. Multiply two mixed numbers. Simplify before multiplying fractions 4. Estimate products by rounding Multiplication is the easiest of the four
More information1.2 Linear Equations and Rational Equations
Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of
More informationPolynomial Expression
DETAILED SOLUTIONS AND CONCEPTS  POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE
More informationPOLYNOMIALS and FACTORING
POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use
More information3.4 Multiplication and Division of Rational Numbers
3.4 Multiplication and Division of Rational Numbers We now turn our attention to multiplication and division with both fractions and decimals. Consider the multiplication problem: 8 12 2 One approach is
More informationQuestion 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More informationCopy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2  Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers  {1,2,3,4,...}
More informationAlum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
More informationMathematics Placement
Mathematics Placement The ACT COMPASS math test is a selfadaptive test, which potentially tests students within four different levels of math including prealgebra, algebra, college algebra, and trigonometry.
More informationFive 5. Rational Expressions and Equations C H A P T E R
Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.
More informationSolutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
More informationThe Properties of Signed Numbers Section 1.2 The Commutative Properties If a and b are any numbers,
1 Summary DEFINITION/PROCEDURE EXAMPLE REFERENCE From Arithmetic to Algebra Section 1.1 Addition x y means the sum of x and y or x plus y. Some other words The sum of x and 5 is x 5. indicating addition
More informationThe gas can has a capacity of 4.17 gallons and weighs 3.4 pounds.
hundred million$ ten million$ million$ 00,000,000 0,000,000,000,000 00,000 0,000,000 00 0 0 0 0 0 0 0 0 0 Session 26 Decimal Fractions Explain the meaning of the values stated in the following sentence.
More informationExponents and Radicals
Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More information6.3. section. Building Up the Denominator. To convert the fraction 2 3 factor 21 as 21 3 7. Because 2 3
0 (618) Chapter 6 Rational Epressions GETTING MORE INVOLVED 7. Discussion. Evaluate each epression. a) Onehalf of 1 b) Onethird of c) Onehalf of d) Onehalf of 1 a) b) c) d) 8 7. Eploration. Let R
More information1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style
Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with
More informationPart 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
More information3.3 Addition and Subtraction of Rational Numbers
3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.
More informationSection 1. Finding Common Terms
Worksheet 2.1 Factors of Algebraic Expressions Section 1 Finding Common Terms In worksheet 1.2 we talked about factors of whole numbers. Remember, if a b = ab then a is a factor of ab and b is a factor
More informationFactoring Polynomials
UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can
More information6.1 The Greatest Common Factor; Factoring by Grouping
386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.
More informationA.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents
Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify
More informationMBA Jump Start Program
MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right
More informationMATH 90 CHAPTER 1 Name:.
MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.
More informationFACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1
5.7 Factoring ax 2 bx c (549) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.
More informationSection 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
More informationFactoring Special Polynomials
6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These
More information2.2 Scientific Notation: Writing Large and Small Numbers
2.2 Scientific Notation: Writing Large and Small Numbers A number written in scientific notation has two parts. A decimal part: a number that is between 1 and 10. An exponential part: 10 raised to an exponent,
More informationLesson Plan  Rational Number Operations
Lesson Plan  Rational Number Operations Chapter Resources  Lesson 312 Rational Number Operations  Lesson 312 Rational Number Operations Answers  Lesson 313 Take Rational Numbers to WholeNumber
More informationMATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
More informationMultiplying and Dividing Fractions
Multiplying and Dividing Fractions 1 Overview Fractions and Mixed Numbers Factors and Prime Factorization Simplest Form of a Fraction Multiplying Fractions and Mixed Numbers Dividing Fractions and Mixed
More informationGraphing Rational Functions
Graphing Rational Functions A rational function is defined here as a function that is equal to a ratio of two polynomials p(x)/q(x) such that the degree of q(x) is at least 1. Examples: is a rational function
More informationPREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRETEST
More informationMath Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
More informationMTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006
MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions Created January 7, 2006 Math 092, Elementary Algebra, covers the mathematical content listed below. In order
More informationObjective. Materials. TI73 Calculator
0. Objective To explore subtraction of integers using a number line. Activity 2 To develop strategies for subtracting integers. Materials TI73 Calculator Integer Subtraction What s the Difference? Teacher
More informationPolynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF
Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials
More informationA Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25
More informationGeorgia Standards of Excellence Curriculum Frameworks. Mathematics. GSE Algebra II/Advanced Algebra Unit 1: Quadratics Revisited
Georgia Standards of Excellence Curriculum Frameworks Mathematics GSE Algebra II/Advanced Algebra Unit 1: Quadratics Revisited These materials are for nonprofit educational purposes only. Any other use
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More informationRadicals  Rationalize Denominators
8. Radicals  Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens
More information