Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

Size: px
Start display at page:

Download "Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have"

Transcription

1 8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents 4. Write an expression in radical or exponential form In Section 8.1, we discussed the radical notation, along with the concept of roots. In this section, we use that concept to develop a new notation, using exponents that provide an alternate way of writing these roots. That new notation involves rational numbers as exponents. To start the development, we extend all the previous properties of exponents to include rational exponents. Given that extension, suppose that a (1) Squaring both sides of the equation yields a 2 (4 1 2 ) 2 or NOTE We will see later in this chapter that the property (x m ) n x mn holds for rational numbers m and n. a 2 4 (1 2)(2) a a 2 4 (2) From equation (2) we see that a is the number whose square is 4; that is, a is the principal square root of 4. Using our earlier notation, we can write a 14 But from (1) a and to be consistent, we must have NOTE indicates the principal square root of This argument can be repeated for any exponent of the form so it seems reasonable to n, make the following definition. Definitions: If a is any real number and n is a positive integer (n 1), then a 1 n 1 n a Rational Exponents We restrict a so that a is nonnegative when n is even. In words, a 1 n indicates the principal nth root of a. Example 1 illustrates the use of rational exponents to represent roots. 635

2 636 CHAPTER 8 RADICAL EXPRESSIONS Example 1 Writing Expressions in Radical Form NOTE is the cube root of 27. NOTE is the fifth root of 32. Write each expression in radical form and then simplify. (a) (b) (c) (d) ( 36) is not a real number. (e) CHECK YOURSELF 1 Write each expression in radical form and simplify. (a) (b) (c) We are now ready to extend our exponent notation to allow any rational exponent, again assuming that our previous exponent properties must still be valid. Note that NOTE This is because m n (m) 1 n 1 n (m) a m n (a 1 n ) m (a m ) 1 n From our earlier work, we know that a 1 n 1 n a, and combining this with the above observation, we offer the following definition for a m n. Definitions: NOTE The two radical forms for a m n are equivalent, and the choice of which form to use generally depends on whether we are evaluating numerical expressions or rewriting expressions containing variables in radical form. For any real number a and positive integers m and n with n 1, a m n (1 n a) m 2 n a m This new extension of our rational exponent notation is applied in Example 2. Example 2 Simplifying Expressions with Rational Exponents (a) (9 1 2 ) 3 (19) (b) (c) A ( 8) 2 3 (( 8) 1 3 ) 2 (1 3 8) 2 ( 2) 2 4

3 RATIONAL EXPONENTS SECTION NOTE This illustrates why we use (1 n a) m for a m n when evaluating numerical expressions. The numbers involved will be smaller and easier to work with. In (a) we could also have evaluated the expression as CHECK YOURSELF 2 (a) (b) (c) ( 32) Now we want to extend our rational exponent notation. Using the definition of negative exponents, we can write a m n 1 a m n Example 3 illustrates the use of negative rational exponents. Simplifying Expressions with Rational Exponents (a) Example (b) (1 3 27) CHECK YOURSELF 3 (a) (b) Graphing calculators can be used to evaluate expressions that contain rational exponents by using the key and the parentheses keys. Example 4 Estimating Powers Using a Calculator NOTE If you are using a scientific calculator, try using the y x key in place of the key. Using a graphing calculator, evaluate each of the following. Round all answers to three decimal places. (a) Enter 45 and press the ( 2 5) ) key. Then use the following keystrokes: Press ENTER, and the display will read Rounded to three decimal places, the result is

4 638 CHAPTER 8 RADICAL EXPRESSIONS (b) NOTE The ( ) key changes the sign of the exponent to minus. Enter 38 and press the key. Then use the following keystrokes: ( ( ) 2 3 ) Press ENTER, and the display will read Rounded to three decimal places, the result is CHECK YOURSELF 4 Evaluate each of the following by using a calculator. Round each answer to three decimal places. (a) (b) As we mentioned earlier in this section, we assume that all our previous exponent properties will continue to hold for rational exponents. Those properties are restated here. Rules and Properties: Properties of Exponents For any nonzero real numbers a and b and rational numbers m and n, 1. Product rule a m a n a m n a m 2. Quotient rule a n am n 3. Power rule (a m ) n a mn 4. Product-power rule (ab) m a m b m 5. Quotient-power rule a b m am b m We restrict a and b to being nonnegative real numbers when m or n indicates an even root. Example 5 illustrates the use of our extended properties to simplify expressions involving rational exponents. Here, we assume that all variables represent positive real numbers. Example 5 Simplifying Expressions NOTE Product rule add the exponents. NOTE Quotient rule subtract the exponents. NOTE Power rule multiply the exponents. (a) x 2 3 x 1 2 x x x 7 6 w 3 4 (b) 1 2 w w w w 1 4 (c) (a 2 3 ) 3 4 a (2 3)(3 4) a 1 2

5 RATIONAL EXPONENTS SECTION CHECK YOURSELF 5 x 5 6 (a) z 3 4 z 1 2 (b) (c) (b 5 6 ) 2 5 x 1 3 As you would expect from your previous experience with exponents, simplifying expressions often involves using several exponent properties. Example 6 Simplifying Expressions (a) (x 2 3 y 5 6 ) 3 2 (b) (c) (x 2 3 ) 3 2 ( y 5 6 ) 3 2 x (2 3)(3 2) y (5 6)(3 2) xy 5 4 r 1 2 s (r 1 2 ) 6 (s 1 3 ) 6 r 3 s 2 1 r 3 s 2 4a 2 3 b 2 a 1 3 b b 2 b 4 a 1 3 a b 6 a 1 2 (4b6 ) 1 2 a (b 6 ) 1 2 a 1 2 Product power rule. Power rule. Quotient-power rule. Power rule. We simplify inside the parentheses as the first step. 2b3 a 1 2 CHECK YOURSELF 6 w1 2 8x (a) (a 3 4 b 1 2 ) 2 3 (b) (c) 3 4 y x 1 4 y 1 3 z We can also use the relationships between rational exponents and radicals to write expressions involving rational exponents as radicals and vice versa. NOTE Here we use a m n 2 n a m, which is generally the preferred form in this situation. Example 7 Writing Expressions in Radical Form Write each expression in radical form. (a) a a 3 (b) (mn) (mn) m 3 n 3

6 640 CHAPTER 8 RADICAL EXPRESSIONS NOTE Notice that the exponent applies only to the variable y. NOTE Now the exponent applies to 2y because of the parentheses. (c) 2y y 5 (d) (2y) (2y) y 5 CHECK YOURSELF 7 Write each expression in radical form. (a) (ab) 2 3 (b) 3x 3 4 (c) (3x) 3 4 Example 8 Writing Expressions in Exponential Form Using rational exponents, write each expression and simplify. (a) (b) (c) 1 3 5x (5x) a 2 b 4 (9a 2 b 4 ) (a 2 ) 1 2 (b 4 ) 1 2 3ab w 12 z 8 (16w 12 z 8 ) (w 12 ) 1 4 (z 8 ) 1 4 2w 3 z 2 CHECK YOURSELF 8 Using rational exponents, write each expression and simplify. (a) 17a (b) p 6 q 9 (c) x 8 y 16 CHECK YOURSELF ANSWERS 1. (a) 2; (b) 8; (c) (a) 8; (b) ; (c) 8 3. (a) ; (b) (a) 6.562; (b) (a) z 5 4 ; (b) x 1 2 ; (c) b 1 3 2y 2 6. (a) a 1 2 b 1 3 ; (b) w 2 z; (c) 7. (a) 2 3 a 2 b 2 ; (b) 32 4 x 3 ; (c) x 3 x (a) (7a) 1 2 ; (b) 3p 2 q 3 ; (c) 3x 2 y 4

7 Name 8.6 Exercises Section Date In exercises 1 to 12, use the definition of a 1/n to evaluate each expression ( 64) ( 49) ( 64) ANSWERS In exercises 13 to 22, use the definition of a m n to evaluate each expression ( 8) ( 243) In exercises 23 to 32, use the definition of a m n to evaluate the following expressions. Use your calculator to check each answer

8 ANSWERS In exercises 33 to 76, use the properties of exponents to simplify each expression. Assume all variables represent positive real numbers. 33. x 1 2 x a 2 3 a y 3 5 y m 1 4 m b 2 3 b p 5 6 p 2 3 x 2 3 x s 7 5 s w 5 4 w a 5 6 a 1 6 z 9 2 z 3 2 b 7 6 b (x 3 4 ) (y 4 3 ) (a 2 5 ) ( p 3 4 ) (y 3 4 ) (w 2 3 ) (a 2 3 b 3 2 ) (p 3 4 q 5 2 ) (2x 1 5 y 3 5 ) (3m 3 4 n 5 4 ) (s 3 4 t 1 4 ) (x 5 2 y 5 7 ) (8p 3 2 q 5 2 ) (16a 1 3 b 2 3 ) (x 3 5 y 3 4 z 3 2 ) (p 5 6 q 2 3 r 5 3 )

9 ANSWERS a 5 6 b 3 4 x 2 3 y a 1 3 b 1 2 x 1 2 y (r 1 s 1 2 ) r s 1 2 x y m n r 1 2 s t x3 y z m 3 5 n m 1 5 n x3 2 y x3 4 y z 2 z 3 (w 2 z 1 4 ) 6 w 8 z 1 2 p9 q r1 5 s a1 3 b 1 6 c p 4 q 6 r x5 6 y 4 3 x 7 6 y p1 2 q 4 3 r p15 8 q 3 r In exercises 77 to 84, write each expression in radical form. Do not simplify. 77. a m x m x y (3x) (2y) 3 4 In exercises 85 to 88, write each expression using rational exponents, and simplify when necessary a w m 6 n r 10 s

10 ANSWERS In exercises 89 to 92, evaluate each expression, using a calculator. Round each answer to three decimal places Describe the difference between x 2 and x Some rational exponents, like, can easily be rewritten as terminating decimals 2 1 (0.5). Others, like, cannot. What is it that determines which rational numbers can 3 be rewritten as terminating decimals? In exercises 95 to 104, apply the appropriate multiplication patterns. Then simplify your result. 95. a 1 2 (a 3 2 a 3 4 ) 96. 2x 1 4 (3x 3 4 5x 1 4 ) 97. (a 1 2 2)(a 1 2 2) 98. (w 1 3 3)(w 1 3 3) 99. (m 1 2 n 1 2 )(m 1 2 n 1 2 ) 100. (x 1 3 y 1 3 )(x 1 3 y 1 3 ) 101. (x 1 2 2) (a 1 3 3) (r 1 2 s 1 2 ) (p 1 2 q 1 2 ) As is suggested by several of the preceding exercises, certain expressions containing rational exponents are factorable. For instance, to factor x 2 3 x 1 3 6, let u x 1 3. Note that x 2 3 (x 1 3 ) 2 u 2. Substituting, we have u 2 u 6, and factoring yields (u 3)(u 2) or (x 1 3 3)(x 1 3 2). In exercises 105 to 110, use this technique to factor each expression x 2 3 4x y 2 5 2y a 4 5 7a w 4 3 3w x x

11 ANSWERS In exercises 111 to 120, perform the indicated operations. Assume that n represents a positive integer and that the denominators are not zero x 3n x 2n 112. p 1 n p n (y 2 ) 2n 114. (a 3n ) 3 r n r n 117. (a 3 b 2 ) 2n 118. (c 4 d 2 ) 3m xn 2 x 1 2 n w n w n 3 bn b n In exercises 121 to 124, write each expression in exponent form, simplify, and give the result as a single radical x y a 31 3 w In exercises 125 to 130, simplify each expression. Write your answer in scientific notation ( ) ( ) ( ) ( ) ( ) ( ) While investigating rainfall runoff in a region of semiarid farmland, a researcher encounters the following formula: t C L xy Evaluate t when C 20, L 600, x 3, and y The average velocity of water in an open irrigation ditch is given by the formula V 1.5x2 3 y 1 2 z Evaluate V when x 27, y 16, and z Use the properties of exponents to decide what x should be to make each statement true. Explain your choices regarding which properties of exponents you decide to use. (a) (a 2 3 ) x a (c) a 2x a (b) (a 5 6 ) x a (d) (2a 2 3 ) x a

12 ANSWERS The geometric mean is used to measure average inflation rates or interest rates. If prices increased by 15% over 5 years, then the average annual rate of inflation is obtained by taking the 5th root of 1.15: (1.15) or ~2.8% The 1 is added to 0.15 because we are taking the original price and adding 15% of that price. We could write that as P 0.15P Factoring, we get P 0.15P P(1 0.15) P(1.15) In the introduction to this chapter, the following statement was made: From February 1990 through February 2000, the Bureau of Labor Statistics computed an inflation rate of 68.1%, which is equivalent to an annual growth rate of 2.51%. From February 1990 through February 2000 is 12 months. To what exponent was raised to obtain this average annual growth rate? 135. On your calculator, try evaluating ( 9) 4 2 in the following two ways: (a) (( 9) 4 ) 1 2 (b) (( 9) 1 2 ) 4 Discuss the results. Answers Not a real number x 35. y b x s 43. w x 47. a y a 4 b xy st pq x 2 5 y 1 2 z 61. a 1 2 b s 2 x r 4 y 2 mn s 3 2xz 3 2n r 2 t y 2 m xy a x x x (7a) m 2 n a 2 a a m n 101. x 4x r 2r 1 2 s 1 2 s 105. (x 1 3 1)(x 1 3 3) 107. (a 2 5 3)(a 2 5 4) 109. (x 2 3 2)(x 2 3 2) 111. x 5n 113. y 4n 115. r a 6n b 4n 119. x x y (a) 81; (b) not defined 646

Rational Exponents. Given that extension, suppose that. Squaring both sides of the equation yields. a 2 (4 1/2 ) 2 a 2 4 (1/2)(2) a a 2 4 (2)

Rational Exponents. Given that extension, suppose that. Squaring both sides of the equation yields. a 2 (4 1/2 ) 2 a 2 4 (1/2)(2) a a 2 4 (2) SECTION 0. Rational Exponents 0. OBJECTIVES. Define rational exponents. Simplify expressions with rational exponents. Estimate the value of an expression using a scientific calculator. Write expressions

More information

Negative Integer Exponents

Negative Integer Exponents 7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

More information

Rules for Exponents and the Reasons for Them

Rules for Exponents and the Reasons for Them Print this page Chapter 6 Rules for Exponents and the Reasons for Them 6.1 INTEGER POWERS AND THE EXPONENT RULES Repeated addition can be expressed as a product. For example, Similarly, repeated multiplication

More information

Exponents, Radicals, and Scientific Notation

Exponents, Radicals, and Scientific Notation General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

More information

27 = 3 Example: 1 = 1

27 = 3 Example: 1 = 1 Radicals: Definition: A number r is a square root of another number a if r = a. is a square root of 9 since = 9 is also a square root of 9, since ) = 9 Notice that each positive number a has two square

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents

A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information

eday Lessons Mathematics Grade 8 Student Name:

eday Lessons Mathematics Grade 8 Student Name: eday Lessons Mathematics Grade 8 Student Name: Common Core State Standards- Expressions and Equations Work with radicals and integer exponents. 3. Use numbers expressed in the form of a single digit times

More information

This is Radical Expressions and Equations, chapter 8 from the book Beginning Algebra (index.html) (v. 1.0).

This is Radical Expressions and Equations, chapter 8 from the book Beginning Algebra (index.html) (v. 1.0). This is Radical Expressions and Equations, chapter 8 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

Section 9.1 Roots, Radicals, and Rational Exponents

Section 9.1 Roots, Radicals, and Rational Exponents Section 9. Roots, Radicals, and Rational Exponents SQUARE ROOTS The square root of a is written as N. If N ;, then b a. Note: For to be defined in the real number system, a 0. NOTATION: a / a is the RADICAL

More information

1.5. section. Arithmetic Expressions

1.5. section. Arithmetic Expressions 1-5 Exponential Expression and the Order of Operations (1-9) 9 83. 1 5 1 6 1 84. 3 30 5 1 4 1 7 0 85. 3 4 1 15 1 0 86. 1 1 4 4 Use a calculator to perform the indicated operation. Round answers to three

More information

Solving Logarithmic Equations

Solving Logarithmic Equations Solving Logarithmic Equations Deciding How to Solve Logarithmic Equation When asked to solve a logarithmic equation such as log (x + 7) = or log (7x + ) = log (x + 9), the first thing we need to decide

More information

Simplifying Radical Expressions

Simplifying Radical Expressions 9.2 Simplifying Radical Expressions 9.2 OBJECTIVES. Simplify expressions involving numeric radicals 2. Simplify expressions involving algebraic radicals In Section 9., we introduced the radical notation.

More information

Sect Exponents: Multiplying and Dividing Common Bases

Sect Exponents: Multiplying and Dividing Common Bases 40 Sect 5.1 - Exponents: Multiplying and Dividing Common Bases Concept #1 Review of Exponential Notation In the exponential expression 4 5, 4 is called the base and 5 is called the exponent. This says

More information

Exponents and Exponential Functions

Exponents and Exponential Functions Exponents and Exponential Functions Brenda Meery Kaitlyn Spong Say Thanks to the Authors Click http://www.ck2.org/saythanks (No sign in required) To access a customizable version of this book, as well

More information

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

The wavelength of infrared light is meters. The digits 3 and 7 are important but all the zeros are just place holders.

The wavelength of infrared light is meters. The digits 3 and 7 are important but all the zeros are just place holders. Section 6 2A: A common use of positive and negative exponents is writing numbers in scientific notation. In astronomy, the distance between 2 objects can be very large and the numbers often contain many

More information

SIMPLIFYING SQUARE ROOTS

SIMPLIFYING SQUARE ROOTS 40 (8-8) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify

More information

Radicals - Multiply and Divide Radicals

Radicals - Multiply and Divide Radicals 8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals

More information

Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:

Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers: Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules

More information

Simplification of Radical Expressions

Simplification of Radical Expressions 8. Simplification of Radical Expressions 8. OBJECTIVES 1. Simplify a radical expression by using the product property. Simplify a radical expression by using the quotient property NOTE A precise set of

More information

West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12

West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12 West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12 Unit 1: Polynomials and Factoring Course & Grade Level: Algebra I Part 2, 9 12 This unit involves knowledge and skills relative

More information

MATH Fundamental Mathematics II.

MATH Fundamental Mathematics II. MATH 10032 Fundamental Mathematics II http://www.math.kent.edu/ebooks/10032/fun-math-2.pdf Department of Mathematical Sciences Kent State University December 29, 2008 2 Contents 1 Fundamental Mathematics

More information

Solution: There are TWO square roots of 196, a positive number and a negative number. So, since and 14 2

Solution: There are TWO square roots of 196, a positive number and a negative number. So, since and 14 2 5.7 Introduction to Square Roots The Square of a Number The number x is called the square of the number x. EX) 9 9 9 81, the number 81 is the square of the number 9. 4 4 4 16, the number 16 is the square

More information

Guide to SRW Section 1.7: Solving inequalities

Guide to SRW Section 1.7: Solving inequalities Guide to SRW Section 1.7: Solving inequalities When you solve the equation x 2 = 9, the answer is written as two very simple equations: x = 3 (or) x = 3 The diagram of the solution is -6-5 -4-3 -2-1 0

More information

Sometimes it is easier to leave a number written as an exponent. For example, it is much easier to write

Sometimes it is easier to leave a number written as an exponent. For example, it is much easier to write 4.0 Exponent Property Review First let s start with a review of what exponents are. Recall that 3 means taking four 3 s and multiplying them together. So we know that 3 3 3 3 381. You might also recall

More information

Rational Exponents and Radicals

Rational Exponents and Radicals C H A P T E R 7 Rational Exponents and Radicals Wind chill temperature (F) for 5F air temperature 5 0 15 10 5 0 0.5 10 15 5 10 15 0 5 0 Wind velocity (mph) ust how cold is it in Fargo, North Dakota, in

More information

Chapter 3. Algebra. 3.1 Rational expressions BAa1: Reduce to lowest terms

Chapter 3. Algebra. 3.1 Rational expressions BAa1: Reduce to lowest terms Contents 3 Algebra 3 3.1 Rational expressions................................ 3 3.1.1 BAa1: Reduce to lowest terms...................... 3 3.1. BAa: Add, subtract, multiply, and divide............... 5

More information

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers. 1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

More information

Math 002 Intermediate Algebra

Math 002 Intermediate Algebra Math 002 Intermediate Algebra Student Notes & Assignments Unit 4 Rational Exponents, Radicals, Complex Numbers and Equation Solving Unit 5 Homework Topic Due Date 7.1 BOOK pg. 491: 62, 64, 66, 72, 78,

More information

Scientific Notation and Powers of Ten Calculations

Scientific Notation and Powers of Ten Calculations Appendix A Scientific Notation and Powers of Ten Calculations A.1 Scientific Notation Often the quantities used in chemistry problems will be very large or very small numbers. It is much more convenient

More information

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

More information

To Evaluate an Algebraic Expression

To Evaluate an Algebraic Expression 1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum

More information

Operations on Decimals

Operations on Decimals Operations on Decimals Addition and subtraction of decimals To add decimals, write the numbers so that the decimal points are on a vertical line. Add as you would with whole numbers. Then write the decimal

More information

23. RATIONAL EXPONENTS

23. RATIONAL EXPONENTS 23. RATIONAL EXPONENTS renaming radicals rational numbers writing radicals with rational exponents When serious work needs to be done with radicals, they are usually changed to a name that uses exponents,

More information

Property: Rule: Example:

Property: Rule: Example: Math 1 Unit 2, Lesson 4: Properties of Exponents Property: Rule: Example: Zero as an Exponent: a 0 = 1, this says that anything raised to the zero power is 1. Negative Exponent: Multiplying Powers with

More information

Algebra 1A and 1B Summer Packet

Algebra 1A and 1B Summer Packet Algebra 1A and 1B Summer Packet Name: Calculators are not allowed on the summer math packet. This packet is due the first week of school and will be counted as a grade. You will also be tested over the

More information

Zero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m

Zero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m 0. E a m p l e 666SECTION 0. OBJECTIVES. Define the zero eponent. Simplif epressions with negative eponents. Write a number in scientific notation. Solve an application of scientific notation We must have

More information

3. Power of a Product: Separate letters, distribute to the exponents and the bases

3. Power of a Product: Separate letters, distribute to the exponents and the bases Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same

More information

Chapter 1.1 Rational and Irrational Numbers

Chapter 1.1 Rational and Irrational Numbers Chapter 1.1 Rational and Irrational Numbers A rational number is a number that can be written as a ratio or the quotient of two integers a and b written a/b where b 0. Integers, fractions and mixed numbers,

More information

Chapter 4 Fractions and Mixed Numbers

Chapter 4 Fractions and Mixed Numbers Chapter 4 Fractions and Mixed Numbers 4.1 Introduction to Fractions and Mixed Numbers Parts of a Fraction Whole numbers are used to count whole things. To refer to a part of a whole, fractions are used.

More information

Exponents and Radicals

Exponents and Radicals Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of

More information

Chapter 15 Radical Expressions and Equations Notes

Chapter 15 Radical Expressions and Equations Notes Chapter 15 Radical Expressions and Equations Notes 15.1 Introduction to Radical Expressions The symbol is called the square root and is defined as follows: a = c only if c = a Sample Problem: Simplify

More information

Quadratic Equations and Inequalities

Quadratic Equations and Inequalities MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose

More information

MATH REVIEW KIT. Reproduced with permission of the Certified General Accountant Association of Canada.

MATH REVIEW KIT. Reproduced with permission of the Certified General Accountant Association of Canada. MATH REVIEW KIT Reproduced with permission of the Certified General Accountant Association of Canada. Copyright 00 by the Certified General Accountant Association of Canada and the UBC Real Estate Division.

More information

Algebra 1: Topic 1 Notes

Algebra 1: Topic 1 Notes Algebra 1: Topic 1 Notes Review: Order of Operations Please Parentheses Excuse Exponents My Multiplication Dear Division Aunt Addition Sally Subtraction Table of Contents 1. Order of Operations & Evaluating

More information

Negative Exponents and Scientific Notation

Negative Exponents and Scientific Notation 3.2 Negative Exponents and Scientific Notation 3.2 OBJECTIVES. Evaluate expressions involving zero or a negative exponent 2. Simplify expressions involving zero or a negative exponent 3. Write a decimal

More information

12) 13) 14) (5x)2/3. 16) x5/8 x3/8. 19) (r1/7 s1/7) 2

12) 13) 14) (5x)2/3. 16) x5/8 x3/8. 19) (r1/7 s1/7) 2 DMA 080 WORKSHEET # (8.-8.2) Name Find the square root. Assume that all variables represent positive real numbers. ) 6 2) 8 / 2) 9x8 ) -00 ) 8 27 2/ Use a calculator to approximate the square root to decimal

More information

Pre Cal 2 1 Lesson with notes 1st.notebook. January 22, Operations with Complex Numbers

Pre Cal 2 1 Lesson with notes 1st.notebook. January 22, Operations with Complex Numbers 0 2 Operations with Complex Numbers Objectives: To perform operations with pure imaginary numbers and complex numbers To use complex conjugates to write quotients of complex numbers in standard form Complex

More information

COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

More information

8-6 Radical Expressions and Rational Exponents. Warm Up Lesson Presentation Lesson Quiz

8-6 Radical Expressions and Rational Exponents. Warm Up Lesson Presentation Lesson Quiz 8-6 Radical Expressions and Rational Exponents Warm Up Lesson Presentation Lesson Quiz Holt Algebra ALgebra2 2 Warm Up Simplify each expression. 1. 7 3 7 2 16,807 2. 11 8 11 6 121 3. (3 2 ) 3 729 4. 5.

More information

26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order 26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

More information

Unit 7: Radical Functions & Rational Exponents

Unit 7: Radical Functions & Rational Exponents Date Period Unit 7: Radical Functions & Rational Exponents DAY 0 TOPIC Roots and Radical Expressions Multiplying and Dividing Radical Expressions Binomial Radical Expressions Rational Exponents 4 Solving

More information

Square Roots. Learning Objectives. Pre-Activity

Square Roots. Learning Objectives. Pre-Activity Section 1. Pre-Activity Preparation Square Roots Our number system has two important sets of numbers: rational and irrational. The most common irrational numbers result from taking the square root of non-perfect

More information

CC-20 CC Objective MATHEMATICAL PRACTICES. Lesson. L Vocabulary. ANSWER CONNECT THE MATH n

CC-20 CC Objective MATHEMATICAL PRACTICES. Lesson. L Vocabulary. ANSWER CONNECT THE MATH n 1 Interactive Learning Solve It! PURPOSE PROCESS 2 FACILITATE Q [to divide into two equal parts] Q a [8] Q a b [ 1 2 a] ANSWER CONNECT THE MATH n 2 Guided Instruction Problem 1 Q [3] Q [4] 7-5 CC-20 CC-9

More information

Roots of Real Numbers

Roots of Real Numbers Roots of Real Numbers Math 97 Supplement LEARNING OBJECTIVES. Calculate the exact and approximate value of the square root of a real number.. Calculate the exact and approximate value of the cube root

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

Grade 7/8 Math Circles October 7/8, Exponents and Roots - SOLUTIONS

Grade 7/8 Math Circles October 7/8, Exponents and Roots - SOLUTIONS Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles October 7/8, 2014 Exponents and Roots - SOLUTIONS This file has all the missing

More information

HOSPITALITY Math Assessment Preparation Guide. Introduction Operations with Whole Numbers Operations with Integers 9

HOSPITALITY Math Assessment Preparation Guide. Introduction Operations with Whole Numbers Operations with Integers 9 HOSPITALITY Math Assessment Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre at George

More information

Lesson 6: Proofs of Laws of Exponents

Lesson 6: Proofs of Laws of Exponents NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 6 8 Student Outcomes Students extend the previous laws of exponents to include all integer exponents. Students base symbolic proofs on concrete examples to

More information

1.1 Solving a Linear Equation ax + b = 0

1.1 Solving a Linear Equation ax + b = 0 1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x- = 0 x = (ii)

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

TI-83 Plus Graphing Calculator Keystroke Guide

TI-83 Plus Graphing Calculator Keystroke Guide TI-83 Plus Graphing Calculator Keystroke Guide In your textbook you will notice that on some pages a key-shaped icon appears next to a brief description of a feature on your graphing calculator. In this

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS (Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

More information

2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form.

2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form. Grade 9 Mathematics Unit : Powers and Exponent Rules Sec.1 What is a Power 5 is the BASE 5 is the EXPONENT The entire 5 is called a POWER. 5 = written as repeated multiplication. 5 = 3 written in standard

More information

Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013

Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013 Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move

More information

Rules of Exponents. Math at Work: Motorcycle Customization OUTLINE CHAPTER

Rules of Exponents. Math at Work: Motorcycle Customization OUTLINE CHAPTER Rules of Exponents CHAPTER 5 Math at Work: Motorcycle Customization OUTLINE Study Strategies: Taking Math Tests 5. Basic Rules of Exponents Part A: The Product Rule and Power Rules Part B: Combining the

More information

Multiplication and Division Properties of Radicals. b 1. 2. a Division property of radicals. 1 n ab 1ab2 1 n a 1 n b 1 n 1 n a 1 n b

Multiplication and Division Properties of Radicals. b 1. 2. a Division property of radicals. 1 n ab 1ab2 1 n a 1 n b 1 n 1 n a 1 n b 488 Chapter 7 Radicals and Complex Numbers Objectives 1. Multiplication and Division Properties of Radicals 2. Simplifying Radicals by Using the Multiplication Property of Radicals 3. Simplifying Radicals

More information

MyMathLab ecourse for Developmental Mathematics

MyMathLab ecourse for Developmental Mathematics MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and

More information

Algebra II Pacing Guide First Nine Weeks

Algebra II Pacing Guide First Nine Weeks First Nine Weeks SOL Topic Blocks.4 Place the following sets of numbers in a hierarchy of subsets: complex, pure imaginary, real, rational, irrational, integers, whole and natural. 7. Recognize that the

More information

Simplifying Algebraic Fractions

Simplifying Algebraic Fractions 5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

More information

Name Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE

Name Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE Name Date Block Know how to Algebra 1 Laws of Eponents/Polynomials Test STUDY GUIDE Evaluate epressions with eponents using the laws of eponents: o a m a n = a m+n : Add eponents when multiplying powers

More information

Practice Math Placement Exam

Practice Math Placement Exam Practice Math Placement Exam The following are problems like those on the Mansfield University Math Placement Exam. You must pass this test or take MA 0090 before taking any mathematics courses. 1. What

More information

Math Help and Additional Practice Websites

Math Help and Additional Practice Websites Name: Math Help and Additional Practice Websites http://www.coolmath.com www.aplusmath.com/ http://www.mathplayground.com/games.html http://www.ixl.com/math/grade-7 http://www.softschools.com/grades/6th_and_7th.jsp

More information

CLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column.

CLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column. SYNTHETIC DIVISION CLASS NOTES When factoring or evaluating polynomials we often find that it is convenient to divide a polynomial by a linear (first degree) binomial of the form x k where k is a real

More information

The notation above read as the nth root of the mth power of a, is a

The notation above read as the nth root of the mth power of a, is a Let s Reduce Radicals to Bare Bones! (Simplifying Radical Expressions) By Ana Marie R. Nobleza The notation above read as the nth root of the mth power of a, is a radical expression or simply radical.

More information

Definition of an nth Root

Definition of an nth Root Radicals and Complex Numbers 7 7. Definition of an nth Root 7.2 Rational Exponents 7.3 Simplifying Radical Expressions 7.4 Addition and Subtraction of Radicals 7.5 Multiplication of Radicals 7.6 Rationalization

More information

Identify examples of field properties: commutative, associative, identity, inverse, and distributive.

Identify examples of field properties: commutative, associative, identity, inverse, and distributive. Topic: Expressions and Operations ALGEBRA II - STANDARD AII.1 The student will identify field properties, axioms of equality and inequality, and properties of order that are valid for the set of real numbers

More information

(- 7) + 4 = (-9) = - 3 (- 3) + 7 = ( -3) = 2

(- 7) + 4 = (-9) = - 3 (- 3) + 7 = ( -3) = 2 WORKING WITH INTEGERS: 1. Adding Rules: Positive + Positive = Positive: 5 + 4 = 9 Negative + Negative = Negative: (- 7) + (- 2) = - 9 The sum of a negative and a positive number: First subtract: The answer

More information

Week 13 Trigonometric Form of Complex Numbers

Week 13 Trigonometric Form of Complex Numbers Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working

More information

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

More information

Algebra 1-2. A. Identify and translate variables and expressions.

Algebra 1-2. A. Identify and translate variables and expressions. St. Mary's College High School Algebra 1-2 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used

More information

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

More information

Placement Test Review Materials for

Placement Test Review Materials for Placement Test Review Materials for 1 To The Student This workbook will provide a review of some of the skills tested on the COMPASS placement test. Skills covered in this workbook will be used on the

More information

A.1 Radicals and Rational Exponents

A.1 Radicals and Rational Exponents APPENDIX A. Radicals and Rational Eponents 779 Appendies Overview This section contains a review of some basic algebraic skills. (You should read Section P. before reading this appendi.) Radical and rational

More information

Radicals - Rational Exponents

Radicals - Rational Exponents 8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify

More information

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , ) Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.1-1.4, 1.6-1.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order

More information

Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20

Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20 SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed

More information

Order of Operations. 2 1 r + 1 s. average speed = where r is the average speed from A to B and s is the average speed from B to A.

Order of Operations. 2 1 r + 1 s. average speed = where r is the average speed from A to B and s is the average speed from B to A. Order of Operations Section 1: Introduction You know from previous courses that if two quantities are added, it does not make a difference which quantity is added to which. For example, 5 + 6 = 6 + 5.

More information

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 8 Powers and Exponents

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 8 Powers and Exponents Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 8 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm

More information

Unit 1 Review Part 1 3 combined Handout KEY.notebook. September 26, 2013

Unit 1 Review Part 1 3 combined Handout KEY.notebook. September 26, 2013 Math 10c Unit 1 Factors, Powers and Radicals Key Concepts 1.1 Determine the prime factors of a whole number. 650 3910 1.2 Explain why the numbers 0 and 1 have no prime factors. 0 and 1 have no prime factors

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

Solving Exponential Equations

Solving Exponential Equations Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is

More information

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:

More information

TI-86 Graphing Calculator Keystroke Guide

TI-86 Graphing Calculator Keystroke Guide TI-86 Graphing Calculator Keystroke Guide In your textbook you will notice that on some pages a key-shaped icon appears next to a brief description of a feature on your graphing calculator. In this guide

More information

Course Title: Honors Algebra Course Level: Honors Textbook: Algebra 1 Publisher: McDougall Littell

Course Title: Honors Algebra Course Level: Honors Textbook: Algebra 1 Publisher: McDougall Littell Course Title: Honors Algebra Course Level: Honors Textbook: Algebra Publisher: McDougall Littell The following is a list of key topics studied in Honors Algebra. Identify and use the properties of operations

More information